1
|
Kozlova S, Morozova N, Ispolatov Y, Severinov K. Dependence of post-segregational killing mediated by Type II restriction-modification systems on the lifetime of restriction endonuclease effective activity. mBio 2024; 15:e0140824. [PMID: 38980007 PMCID: PMC11324026 DOI: 10.1128/mbio.01408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Plasmid-borne Type II restriction-modification (RM) systems mediate post-segregational killing (PSK). PSK is thought to be caused by the dilution of restriction and modification enzymes during cell division, resulting in accumulation of unmethylated DNA recognition sites and their cleavage by restriction endonucleases. PSK is the likely reason for stabilization of plasmids carrying RM systems in the absence of selection for plasmid maintenance. In this study, we developed a CRISPR interference-based method to eliminate RM-carrying plasmids and study PSK-related phenomena with minimal perturbation to the Escherichia coli host. Plasmids carrying the EcoRV, Eco29kI, and EcoRI RM systems were highly stable, and their loss resulted in SOS response and PSK. In contrast, plasmids carrying the Esp1396I system were poorly stabilized; their loss led to a temporary cessation of growth, followed by full recovery. We demonstrate that this unusual behavior is due to a limited lifetime of the Esp1396I restriction endonuclease activity, which, upon Esp1396I plasmid loss, disappears approximately after two cycles of cell division, i.e., before unmethylated sites appear in significant numbers. Our results indicate that whenever PSK induced by a loss of RM systems, and, possibly, other toxin-antitoxin systems, is considered, the lifetimes of individual system components and the growth rate of host cells shall be taken in account. Mathematical modeling shows, that unlike the situation with classical toxin-antitoxin systems, RM system-mediated PSK is possible when the lifetimes of restriction endonuclease and methyltransferase activities are similar, as long as the toxic restriction endonuclease activity persists for more than two chromosome replication cycles.IMPORTANCEIt is widely accepted that many Type II restriction-modification (RM) systems mediate post-segregational killing (PSK) if plasmids that encode them are lost. In this study, we harnessed an inducible CRISPR-Cas system to remove RM plasmids from Escherichia coli cells to study PSK while minimally perturbing cell physiology. We demonstrate that PSK depends on restriction endonuclease activity lifetime and is not observed when it is less than two replication cycles. We present a mathematical model that explains experimental data and shows that unlike the case of toxin-antitoxin-mediated PSK, the loss of an RM system induced PSK even when the RM enzymes have identical lifetimes.
Collapse
Affiliation(s)
- Svetlana Kozlova
- Skolkovo Institute of
Science and Technology, Center for Molecular and Cellular
Biology, Moscow,
Russia
| | - Natalia Morozova
- Peter the Great St.
Petersburg Polytechnic University,
St. Petersburg, Russia
| | - Yaroslav Ispolatov
- Physics Department,
University of Santiago of Chile, Center for Interdisciplinary Research
in Astrophysics and Space Science,
Santiago, Chile
| | - Konstantin Severinov
- Waksman Institute for
Microbiology and Department of Molecular Biology and Biochemistry,
Rutgers, State University of New
Jersey, Piscataway, New
Jersey, USA
- Institute of Gene
Biology, Moscow,
Russia
| |
Collapse
|
2
|
Birkholz N, Jackson SA, Fagerlund RD, Fineran P. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3348-3361. [PMID: 35286398 PMCID: PMC8989522 DOI: 10.1093/nar/gkac147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction–modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.
Collapse
Affiliation(s)
- Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- To whom correspondence should be addressed: Tel: +64 3 479 7735;
| |
Collapse
|
3
|
Wilkowska K, Mruk I, Furmanek-Blaszk B, Sektas M. Low-level expression of the Type II restriction-modification system confers potent bacteriophage resistance in Escherichia coli. DNA Res 2021; 27:5804985. [PMID: 32167561 PMCID: PMC7315355 DOI: 10.1093/dnares/dsaa003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/09/2020] [Indexed: 01/21/2023] Open
Abstract
Restriction–modification systems (R–M) are one of the antiviral defense tools used by bacteria, and those of the Type II family are composed of a restriction endonuclease (REase) and a DNA methyltransferase (MTase). Most entering DNA molecules are usually cleaved by the REase before they can be methylated by MTase, although the observed level of fragmented DNA may vary significantly. Using a model EcoRI R–M system, we report that the balance between DNA methylation and cleavage may be severely affected by transcriptional signals coming from outside the R–M operon. By modulating the activity of the promoter, we obtained a broad range of restriction phenotypes for the EcoRI R–M system that differed by up to 4 orders of magnitude in our biological assays. Surprisingly, we found that high expression levels of the R–M proteins were associated with reduced restriction of invading bacteriophage DNA. Our results suggested that the regulatory balance of cleavage and methylation was highly sensitive to fluctuations in transcriptional signals both up- and downstream of the R–M operon. Our data provided further insights into Type II R–M system maintenance and the potential conflict within the host bacterium.
Collapse
Affiliation(s)
- Karolina Wilkowska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Beata Furmanek-Blaszk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Marian Sektas
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
4
|
Gurung D, Blumenthal RM. Distribution of RecBCD and AddAB recombination-associated genes among bacteria in 33 phyla. MICROBIOLOGY-SGM 2020; 166:1047-1064. [PMID: 33085588 DOI: 10.1099/mic.0.000980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homologous recombination plays key roles in fundamental processes such as recovery from DNA damage and in bacterial horizontal gene transfer, yet there are still open questions about the distribution of recognized components of recombination machinery among bacteria and archaea. RecBCD helicase-nuclease plays a central role in recombination among Gammaproteobacteria like Escherichia coli; while bacteria in other phyla, like the Firmicute Bacillus subtilis, use the related AddAB complex. The activity of at least some of these complexes is controlled by short DNA sequences called crossover hotspot instigator (Chi) sites. When RecBCD or AddAB complexes encounter an autologous Chi site during unwinding, they introduce a nick such that ssDNA with a free end is available to invade another duplex. If homologous DNA is present, RecA-dependent homologous recombination is promoted; if not (or if no autologous Chi site is present) the RecBCD/AddAB complex eventually degrades the DNA. We examined the distribution of recBCD and addAB genes among bacteria, and sought ways to distinguish them unambiguously. We examined bacterial species among 33 phyla, finding some unexpected distribution patterns. RecBCD and addAB are less conserved than recA, with the orthologous recB and addA genes more conserved than the recC or addB genes. We were able to classify RecB vs. AddA and RecC vs. AddB in some bacteria where this had not previously been done. We used logo analysis to identify sequence segments that are conserved, but differ between the RecBC and AddAB proteins, to help future differentiation between members of these two families.
