1
|
Humayun MZ, Ayyappan V. Potential roles for DNA replication and repair functions in cell killing by streptomycin. Mutat Res 2013; 749:87-91. [PMID: 23958411 DOI: 10.1016/j.mrfmmm.2013.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The aminoglycoside streptomycin binds to ribosomes to promote mistranslation and eventual inhibition of translation. Streptomycin kills bacteria, whereas many other non-aminoglycoside inhibitors of translation do not. Because mistranslation is now known to affect DNA replication, we asked if hydroxyurea, a specific inhibitor of DNA synthesis, affects killing, and find that hydroxyurea significantly attenuates killing by streptomycin. We find that the hydroxyl radical scavengers d-mannitol and thiourea have either no effect or only a modest protective effect. The iron chelator 2,2'-dipyridyl eliminated killing by streptomycin, but further investigation revealed that it blocks streptomycin uptake. Prior treatment of cells with low-levels of methyl methanesulfonate to induce the adaptive response to alkylation leads to a significant attenuation of killing, which, together with the hydroxyurea effect, suggests roles for DNA replication and repair functions in cell killing by streptomycin.
Collapse
Affiliation(s)
- M Zafri Humayun
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, NJ 07107, United States.
| | | |
Collapse
|
2
|
Al Mamun AAM, Gautam S, Humayun MZ. Hypermutagenesis in mutA cells is mediated by mistranslational corruption of polymerase, and is accompanied by replication fork collapse. Mol Microbiol 2007; 62:1752-63. [PMID: 17427291 DOI: 10.1111/j.1365-2958.2006.05490.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated mistranslation induces a mutator response termed translational stress-induced mutagenesis (TSM) that is mediated by an unidentified modification of DNA polymerase III. Here we address two questions: (i) does TSM result from direct polymerase corruption, or from an indirect pathway triggered by increased protein turnover? (ii) Why are homologous recombination functions required for the expression of TSM under certain conditions, but not others? We show that replication of bacteriophage T4 in cells expressing the mutA allele of the glyVtRNA gene (Asp-Gly mistranslation), leads to both increased mutagenesis, and to an altered mutational specificity, results that strongly support mistranslational corruption of DNA polymerase. We also show that expression of mutA, which confers a recA-dependent mutator phenotype, leads to increased lambdoid prophage induction (selectable in vivo expression technology assay), suggesting that replication fork collapse occurs more frequently in mutA cells relative to control cells. No such increase in prophage induction is seen in cells expressing alaVGlu tRNA (Glu-->Ala mistranslation), in which the mutator phenotype is recA-independent. We propose that replication fork collapse accompanies episodic hypermutagenic replication cycles in mutA cells, requiring homologous recombination functions for fork recovery, and therefore, for mutation recovery. These findings highlight hitherto under-appreciated links among translation, replication and recombination, and suggest that translational fidelity, which is affected by genetic and environmental signals, is a key modulator of replication fidelity.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, 225 Warren Street, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
3
|
Nagel R, Chan A. Mistranslation and genetic variability: the effect of streptomycin. Mutat Res 2006; 601:162-70. [PMID: 16904706 DOI: 10.1016/j.mrfmmm.2006.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/14/2006] [Accepted: 06/25/2006] [Indexed: 11/25/2022]
Abstract
Streptomycin is an aminoglycoside antibiotic that acts at the level of protein synthesis. Exposure to sublethal concentrations of this antibiotic increased significantly the number of Arg+ mutants derived from an Escherichia coli argE3 (ochre) rpsL31 (streptomycin-resistant) strain. The vast majority of these mutants appeared on selective minimal medium plates with streptomycin (200 micro g/ml) during stationary phase, after 6-10 days incubation at 37 degrees C. Derivative mutD5 or mutL or mutS mutants, carrying a faulty epsilon subunit of DNA polymerase or a defective mismatch DNA-repair protein, respectively, also showed higher numbers of Arg+ mutants on selective medium with streptomycin than on medium without streptomycin. Interestingly, with these DNA-repair mutants about 50% of the Arg+ mutants generated in the presence of streptomycin appeared during the first 5 days of incubation. These observations suggest that the activities of these fidelity-repair proteins prevent in the parental strain the early appearance of the supernumerary Arg+ mutants on the selective medium with streptomycin. The appearance of Arg+ mutants on the plates with streptomycin was not significantly altered by recA, rpoS or dps mutations. A high percentage of the Arg+ mutants arising in the presence of streptomycin were streptomycin-dependent for growth without arginine (Arg+ St-D). These types of mutants displayed a Ram (for ribosomal ambiguity) phenotype, manifested by increased misreading, assayed by in vitro and in vivo experiments and by leakiness on several selective minimal media. Genetic data indicated that these mutants carry a mutation located at about 74 min of the E.coli map that relieves the high translational fidelity conferred by the rpsL mutation. These studies suggest that the growth-limiting conditions of the assay system used, as well as the presence of streptomycin, which causes an increased production of altered proteins, favours the appearance and growth of compensatory Arg+ mutants.
Collapse
Affiliation(s)
- Rosa Nagel
- CEFYBO, CONICET, Serrano 669, Buenos Aires, Argentina.
| | | |
Collapse
|
4
|
Balashov S, Humayun MZ. Specificity of spontaneous mutations induced in mutA mutator cells. Mutat Res 2004; 548:9-18. [PMID: 15063131 DOI: 10.1016/j.mrfmmm.2003.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 12/16/2003] [Accepted: 12/17/2003] [Indexed: 04/29/2023]
Abstract
Escherichia coli cells expressing the mutA allele of a glyV (glycine tRNA) gene express a strong mutator phenotype. The mutA allele differs from the wild type glyV gene by a base substitution in the anticodon such that the resulting tRNA misreads certain aspartate codons as glycine, resulting in random, low-level Asp-->Gly substitutions in proteins. Subsequent work showed that many types of mistranslation can lead to a very similar phenotype, named TSM for translational stress-induced mutagenesis. Here, we have determined the specificity of forward mutations occurring in the lacI gene in mutA cells as well as in wild type cells. Our results show that in comparison to wild type cells, base substitutions are elevated 23-fold in mutA cells, as against a eight-fold increase in insertions and a five-fold increase in deletions. Among base substitutions, transitions are elevated 13-fold, with both G:C-->A:T and A:T-->G:C mutations showing roughly similar increases. Transversions are elevated 35-fold, with G:C-->T:A, G:C-->C:G and A:T-->C:G elevated 28-, 13- and 27-fold, respectively. A:T-->T:A mutations increase a striking 348-fold over parental cells, with most occurring at two hotspot sequences that share the G:C-rich sequence 5'-CCGCGTGG. The increase in transversion mutations is similar to that observed in cells defective for dnaQ, the gene encoding the proofreading function of DNA polymerase III. In particular, the relative proportions and sites of occurrence of A:T-->T:A transversions are similar in mutA and mutD5 (an allele of dnaQ) cells. Interestingly, transversions are also the predominant base substitutions induced in dnaE173 cells in which a missense mutation in the alpha subunit of polymerase III abolishes proofreading without affecting the 3'-->5' exonuclease activity of the epsilon subunit.
Collapse
Affiliation(s)
- Sergey Balashov
- Department of Microbiology and Molecular Genetics, International Center for Public Health, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07101-1709, USA
| | | |
Collapse
|
5
|
Abstract
Many mutator genes have been characterized in E. coli, but the realization that mutA, the most recent mutator pathway described, encodes for a missense suppressor glycine tRNA caused a real surprise. The connection between expression of mutA and a 10 times increase in the spontaneous mutation rate is not readily explainable. The first attempt to describe the mechanism of action suggested a direct mistranslation of one subunit of polymerase III (PolIII) and the ideal candidate was the epsilon subunit carrying the 3'-->5' exonuclease activity. This subunit increases PolIII accuracy about 100 times. However, such direct mistranslation of epsilon was later ruled out when it became clear that all mutA cells express an error-prone form of PolIII. This result could not be reconciled with the very low level of mistranslation (1%) caused by mutA. But there is no need to invoke amino acid misincorporation in epsilon to destroy its activity. On the contrary, I suggest a new way to regulate epsilon amount, based on the reinterpretation of the mutA pathway through the new and puzzling observation that several tRNAs (including mutA which encodes for a glycine missense suppressor tRNA) are complementary to the 5' end of dnaQ mRNA. Accordingly, I propose that uncharged tRNAs can act as antisense RNAs, decreasing translation of dnaQ and possibly other genes. This could represent a new regulatory function for tRNAs and of course gives a direct and unrecognized link between starvation and mutation rate.