Collapse
Affiliation(s)
- Deepti Gurung
- Present address: Department of Cancer Biology, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA.,Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| |
Collapse
|
5
|
Negri A, Jąkalski M, Szczuka A, Pryszcz LP, Mruk I. Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors: C protein and the Rac prophage repressor. Nucleic Acids Res 2019; 47:9542-9556. [PMID: 31372643 PMCID: PMC6765115 DOI: 10.1093/nar/gkz665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022] Open
Abstract
Restriction-modification (R–M) systems represent an effective mechanism of defence against invading bacteriophages, and are widely spread among bacteria and archaea. In acquiring a Type II R–M system via horizontal gene transfer, the new hosts become more resistant to phage infection, through the action of a restriction endonuclease (REase), which recognizes and cleaves specific target DNAs. To protect the host cell's DNA, there is also a methyltransferase (MTase), which prevents DNA cleavage by the cognate REase. In some R–M systems, the host also accepts a cis-acting transcription factor (C protein), which regulates the counteracting activities of REase and MTase to avoid host self-restriction. Our study characterized the unexpected phenotype of Escherichia coli cells, which manifested as extensive cell filamentation triggered by acquiring the Csp231I R–M system from Citrobacter sp. Surprisingly, we found that the cell morphology defect was solely dependent on the C regulator. Our transcriptome analysis supported by in vivo and in vitro assays showed that C protein directly silenced the expression of the RacR repressor to affect the Rac prophage-related genes. The rac locus ydaST genes, when derepressed, exerted a toxicity indicated by cell filamentation through an unknown mechanism. These results provide an apparent example of transcription factor cross-talk, which can have significant consequences for the host, and may represent a constraint on lateral gene transfer.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jąkalski
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Aleksandra Szczuka
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Leszek P Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Warsaw, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
6
|
Natural tuning of restriction endonuclease synthesis by cluster of rare arginine codons. Sci Rep 2019; 9:5808. [PMID: 30967604 PMCID: PMC6456624 DOI: 10.1038/s41598-019-42311-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/28/2019] [Indexed: 01/21/2023] Open
Abstract
Restriction–modification (R-M) systems are highly widespread among bacteria and archaea, and they appear to play a pivotal role in modulating horizontal gene transfer, as well as in protecting the host organism against viruses and other invasive DNA particles. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). If the cell is to survive, the counteracting activities as toxin and antitoxin, must be finely balanced in vivo. The molecular basis of this regulatory process remains unclear and current searches for regulatory elements in R-M modules are focused mainly at the transcription step. In this report, we show new aspects of REase control that are linked to translation. We used the EcoVIII R-M system as a model. Both, the REase and MTase genes for this R-M system contain an unusually high number of rare arginine codons (AGA and AGG) when compared to the rest of the E. coli K-12 genome. Clusters of these codons near the N-terminus of the REase greatly affect the translational efficiency. Changing these to higher frequency codons for E. coli (CGC) improves the REase synthesis, making the R-M system more potent to defend its host against bacteriophages. However, this improved efficiency in synthesis reduces host fitness due to increased autorestriction. We hypothesize that expression of the endonuclease gene can be modulated depending on the host genetic context and we propose a novel post-transcriptional mode of R–M system regulation that alleviates the potential lethal action of the restriction enzyme.
Collapse
|
7
|
Barahona CJ, Basantes LE, Tompkins KJ, Heitman DM, Chukwu BI, Sanchez J, Sanchez JL, Ghadirian N, Park CK, Horton NC. The Need for Speed: Run-On Oligomer Filament Formation Provides Maximum Speed with Maximum Sequestration of Activity. J Virol 2019; 93:e01647-18. [PMID: 30518649 PMCID: PMC6384071 DOI: 10.1128/jvi.01647-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/26/2018] [Indexed: 01/29/2023] Open
Abstract
Here, we investigate an unusual antiviral mechanism developed in the bacterium Streptomyces griseus SgrAI is a type II restriction endonuclease that forms run-on oligomer filaments when activated and possesses both accelerated DNA cleavage activity and expanded DNA sequence specificity. Mutations disrupting the run-on oligomer filament eliminate the robust antiphage activity of wild-type SgrAI, and the observation that even relatively modest disruptions completely abolish this anti-viral activity shows that the greater speed imparted by the run-on oligomer filament mechanism is critical to its biological function. Simulations of DNA cleavage by SgrAI uncover the origins of the kinetic advantage of this newly described mechanism of enzyme regulation over more conventional mechanisms, as well as the origin of the sequestering effect responsible for the protection of the host genome against damaging DNA cleavage activity of activated SgrAI.IMPORTANCE This work is motivated by an interest in understanding the characteristics and advantages of a relatively newly discovered enzyme mechanism involving filament formation. SgrAI is an enzyme responsible for protecting against viral infections in its host bacterium and was one of the first such enzymes shown to utilize such a mechanism. In this work, filament formation by SgrAI is disrupted, and the effects on the speed of the purified enzyme as well as its function in cells are measured. It was found that even small disruptions, which weaken but do not destroy filament formation, eliminate the ability of SgrAI to protect cells from viral infection, its normal biological function. Simulations of enzyme activity were also performed and show how filament formation can greatly speed up an enzyme's activation compared to that of other known mechanisms, as well as to better localize its action to molecules of interest, such as invading phage DNA.
Collapse
Affiliation(s)
- Claudia J Barahona
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - L Emilia Basantes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Kassidy J Tompkins
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Desirae M Heitman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Barbara I Chukwu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Juan Sanchez
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Jonathan L Sanchez
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Niloofar Ghadirian
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Chad K Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - N C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Klimuk E, Bogdanova E, Nagornykh M, Rodic A, Djordjevic M, Medvedeva S, Pavlova O, Severinov K. Controller protein of restriction-modification system Kpn2I affects transcription of its gene by acting as a transcription elongation roadblock. Nucleic Acids Res 2018; 46:10810-10826. [PMID: 30295835 PMCID: PMC6237814 DOI: 10.1093/nar/gky880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
C-proteins control restriction-modification (R-M) systems' genes transcription to ensure sufficient levels of restriction endonuclease to allow protection from foreign DNA while avoiding its modification by excess methyltransferase. Here, we characterize transcription regulation in C-protein dependent R-M system Kpn2I. The Kpn2I restriction endonuclease gene is transcribed from a constitutive, weak promoter, which, atypically, is C-protein independent. Kpn2I C-protein (C.Kpn2I) binds upstream of the strong methyltransferase gene promoter and inhibits it, likely by preventing the interaction of the RNA polymerase sigma subunit with the -35 consensus element. Diminished transcription from the methyltransferase promoter increases transcription from overlapping divergent C-protein gene promoters. All known C-proteins affect transcription initiation from R-M genes promoters. Uniquely, the C.Kpn2I binding site is located within the coding region of its gene. C.Kpn2I acts as a roadblock stalling elongating RNA polymerase and decreasing production of full-length C.Kpn2I mRNA. Mathematical modeling shows that this unusual mode of regulation leads to the same dynamics of accumulation of R-M gene transcripts as observed in systems where C-proteins act at transcription initiation stage only. Bioinformatics analyses suggest that transcription regulation through binding of C.Kpn2I-like proteins within the coding regions of their genes may be widespread.