Collapse
|
6
|
Balashov S, Humayun MZ. Escherichia coli cells bearing a ribosomal ambiguity mutation in rpsD have a mutator phenotype that correlates with increased mistranslation. J Bacteriol 2003; 185:5015-8. [PMID: 12897024 PMCID: PMC166475 DOI: 10.1128/jb.185.16.5015-5018.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cells bearing certain mutations in rpsD (coding for the 30S ribosomal protein S4) show a ribosomal ambiguity (Ram) phenotype characterized by increased translational error rates. Here we show that spontaneous mutagenesis increases in Ram cells bearing the rpsD14 allele, suggesting that the recently described translational stress-induced mutagenesis pathway is activated in Ram cells.
Collapse
Affiliation(s)
- Sergey Balashov
- University of Medicine and Dentistry of New Jersey--New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, New Jersey 07101-1709, USA
| | | |
Collapse
|
7
|
Al Mamun AAM, Marians KJ, Humayun MZ. DNA polymerase III from Escherichia coli cells expressing mutA mistranslator tRNA is error-prone. J Biol Chem 2002; 277:46319-27. [PMID: 12324458 DOI: 10.1074/jbc.m206856200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Translational stress-induced mutagenesis (TSM) refers to the elevated mutagenesis observed in Escherichia coli cells in which mistranslation has been increased as a result of mutations in tRNA genes (such as mutA) or by exposure to streptomycin. TSM does not require lexA-regulated SOS functions but is suppressed in cells defective for homologous recombination genes. Crude cell-free extracts from TSM-induced E. coli strains express an error-prone DNA polymerase. To determine whether DNA polymerase III is involved in the TSM phenotype, we first asked if the phenotype is expressed in cells defective for all four of the non-replicative DNA polymerases, namely polymerase I, II, IV, and V. By using a colony papillation assay based on the reversion of a lacZ mutant, we show that the TSM phenotype is expressed in such cells. Second, we asked if pol III from TSM-induced cells is error-prone. By purifying DNA polymerase III* from TSM-induced and control cells, and by testing its fidelity on templates bearing 3,N(4)-ethenocytosine (a mutagenic DNA lesion), as well as on undamaged DNA templates, we show here that polymerase III* purified from mutA cells is error-prone as compared with that from control cells. These findings suggest that DNA polymerase III is modified in TSM-induced cells.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, New Jersey 07101-1709, USA
| | | | | |
Collapse
|
8
|
Dorazi R, Lingutla JJ, Humayun MZ. Expression of mutant alanine tRNAs increases spontaneous mutagenesis in Escherichia coli. Mol Microbiol 2002; 44:131-41. [PMID: 11967074 DOI: 10.1046/j.1365-2958.2002.02847.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of mutA, an allele of the glycine tRNA gene glyV, can confer a novel mutator phenotype that correlates with its ability to promote Asp-->Gly mistranslation. Both activities are mediated by a single base change within the anticodon such that the mutant tRNA can decode aspartate codons (GAC/U) instead of the normal glycine codons (GCC/U). Here, we investigate whether specific Asp-->Gly mistranslation is required for the unexpected mutator phenotype. To address this question, we created and expressed 18 individual alleles of alaV, the gene encoding an alanine tRNA, in which the alanine anticodon was replaced with those specifying other amino acids such that the mutant (alaVX) tRNAs are expected to potentiate X-->Ala mistranslation, where X is one of the other amino acids. Almost all alaVX alleles proved to be mutators in an assay that measured the frequency of rifampicin-resistant mutants, with one allele (alaVGlu) being a stronger mutator than mutA. The alaVGlu mutator phenotype resembles that of mutA in mutational specificity (predominantly transversions), as well as SOS independence, but in a puzzling twist differs from mutA in that it does not require a functional recA gene. Our results suggest that general mistranslation (as opposed to Asp-->Gly alone) can induce a mutator phenotype. Furthermore, these findings predict that a large number of conditions that increase translational errors, such as genetic defects in the translational apparatus, as well as environmental and physiological stimuli (such as amino acid starvation or exposure to antibiotics) are likely to activate a mutator response. Thus, both genetic and epigenetic mechanisms can accelerate the acquisition of mutations.