Collapse
Affiliation(s)
- Evgeny Klimuk
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Max Nagornykh
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Puschino, Russia
| | - Andjela Rodic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Sofia Medvedeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Olga Pavlova
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Deng Y, Su Y, Liu S, Guo Z, Cheng C, Ma H, Wu J, Feng J, Chen C. Identification of a Novel Small RNA srvg23535 in Vibrio alginolyticus ZJ-T and Its Characterization With Phenotype MicroArray Technology. Front Microbiol 2018; 9:2394. [PMID: 30349521 PMCID: PMC6186989 DOI: 10.3389/fmicb.2018.02394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are important modulators of gene expression and are involved in the pathogenesis and survival of prokaryotes. However, few studies have been conducted with Vibrio alginolyticus, which limits our ability to probe the regulation of virulence and environmental adaptation by sRNAs in this opportunistic pathogen. In this study, the sRNA candidate srvg23535 was identified in V. alginolyticus ZJ-T. The precise transcript end, secondary structure, and sequence conservation were determined. A srvg23535 null mutant was constructed and characterized by using Phenotype MicroArray (PM) technology. In silico target prediction was conducted by IntaRNA and TargetRNA2. Subsequently, a 107 nt transcript was validated with a sigma70 promoter at the 5' end and a Rho-independent terminator at the 3' end. The sRNA srvg23535 had four stem-loop structures and was conserved among Vibrio harveyi, Vibrio parahaemolyticus, and Vibrio splendidus. Deletion of srvg23535 in V. alginolyticus ZJ-T led to a weaker utilization of D-mannose, D-melibiose, lactulose, and inosine as carbon sources but stronger utilization of L-cysteine as nitrogen source. Moreover, the srvg2353 mutant showed stronger resistance to osmotic stress but weaker resistance to pH stress. Additionally, a total of 22 common targets were identified and several were related to the observed phenotype of the mutant. This study indicated that the novel sRNA, srvg23535, is conserved and restricted to Vibrio spp., affecting the utilization of several carbon and nitrogen sources and the response to osmotic and pH stress. These results extend our understanding of sRNA regulation in V. alginolyticus and provide a significant resource for the further study of the precise target mRNAs of srvg23535, which may provide targets for antibacterial therapeutic or attenuated vaccines against Vibrio spp.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Zhang Y, Matsuzaka T, Yano H, Furuta Y, Nakano T, Ishikawa K, Fukuyo M, Takahashi N, Suzuki Y, Sugano S, Ide H, Kobayashi I. Restriction glycosylases: involvement of endonuclease activities in the restriction process. Nucleic Acids Res 2017; 45:1392-1403. [PMID: 28180312 PMCID: PMC5388411 DOI: 10.1093/nar/gkw1250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
All restriction enzymes examined are phosphodiesterases generating 3΄-OH and 5΄-P ends, but one restriction enzyme (restriction glycosylase) excises unmethylated bases from its recognition sequence. Whether its restriction activity involves endonucleolytic cleavage remains unclear. One report on this enzyme, R.PabI from a hyperthermophile, ascribed the breakage to high temperature while another showed its weak AP lyase activity generates atypical ends. Here, we addressed this issue in mesophiles. We purified R.PabI homologs from Campylobacter coli (R.CcoLI) and Helicobacter pylori (R.HpyAXII) and demonstrated their DNA cleavage, DNA glycosylase and AP lyase activities in vitro at 37°C. The AP lyase activity is more coupled with glycosylase activity in R.CcoLI than in R.PabI. R.CcoLI/R.PabI expression caused restriction of incoming bacteriophage/plasmid DNA and endogenous chromosomal DNA within Escherichia coli at 37°C. The R.PabI-mediated restriction was promoted by AP endonuclease action in vivo or in vitro. These results reveal the role of endonucleolytic DNA cleavage in restriction and yet point to diversity among the endonucleases. The cleaved ends are difficult to repair in vivo, which may indicate their biological significance. These results support generalization of the concept of restriction–modification system to the concept of self-recognizing epigenetic system, which combines any epigenetic labeling and any DNA damaging.
Collapse
Affiliation(s)
- Yingbiao Zhang
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoyuki Matsuzaka
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Hirokazu Yano
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yoshikazu Furuta
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Ken Ishikawa
- National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Noriko Takahashi
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Ide
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
- Institut for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560 064, India
- To whom correspondence should be addressed. Tel: +81 90 2487 7510; ; ;
| |
Collapse
|
11
|
Werbowy O, Kaczorowski T. Plasmid pEC156, a Naturally Occurring Escherichia coli Genetic Element That Carries Genes of the EcoVIII Restriction-Modification System, Is Mobilizable among Enterobacteria. PLoS One 2016; 11:e0148355. [PMID: 26848973 PMCID: PMC4743918 DOI: 10.1371/journal.pone.0148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
Abstract
Type II restriction-modification systems are ubiquitous in prokaryotes. Some of them are present in naturally occurring plasmids, which may facilitate the spread of these systems in bacterial populations by horizontal gene transfer. However, little is known about the routes of their dissemination. As a model to study this, we have chosen an Escherichia coli natural plasmid pEC156 that carries the EcoVIII restriction modification system. The presence of this system as well as the cis-acting cer site involved in resolution of plasmid multimers determines the stable maintenance of pEC156 not only in Escherichia coli but also in other enterobacteria. We have shown that due to the presence of oriT-type F and oriT-type R64 loci it is possible to mobilize pEC156 by conjugative plasmids (F and R64, respectively). The highest mobilization frequency was observed when pEC156-derivatives were transferred between Escherichia coli strains, Enterobacter cloacae and Citrobacter freundii representing coliform bacteria. We found that a pEC156-derivative with a functional EcoVIII restriction-modification system was mobilized in enterobacteria at a frequency lower than a plasmid lacking this system. In addition, we found that bacteria that possess the EcoVIII restriction-modification system can efficiently release plasmid content to the environment. We have shown that E. coli cells can be naturally transformed with pEC156-derivatives, however, with low efficiency. The transformation protocol employed neither involved chemical agents (e.g. CaCl2) nor temperature shift which could induce plasmid DNA uptake.
Collapse
Affiliation(s)
- Olesia Werbowy
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland
- * E-mail:
| |
Collapse
|
12
|
Pleška M, Qian L, Okura R, Bergmiller T, Wakamoto Y, Kussell E, Guet C. Bacterial Autoimmunity Due to a Restriction-Modification System. Curr Biol 2016; 26:404-9. [DOI: 10.1016/j.cub.2015.12.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/08/2015] [Accepted: 12/10/2015] [Indexed: 01/25/2023]
|
13
|
Rezulak M, Borsuk I, Mruk I. Natural C-independent expression of restriction endonuclease in a C protein-associated restriction-modification system. Nucleic Acids Res 2015; 44:2646-60. [PMID: 26656489 PMCID: PMC4824078 DOI: 10.1093/nar/gkv1331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022] Open
Abstract
Restriction-modification (R-M) systems are highly prevalent among bacteria and archaea, and appear to play crucial roles in modulating horizontal gene transfer and protection against phage. There is much to learn about these diverse enzymes systems, especially their regulation. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). Their activities need to be finely balanced in vivo Some R-M systems rely on specialized transcription factors called C (controller) proteins. These proteins play a vital role in the temporal regulation of R-M gene expression, and function to indirectly modulate the horizontal transfer of their genes across the species. We report novel regulation of a C-responsive R-M system that involves a C protein of a poorly-studied structural class - C.Csp231I. Here, the C and REase genes share a bicistronic transcript, and some of the transcriptional auto-control features seen in other C-regulated R-M systems are conserved. However, separate tandem promoters drive most transcription of the REase gene, a distinctive property not seen in other tested C-linked R-M systems. Further, C protein only partially controls REase expression, yet plays a role in system stability and propagation. Consequently, high REase activity was observed after deletion of the entire C gene, and cells bearing the ΔC R-M system were outcompeted in mixed culture assays by those with the WT R-M system. Overall, our data reveal unexpected regulatory variation among R-M systems.
Collapse
Affiliation(s)
- Monika Rezulak
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Izabela Borsuk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
14
|
Liang J, Blumenthal RM. Naturally-occurring, dually-functional fusions between restriction endonucleases and regulatory proteins. BMC Evol Biol 2013; 13:218. [PMID: 24083337 PMCID: PMC3850674 DOI: 10.1186/1471-2148-13-218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/01/2013] [Indexed: 01/03/2023] Open
Abstract
Background Restriction-modification (RM) systems appear to play key roles in modulating gene flow among bacteria and archaea. Because the restriction endonuclease (REase) is potentially lethal to unmethylated new host cells, regulation to ensure pre-expression of the protective DNA methyltransferase (MTase) is essential to the spread of RM genes. This is particularly true for Type IIP RM systems, in which the REase and MTase are separate, independently-active proteins. A substantial subset of Type IIP RM systems are controlled by an activator-repressor called C protein. In these systems, C controls the promoter for its own gene, and for the downstream REase gene that lacks its own promoter. Thus MTase is expressed immediately after the RM genes enter a new cell, while expression of REase is delayed until sufficient C protein accumulates. To study the variation in and evolution of this regulatory mechanism, we searched for RM systems closely related to the well-studied C protein-dependent PvuII RM system. Unexpectedly, among those found were several in which the C protein and REase genes were fused. Results The gene for CR.NsoJS138I fusion protein (nsoJS138ICR, from the bacterium Niabella soli) was cloned, and the fusion protein produced and partially purified. Western blots provided no evidence that, under the conditions tested, anything other than full-length fusion protein is produced. This protein had REase activity in vitro and, as expected from the sequence similarity, its specificity was indistinguishable from that for PvuII REase, though the optimal reaction conditions were different. Furthermore, the fusion was active as a C protein, as revealed by in vivo activation of a lacZ reporter fusion to the promoter region for the nsoJS138ICR gene. Conclusions Fusions between C proteins and REases have not previously been characterized, though other fusions have (such as between REases and MTases). These results reinforce the evidence for impressive modularity among RM system proteins, and raise important questions about the implications of the C-REase fusions on expression kinetics of these RM systems.
Collapse
Affiliation(s)
- Jixiao Liang
- Department of Medical Microbiology & Immunology, College of Medicine and Life Sciences, University of Toledo, 3100 Transverse Drive, Toledo, OH 43614, USA.
| | | |
Collapse
|
15
|
Bobay LM, Touchon M, Rocha EPC. Manipulating or superseding host recombination functions: a dilemma that shapes phage evolvability. PLoS Genet 2013; 9:e1003825. [PMID: 24086157 PMCID: PMC3784561 DOI: 10.1371/journal.pgen.1003825] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022] Open
Abstract
Phages, like many parasites, tend to have small genomes and may encode autonomous functions or manipulate those of their hosts'. Recombination functions are essential for phage replication and diversification. They are also nearly ubiquitous in bacteria. The E. coli genome encodes many copies of an octamer (Chi) motif that upon recognition by RecBCD favors repair of double strand breaks by homologous recombination. This might allow self from non-self discrimination because RecBCD degrades DNA lacking Chi. Bacteriophage Lambda, an E. coli parasite, lacks Chi motifs, but escapes degradation by inhibiting RecBCD and encoding its own autonomous recombination machinery. We found that only half of 275 lambdoid genomes encode recombinases, the remaining relying on the host's machinery. Unexpectedly, we found that some lambdoid phages contain extremely high numbers of Chi motifs concentrated between the phage origin of replication and the packaging site. This suggests a tight association between replication, packaging and RecBCD-mediated recombination in these phages. Indeed, phages lacking recombinases strongly over-represent Chi motifs. Conversely, phages encoding recombinases and inhibiting host recombination machinery select for the absence of Chi motifs. Host and phage recombinases use different mechanisms and the latter are more tolerant to sequence divergence. Accordingly, we show that phages encoding their own recombination machinery have more mosaic genomes resulting from recent recombination events and have more diverse gene repertoires, i.e. larger pan genomes. We discuss the costs and benefits of superseding or manipulating host recombination functions and how this decision shapes phage genome structure and evolvability. Bacterial viruses, called bacteriophages, are extremely abundant in the biosphere. They have key roles in the regulation of bacterial populations and in the diversification of bacterial genomes. Among these viruses, lambdoid phages are very abundant in enterobacteria and exchange genetic material very frequently. This latter process is thought to increase phage diversity and therefore facilitate adaptation to hosts. Recombination is also essential for the replication of many lambdoid phages. Lambdoids have been described to encode their own recombination genes and inhibit their hosts'. In this study, we show that lambdoids are split regarding their capacity to encode autonomous recombination functions and that this affects the abundance of recombination-related sequence motifs. Half of the phages encode an autonomous system and inhibit their hosts'. The trade-off between superseding and manipulating the hosts' recombination functions has important consequences. The phages encoding autonomous recombination functions have more diverse gene repertoires and recombine more frequently. Viruses, as many other parasites, have small genomes and depend on their hosts for several housekeeping functions. Hence, they often face trade-offs between supersession and manipulation of molecular machineries. Our results suggest these trade-offs may shape viral gene repertoires, their sequence composition and even influence their evolvability.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- CNRS, UMR3525, Paris, France
- Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
- * E-mail:
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- CNRS, UMR3525, Paris, France
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- CNRS, UMR3525, Paris, France
| |
Collapse
|
16
|
Mruk I, Kobayashi I. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 2013; 42:70-86. [PMID: 23945938 PMCID: PMC3874152 DOI: 10.1093/nar/gkt711] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the simplest classes of genes involved in programmed death is that containing the toxin–antitoxin (TA) systems of prokaryotes. These systems are composed of an intracellular toxin and an antitoxin that neutralizes its effect. These systems, now classified into five types, were initially discovered because some of them allow the stable maintenance of mobile genetic elements in a microbial population through postsegregational killing or the death of cells that have lost these systems. Here, we demonstrate parallels between some TA systems and restriction–modification systems (RM systems). RM systems are composed of a restriction enzyme (toxin) and a modification enzyme (antitoxin) and limit the genetic flux between lineages with different epigenetic identities, as defined by sequence-specific DNA methylation. The similarities between these systems include their postsegregational killing and their effects on global gene expression. Both require the finely regulated expression of a toxin and antitoxin. The antitoxin (modification enzyme) or linked protein may act as a transcriptional regulator. A regulatory antisense RNA recently identified in an RM system can be compared with those RNAs in TA systems. This review is intended to generalize the concept of TA systems in studies of stress responses, programmed death, genetic conflict and epigenetics.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan and Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | |
Collapse
|
17
|
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53-72. [PMID: 23471617 PMCID: PMC3591985 DOI: 10.1128/mmbr.00044-12] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
18
|
Ukanis M, Sapranauskas R, Lubys A. Screening for catalytically active Type II restriction endonucleases using segregation-induced methylation deficiency. Nucleic Acids Res 2012; 40:e149. [PMID: 22753027 PMCID: PMC3479162 DOI: 10.1093/nar/gks635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Type II restriction endonucleases (REases) are one of the basic tools of recombinant DNA technology. They also serve as models for elucidation of mechanisms for both site-specific DNA recognition and cleavage by proteins. However, isolation of catalytically active mutants from their libraries is challenging due to the toxicity of REases in the absence of protecting methylation, and techniques explored so far had limited success. Here, we present an improved SOS induction-based approach for in vivo screening of active REases, which we used to isolate a set of active variants of the catalytic mutant, Cfr10I(E204Q). Detailed characterization of plasmids from 64 colonies screened from the library of ∼200,000 transformants revealed 29 variants of cfr10IR gene at the level of nucleotide sequence and 15 variants at the level of amino acid sequence, all of which were able to induce SOS response. Specific activity measurements of affinity-purified mutants revealed >200-fold variance among them, ranging from 100% (wild-type isolates) to 0.5% (S188C mutant), suggesting that the technique is equally suited for screening of mutants possessing high or low activity and confirming that it may be applied for identification of residues playing a role in catalysis.