Collapse
Affiliation(s)
- Robert Dorazi
- Department of Microbiology and Molecular Genetics, UMDNJ - New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
9
|
Balashov S, Humayun MZ. Mistranslation induced by streptomycin provokes a RecABC/RuvABC-dependent mutator phenotype in Escherichia coli cells. J Mol Biol 2002; 315:513-27. [PMID: 11812126 DOI: 10.1006/jmbi.2001.5273] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Translational stress-induced mutagenesis (TSM) refers to the mutator phenotype observed in Escherichia coli cells expressing a mutant allele (mutA or mutC) of the glycine tRNA gene glyV (or glyW). Because of an anticodon mutation, expression of the mutA allele results in low levels of Asp-->Gly mistranslation. The mutA phenotype does not require lexA-regulated SOS mutagenesis functions, and appears to be suppressed in cells defective for RecABC-dependent homologous recombination functions. To test the hypothesis that the TSM response is mediated by non-specific mistranslation rather than specific Asp-->Gly misreading, we asked if streptomycin (Str), an aminoglycoside antibiotic known to promote mistranslation, can provoke a mutator phenotype. We report that Str induces a strong mutator phenotype in cells bearing certain alleles of rpsL, the gene encoding S12, an essential component of the ribosomal 30 S subunit. The phenotype is strikingly similar to that observed in mutA cells in its mutational specificity, as well as in its requirement for RecABC-mediated homologous recombination functions. Expression of Str-inducible mutator phenotype correlates with mistranslation efficiency in response to Str. Thus, mistranslation in general is able to induce the TSM response. The Str-inducible mutator phenotype described here defines a new functional class of rpsL alleles, and raises interesting questions on the mechanism of action of Str, and on bacterial response to antibiotic stress.
Collapse
Affiliation(s)
- Sergey Balashov
- Department of Microbiology and Molecular Genetics, UMDNJ - New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
10
|
Zhao J, Leung HE, Winkler ME. The miaA mutator phenotype of Escherichia coli K-12 requires recombination functions. J Bacteriol 2001; 183:1796-800. [PMID: 11160115 PMCID: PMC95069 DOI: 10.1128/jb.183.5.1796-1800.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
miaA mutants, which contain A-37 instead of the ms(2)i(6)A-37 hypermodification in their tRNA, show a moderate mutator phenotype leading to increased GC-->TA transversion. We show that the miaA mutator phenotype is dependent on recombination functions similar to, but not exactly the same as, those required for translation stress-induced mutagenesis.
Collapse
Affiliation(s)
- J Zhao
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
11
|
Dunman PM, Ren L, Rahman MS, Palejwala VA, Murphy HS, Volkert MR, Humayun MZ. Escherichia coli cells defective for the recN gene display constitutive elevation of mutagenesis at 3,N(4)-ethenocytosine via an SOS-induced mechanism. Mol Microbiol 2000; 37:680-6. [PMID: 10931361 DOI: 10.1046/j.1365-2958.2000.02045.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli UVM (UV Modulation of mutagenesis) response is a DNA damage-inducible mutagenic pathway detected as significantly increased mutagenesis at 3,N4-ethenocytosine (epsilon C) lesions borne on transfected single-stranded M13 vector DNA. All major classes of DNA-damaging agents can induce UVM, and the phenomenon is independent of previously characterized mutagenic responses in E. coli. To understand this phenomenon further, we set out to identify and characterize mutants in the UVM response. Screening a mutant bank of cells defective for 1-methyl-3-nitro-1-nitrosoguanidine-inducible genes revealed that defects in the recN gene cause a constitutive elevation of mutagenesis at epsilon C residues. In contrast to normal cells that show approximately 6% mutagenesis at epsilon C lesions, but approximately 60% upon UVM induction, recN-defective strains display approximately 50% mutagenesis at epsilon C lesion sites in untreated cells. However, the recN-mediated mutagenesis response was found to require the recA gene and the umuDC genes, and could be suppressed in the presence of a plasmid harbouring the SOS transcriptional repressor LexA. These results imply that recN cells are constitutively active for SOS mutagenesis functions. The observation that epsilonC mutagenesis is enhanced in recN cells confirms previous findings that mutagenesis at epsilonC can also be independently elevated by the SOS pathway.
Collapse
Affiliation(s)
- P M Dunman
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue MSB-F607, Newark, NJ 07103-2714, USA
| | | | | | | | | | | | | |
Collapse
|