Collapse
|
19
|
Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, χ, by RecBCD enzyme. Proc Natl Acad Sci U S A 2012; 109:8901-6. [PMID: 22603794 DOI: 10.1073/pnas.1206076109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RecBCD enzyme is important for both restriction of foreign DNA and recombinational DNA repair. Switching enzyme function from the destructive antiviral state to the productive recombinational state is regulated by the recombination hotspot, χ (5'-GCTGGTGG-3'). Recognition of χ is unique in that it is recognized as a specific sequence within single-stranded DNA (ssDNA) during DNA translocation and unwinding by RecBCD. The molecular determinants of χ recognition and the subsequent alteration in function are unknown. Consequently, we mutated residues within the RecC subunit that comprise a channel where ssDNA is thought to be scanned for a χ sequence. These mutants were characterized in vivo with regard to χ recognition, UV-sensitivity, phage degradation, and recombination proficiency. Of 38 residues mutated, 11 were previously undescribed mutations that altered χ recognition. The mutants fell into two classes: five that failed to respond to χ, and six that suggested a relaxed specificity for χ recognition. The location of the first set of mutations defines a recognition structure responsible for sequence-specific binding of ssDNA. The second set defines a highly conserved structure, linked to the recognition structure, which we hypothesize regulates conversion of RecBCD from a molecular machine that destroys DNA to one that repairs it. These findings offer insight into the evolution of enzymes with alternate χ recognition specificities.
Collapse
|
20
|
Molina L, Duque E, Gómez MJ, Krell T, Lacal J, García-Puente A, García V, Matilla MA, Ramos JL, Segura A. The pGRT1 plasmid of Pseudomonas putida DOT-T1E encodes functions relevant for survival under harsh conditions in the environment. Environ Microbiol 2011; 13:2315-27. [PMID: 21605303 DOI: 10.1111/j.1462-2920.2011.02492.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pseudomonas putida DOT-T1E has the capacity to grow in the presence of high concentrations of toluene. This ability is mainly conferred by an efflux pump encoded in a self-transmissible 133 kb plasmid named pGRT1. Sequence analysis of the pGRT1 plasmid revealed several key features. Most of the genes related to the plasmid maintenance functions show similarity with those encoded on pBVIE04 from Burkholderia vietnamensis G4, and knock-out mutants in several of these genes confirmed their roles. Two additional plasmid DNA fragments were incorporated into the plasmid backbone by recombination and/or transposition; in these DNA regions, apart from multiple recombinases and transposases, several stress-related and environmentally relevant functions are encoded. We report that plasmid pGRT1 not only confers the cells with tolerance to toluene but also resistance to ultraviolet light. We show here the implication of a new protein in solvent tolerance which controls the level of expression of the TtgGHI efflux pump, as well as the implication of a protein with homology to the universal stress protein in solvent tolerance and ultraviolet light resistance. Furthermore, this plasmid encodes functions that allow the cells to chemotactically respond to toluene and participate in iron scavenging.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1,18008-Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ishikawa K, Handa N, Sears L, Raleigh EA, Kobayashi I. Cleavage of a model DNA replication fork by a methyl-specific endonuclease. Nucleic Acids Res 2011; 39:5489-98. [PMID: 21441537 PMCID: PMC3141261 DOI: 10.1093/nar/gkr153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation. In response to such alterations, DNA endonucleases that sense DNA methylation can act and may cause cell death. Here, we explored the possibility that McrBC, a methylation-dependent DNase of Escherichia coli, cleaves DNA at a replication fork. First, we found that in vivo restriction by McrBC of bacteriophage carrying a foreign DNA methyltransferase gene is increased in the absence of homologous recombination. This suggests that some cleavage events are repaired by recombination and must take place during or after replication. Next, we demonstrated that the enzyme can cleave a model DNA replication fork in vitro. Cleavage of a fork required methylation on both arms and removed one, the other or both of the arms. Most cleavage events removed the methylated sites from the fork. This result suggests that acquisition of even rarely occurring modification patterns will be recognized and rejected efficiently by modification-dependent restriction systems that recognize two sites. This process might serve to maintain an epigenetic status along the genome through programmed cell death.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
Potential mobility of restriction-modification systems has been suggested by evolutionary/bioinformatic analysis of prokaryotic genomes. Here we demonstrate in vivo movement of a restriction-modification system within a genome under a laboratory condition. After blocking replication of a temperature-sensitive plasmid carrying a PaeR7I restriction-modification system in Escherichia coli cells, the plasmid was found integrated into the chromosome of the surviving cells. Sequence analysis revealed that, in the majority of products, the restriction-modification system was linked to chromosomal insertion sequences (ISs). Three types of products were: (I) apparent co-integration of the plasmid and the chromosome at a chromosomal IS1 or IS5 copy (24/28 analyzed); (II) de novo insertion of IS1 with the entire plasmid except for a 1–3 bp terminal deletion (2/28); and (III) reciprocal crossing-over between the plasmid and the chromosome involving 1–3 bp of sequence identity (2/28). An R-negative mutation apparently decreased the efficiency of successful integration by two orders of magnitude. Reconstruction experiments demonstrated that the restriction-dependence was mainly due to selection against cells without proper integration: their growth was inhibited by the restriction enzyme action. These results demonstrate collaboration of a mobile element and a restriction-modification system for successful joint migration. This collaboration may have promoted the spread and, therefore, the long-term persistence of these complexes and restriction-modification systems in a wide range of prokaryotes.
Collapse
|
23
|
Ishikawa K, Fukuda E, Kobayashi I. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 2010; 17:325-42. [PMID: 21059708 PMCID: PMC2993543 DOI: 10.1093/dnares/dsq027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction–modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
25
|
Handa N, Ichige A, Kobayashi I. Contribution of RecFOR machinery of homologous recombination to cell survival after loss of a restriction-modification gene complex. MICROBIOLOGY-SGM 2009; 155:2320-2332. [PMID: 19389761 DOI: 10.1099/mic.0.026401-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Loss of a type II restriction-modification (RM) gene complex, such as EcoRI, from a bacterial cell leads to death of its descendent cells through attack by residual restriction enzymes on undermethylated target sites of newly synthesized chromosomes. Through such post-segregational host killing, these gene complexes impose their maintenance on their host cells. This finding led to the rediscovery of type II RM systems as selfish mobile elements. The host prokaryote cells were found to cope with such attacks through a variety of means. The RecBCD pathway of homologous recombination in Escherichia coli repairs the lethal lesions on the chromosome, whilst it destroys restricted non-self DNA. recBCD homologues, however, appear very limited in distribution among bacterial genomes, whereas homologues of the RecFOR proteins, responsible for another pathway, are widespread in eubacteria, just like the RM systems. In the present work, therefore, we examined the possible contribution of the RecFOR pathway to cell survival after loss of an RM gene complex. A recF mutation reduced survival in an otherwise rec-positive background and, more severely, in a recBC sbcBC background. We also found that its effect is prominent in the presence of specific non-null mutant forms of the RecBCD enzyme: the resistance to killing seen with recC1002, recC1004, recC2145 and recB2154 is severely reduced to the level of a null recBC allele when combined with a recF, recO or recR mutant allele. Such resistance was also dependent on RecJ and RecQ functions. UV resistance of these non-null recBCD mutants is also reduced by recF, recJ or recQ mutation. These results demonstrate that the RecFOR pathway of recombination can contribute greatly to resistance to RM-mediated host killing, depending on the genetic background.
Collapse
Affiliation(s)
- Naofumi Handa
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Asao Ichige
- Institute of Medical Science, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan.,Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ichizo Kobayashi
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan.,Institute of Medical Science, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan.,Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
26
|
Asakura Y, Kobayashi I. From damaged genome to cell surface: transcriptome changes during bacterial cell death triggered by loss of a restriction-modification gene complex. Nucleic Acids Res 2009; 37:3021-31. [PMID: 19304752 PMCID: PMC2685091 DOI: 10.1093/nar/gkp148] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetically programmed cell deaths play important roles in unicellular prokaryotes. In postsegregational killing, loss of a gene complex from a cell leads to its descendants' deaths. With type II restriction-modification gene complexes, such death is triggered by restriction endonuclease's attacks on under-methylated chromosomes. Here, we examined how the Escherichia coli transcriptome changes after loss of PaeR7I gene complex. At earlier time points, activation of SOS genes and sigma(E)-regulon was noticeable. With time, more SOS genes, stress-response genes (including sigma(S)-regulon, osmotic-, oxidative- and periplasmic-stress genes), biofilm-related genes, and many hitherto uncharacterized genes were induced, and genes for energy metabolism, motility and outer membrane biogenesis were repressed. As expected from the activation of sigma(E)-regulon, the death was accompanied by cell lysis and release of cellular proteins. Expression of several sigma(E)-regulon genes indeed led to cell lysis. We hypothesize that some signal was transduced, among multiple genes involved, from the damaged genome to the cell surface and led to its disintegration. These results are discussed in comparison with other forms of programmed deaths in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Yoko Asakura
- Ajinomoto CO, INC, Kawasaki-shi, Kanagawa, Japan.
| | | |
Collapse
|
27
|
RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 2009; 72:642-71, Table of Contents. [PMID: 19052323 DOI: 10.1128/mmbr.00020-08] [Citation(s) in RCA: 415] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The RecBCD enzyme of Escherichia coli is a helicase-nuclease that initiates the repair of double-stranded DNA breaks by homologous recombination. It also degrades linear double-stranded DNA, protecting the bacteria from phages and extraneous chromosomal DNA. The RecBCD enzyme is, however, regulated by a cis-acting DNA sequence known as Chi (crossover hotspot instigator) that activates its recombination-promoting functions. Interaction with Chi causes an attenuation of the RecBCD enzyme's vigorous nuclease activity, switches the polarity of the attenuated nuclease activity to the 5' strand, changes the operation of its motor subunits, and instructs the enzyme to begin loading the RecA protein onto the resultant Chi-containing single-stranded DNA. This enzyme is a prototypical example of a molecular machine: the protein architecture incorporates several autonomous functional domains that interact with each other to produce a complex, sequence-regulated, DNA-processing machine. In this review, we discuss the biochemical mechanism of the RecBCD enzyme with particular emphasis on new developments relating to the enzyme's structure and DNA translocation mechanism.
Collapse
|
28
|
Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases. Genome Biol 2008; 9:R163. [PMID: 19025584 PMCID: PMC2614495 DOI: 10.1186/gb-2008-9-11-r163] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/16/2008] [Accepted: 11/21/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Alteration in epigenetic methylation can affect gene expression and other processes. In Prokaryota, DNA methyltransferase genes frequently move between genomes and present a potential threat. A methyl-specific deoxyribonuclease, McrBC, of Escherichia coli cuts invading methylated DNAs. Here we examined whether McrBC competes with genome methylation systems through host killing by chromosome cleavage. RESULTS McrBC inhibited the establishment of a plasmid carrying a PvuII methyltransferase gene but lacking its recognition sites, likely through the lethal cleavage of chromosomes that became methylated. Indeed, its phage-mediated transfer caused McrBC-dependent chromosome cleavage. Its induction led to cell death accompanied by chromosome methylation, cleavage and degradation. RecA/RecBCD functions affect chromosome processing and, together with the SOS response, reduce lethality. Our evolutionary/genomic analyses of McrBC homologs revealed: a wide distribution in Prokaryota; frequent distant horizontal transfer and linkage with mobility-related genes; and diversification in the DNA binding domain. In these features, McrBCs resemble type II restriction-modification systems, which behave as selfish mobile elements, maintaining their frequency by host killing. McrBCs are frequently found linked with a methyltransferase homolog, which suggests a functional association. CONCLUSIONS Our experiments indicate McrBC can respond to genome methylation systems by host killing. Combined with our evolutionary/genomic analyses, they support our hypothesis that McrBCs have evolved as mobile elements competing with specific genome methylation systems through host killing. To our knowledge, this represents the first report of a defense system against epigenetic systems through cell death.
Collapse
|
29
|
Zhao L, Pellenz S, Stoddard BL. Activity and specificity of the bacterial PD-(D/E)XK homing endonuclease I-Ssp6803I. J Mol Biol 2008; 385:1498-510. [PMID: 19038269 DOI: 10.1016/j.jmb.2008.10.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/28/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
The restriction endonuclease fold [a three-layer alpha-beta sandwich containing variations of the PD-(D/E)XK nuclease motif] has been greatly diversified during evolution, facilitating its use for many biological functions. Here we characterize DNA binding and cleavage by the PD-(D/E)XK homing endonuclease I-Ssp6803I. Unlike most restriction endonucleases harboring the same core fold, the specificity profile of this enzyme extends over a long (17 bp) target site. The DNA binding and cleavage specificity profiles of this enzyme were independently determined and found to be highly correlated. However, the DNA target sequence contains several positions where binding and cleavage activities are not tightly coupled: individual DNA base-pair substitutions at those positions that significantly decrease cleavage activity have minor effects on binding affinity. These changes in the DNA target sequence appear to correspond to substitutions that uniquely increase the free energy change between the ground state and the transition state, rather than simply decreasing the overall DNA binding affinity. The specificity of the enzyme reflects constraints on its host gene and limitations imposed by the enzyme's quaternary structure and illustrate the highly diverse repertoire of DNA recognition specificities that can be adopted by the related folds surrounding the PD-(D/E)XK nuclease motif.
Collapse
Affiliation(s)
- Lei Zhao
- Graduate Program in Molecular Biophysics, Structure and Design, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
30
|
Lambert AR, Sussman D, Shen B, Maunus R, Nix J, Samuelson J, Xu SY, Stoddard BL. Structures of the rare-cutting restriction endonuclease NotI reveal a unique metal binding fold involved in DNA binding. Structure 2008; 16:558-69. [PMID: 18400177 DOI: 10.1016/j.str.2008.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/07/2008] [Accepted: 01/12/2008] [Indexed: 11/19/2022]
Abstract
The structure of the rare-cutting restriction endonuclease NotI, which recognizes the 8 bp target 5'-GCGGCCGC-3', has been solved with and without bound DNA. Because of its specificity (recognizing a site that occurs once per 65 kb), NotI is used to generate large genomic fragments and to map DNA methylation status. NotI contains a unique metal binding fold, found in a variety of putative endonucleases, occupied by an iron atom coordinated within a tetrahedral Cys4 motif. This domain positions nearby protein elements for DNA recognition, and serves a structural role. While recognition of the central six base pairs of the target is accomplished via a saturated hydrogen bond network typical of restriction enzymes, the most peripheral base pairs are engaged in a single direct contact in the major groove, reflecting reduced pressure to recognize those positions. NotI may represent an evolutionary intermediate between mobile endonucleases (which recognize longer target sites) and canonical restriction endonucleases.
Collapse
Affiliation(s)
- Abigail R Lambert
- Graduate Program in Biomolecular Structure and Design, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nagornykh MO, Bogdanova ES, Protsenko AS, Zakharova MV, Solonin AS, Severinov KV. [Regulation of gene expression in type II restriction-modification system]. RUSS J GENET+ 2008; 44:606-615. [PMID: 18672793 DOI: 10.1134/s1022795408050037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Type II restriction-modification systems are comprised of a restriction endonuclease and methyltransferase. The enzymes are coded by individual genes and recognize the same DNA sequence. Endonuclease makes a double-stranded break in the recognition site, and methyltransferase covalently modifies the DNA bases within the recognition site, thereby down-regulating endonuclease activity. Coordinated action of these enzymes plays a role of primitive immune system and protects bacterial host cell from the invasion of foreign (for example, viral) DNA. However, uncontrolled expression of the restriction-modification system genes can result in the death of bacterial host cell because of the endonuclease cleavage of host DNA. In the present review, the data on the expression regulation of the type II restriction-modification enzymes are discussed.
Collapse
|
32
|
Mruk I, Blumenthal RM. Real-time kinetics of restriction-modification gene expression after entry into a new host cell. Nucleic Acids Res 2008; 36:2581-93. [PMID: 18334533 PMCID: PMC2377437 DOI: 10.1093/nar/gkn097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Most type II restriction-modification (R-M) systems produce separate restriction endonuclease (REase) and methyltransferase (MTase) proteins. After R-M system genes enter a new cell, protective MTase must appear before REase to avoid host chromosome cleavage. The basis for this apparent temporal regulation is not well understood. PvuII and some other R-M systems appear to achieve this delay by cotranscribing the REase gene with the gene for an autogenous transcription activator/repressor (the 'C' protein C.PvuII). To test this model, bacteriophage M13 was used to introduce the PvuII genes into a bacterial population in a relatively synchronous manner. REase mRNA and activity appeared approximately 10 min after those of the MTase, but never rose if there was an inactivating pvuIIC mutation. Infection with recombinant M13pvuII phage had little effect on cell growth, relative to infection with parental M13. However, infection of cells pre-expressing C.PvuII led to cessation of growth. This study presents the first direct demonstration of delayed REase expression, relative to MTase, when type II R-M genes enter a new host cell. Surprisingly, though the C and REase genes are cotranscribed, the pvuIIC portion of the mRNA was more abundant than the pvuIIR portion after stable establishment of the R-M system.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, Toledo, OH 43614-2598, USA.
| | | |
Collapse
|
33
|
Ohno S, Handa N, Watanabe-Matsui M, Takahashi N, Kobayashi I. Maintenance forced by a restriction-modification system can be modulated by a region in its modification enzyme not essential for methyltransferase activity. J Bacteriol 2008; 190:2039-49. [PMID: 18192396 PMCID: PMC2258900 DOI: 10.1128/jb.01319-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 01/02/2008] [Indexed: 11/20/2022] Open
Abstract
Several type II restriction-modification gene complexes can force their maintenance on their host bacteria by killing cells that have lost them in a process called postsegregational killing or genetic addiction. It is likely to proceed by dilution of the modification enzyme molecule during rounds of cell division following the gene loss, which exposes unmethylated recognition sites on the newly replicated chromosomes to lethal attack by the remaining restriction enzyme molecules. This process is in apparent contrast to the process of the classical types of postsegregational killing systems, in which built-in metabolic instability of the antitoxin allows release of the toxin for lethal action after the gene loss. In the present study, we characterize a mutant form of the EcoRII gene complex that shows stronger capacity in such maintenance. This phenotype is conferred by an L80P amino acid substitution (T239C nucleotide substitution) mutation in the modification enzyme. This mutant enzyme showed decreased DNA methyltransferase activity at a higher temperature in vivo and in vitro than the nonmutated enzyme, although a deletion mutant lacking the N-terminal 83 amino acids did not lose activity at either of the temperatures tested. Under a condition of inhibited protein synthesis, the activity of the L80P mutant was completely lost at a high temperature. In parallel, the L80P mutant protein disappeared more rapidly than the wild-type protein. These results demonstrate that the capability of a restriction-modification system in forcing maintenance on its host can be modulated by a region of its antitoxin, the modification enzyme, as in the classical postsegregational killing systems.
Collapse
Affiliation(s)
- Satona Ohno
- Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
34
|
Pouillot F, Fayolle C, Carniel E. A putative DNA adenine methyltransferase is involved in Yersinia pseudotuberculosis pathogenicity. MICROBIOLOGY-SGM 2007; 153:2426-2434. [PMID: 17660407 DOI: 10.1099/mic.0.2007/005736-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Some adenine methyltransferases have been shown not only to protect specific DNA restriction sites from cleavage by a restriction endonuclease, but also to play a role in various bacterial processes and sometimes in bacterial virulence. This study focused on a type I restriction-modification system (designated yrmI) of Y. pseudotuberculosis. This system is composed of three adjacent genes which could potentially encode an N6-adenine DNA methylase (YamA), an enzyme involved in site-specific recognition (YrsA) and a restriction endonuclease (YreA). Screening of 85 isolates of Y. pestis and Y. pseudotuberculosis indicated that the yrmI system has been lost by Y. pestis and that yamA (but not yrsA or yreA) is present in all Y. pseudotuberculosis strains tested, suggesting that it may be important at some stages of the epidemiological cycle of this species. To further investigate the role of yamA in Y. pseudotuberculosis survival, multiplication or virulence, a DeltayamA mutant of Y. pseudotuberculosis IP32953 was constructed by allelic exchange with a kanamycin cassette. The fact that DeltayamA mutants were obtained indicated that this gene is not essential for Y. pseudotuberculosis viability. The IP32953DeltayamA mutant strain grew as well as the wild-type in a rich medium at both 28 degrees C and 37 degrees C. It also grew normally in a chemically defined medium at 28 degrees C, but exhibited a growth defect at 37 degrees C. In contrast to the Dam adenine methyltransferase, a mutation in yamA did not impair the functions of DNA repair or resistance to detergents. However, the DeltayamA mutant exhibited a virulence defect in a mouse model of intragastric infection. The in silico analysis indicated that the chromosomal region carrying the Y. pseudotuberculosis yrmI locus has been replaced in Y. pestis by a horizontally acquired region which potentially encodes another methyltransferase. YamA might thus be dispensable for Y. pestis growth and virulence because this species has acquired another gene fulfilling the same functions.
Collapse
Affiliation(s)
- Flavie Pouillot
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Corinne Fayolle
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Elisabeth Carniel
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
35
|
Liu Y, Ichige A, Kobayashi I. Regulation of the EcoRI restriction-modification system: Identification of ecoRIM gene promoters and their upstream negative regulators in the ecoRIR gene. Gene 2007; 400:140-9. [PMID: 17618069 DOI: 10.1016/j.gene.2007.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 11/16/2022]
Abstract
Type II restriction-modification (R-M) systems are composed of linked restriction endonuclease and modification methyltransferase genes and serve as barriers to horizontal gene transfer even though they are mobile in themselves. Their products kill host bacterial cells that have lost the R-M genes, a process that helps to maintain the frequency of the R-M systems in the viable cell population. Their establishment and maintenance in a bacterial host are expected to involve fine regulation of their gene expression. In the present study, we analyzed transcription of the modification gene and its regulation within the EcoRI R-M system. Northern blotting revealed that the downstream ecoRIM gene is transcribed as a monocistronic mRNA and as part of a larger bicistronic mRNA together with the upstream ecoRIR gene. Primer extension, RNase protection, and mutational analysis using lacZ gene fusions identified two overlapping promoters for ecoRIM gene transcription within the ecoRIR gene. Further mutational analysis revealed that two upstream AT-rich elements within the ecoRIR gene, "AATAAA" and "ATTATAAATATA," function as negative regulators of these promoters. Simultaneous substitution of these two elements resulted in a four-fold increase in beta-galactosidase activity and a five-fold increase in transcript levels as measured by RNase protection assay. RNA measurements of the ecoRIM transcript suggested that these elements decreased ecoRIM expression by interfering with transcription initiation of the ecoRIM promoters. Possible roles for these ecoRIM promoters and their negative regulators in the EcoRI R-M system are discussed.
Collapse
Affiliation(s)
- Yaoping Liu
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo, Japan
| | | | | |
Collapse
|
36
|
Yahara K, Horie R, Kobayashi I, Sasaki A. Evolution of DNA double-strand break repair by gene conversion: coevolution between a phage and a restriction-modification system. Genetics 2007; 176:513-26. [PMID: 17409094 PMCID: PMC1893019 DOI: 10.1534/genetics.106.056150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The necessity to repair genome damage has been considered to be an immediate factor responsible for the origin of sex. Indeed, attack by a cellular restriction enzyme of invading DNA from several bacteriophages initiates recombinational repair by gene conversion if there is homologous DNA. In this work, we modeled the interaction between a bacteriophage and a bacterium carrying a restriction enzyme as antagonistic coevolution. We assume a locus on the bacteriophage genome has either a restriction-sensitive or a restriction-resistant allele, and another locus determines whether it is recombination/repair proficient or defective. A restriction break can be repaired by a co-infecting phage genome if one of them is recombination/repair proficient. We define the fitness of phage (resistant/sensitive and repair-positive/-negative) genotypes and bacterial (restriction-positive/-negative) genotypes by assuming random encounter of the genotypes, with given probabilities of single and double infections, and the costs of resistance, repair, and restriction. Our results show the evolution of the repair allele depends on b(1)/b(0), the ratio of the burst size b(1) under damage to host cell physiology induced by an unrepaired double-strand break to the default burst size b(0). It was not until this effect was taken into account that the evolutionary advantage of DNA repair became apparent.
Collapse
Affiliation(s)
- Koji Yahara
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA. Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Mol Microbiol 2007; 63:1588-605. [PMID: 17367382 DOI: 10.1111/j.1365-2958.2007.05613.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Superintegrons (SIs) are chromosomal genetic elements containing assemblies of genes, each flanked by a recombination sequence (attC site) targeted by the integron integrase. SIs may contain hundreds of attC sites and intrinsic instability is anticipated; yet SIs are remarkably stable. This implies that either selective pressure maintains the genes or mechanisms exist which favour their persistence in the absence of selection. Toxin/antitoxin (TA) systems encode a stable toxin and a specific, unstable antitoxin. Once activated, the continued synthesis of the unstable antitoxin is necessary for cell survival. A bioinformatic search of accessible microbial genomes for SIs and TA systems revealed that large SIs harboured TA gene cassettes while smaller SIs did not. We demonstrated the function of TA loci in different genomic contexts where large-scale deletions can occur; in SIs and in a 165 kb dispensable region of the Escherichia coli genome. When devoid of TA loci, large-scale genome loss was evident in both environments. The inclusion of two TA loci, relBE1 and parDE1, which we identified in the Vibrio vulnificus SI rendered these environments refractory to gene loss. Thus, chromosomal TA loci can stabilize massive SI arrays and limit the extensive gene loss that is a hallmark of reductive evolution.
Collapse
Affiliation(s)
- Silvia Szekeres
- Division of Clinical Integrative Biology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, S1-26A, Toronto, Ontario, M4N 3N5, Canada
| | | | | | | | | |
Collapse
|
38
|
Handa N, Kowalczykowski SC. A RecA mutant, RecA(730), suppresses the recombination deficiency of the RecBC(1004)D-chi* interaction in vitro and in vivo. J Mol Biol 2006; 365:1314-25. [PMID: 17141804 PMCID: PMC1847798 DOI: 10.1016/j.jmb.2006.10.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/20/2006] [Accepted: 10/25/2006] [Indexed: 11/18/2022]
Abstract
In Escherichia coli, homologous recombination initiated at double-stranded DNA breaks requires the RecBCD enzyme, a multifunctional heterotrimeric complex that possesses processive helicase and exonuclease activities. Upon encountering the DNA regulatory sequence, chi, the enzymatic properties of RecBCD enzyme are altered. Its helicase activity is reduced, the 3'-->5'nuclease activity is attenuated, the 5'-->3' nuclease activity is up-regulated, and it manifests an ability to load RecA protein onto single-stranded DNA. The net result of these changes is the production of a highly recombinogenic structure known as the presynaptic filament. Previously, we found that the recC1004 mutation alters chi-recognition so that this mutant enzyme recognizes an altered chi sequence, chi*, which comprises seven of the original nucleotides in chi, plus four novel nucleotides. Although some consequences of this mutant enzyme-mutant chi interaction could be detected in vivo and in vitro, stimulation of recombination in vivo could not. To resolve this seemingly contradictory observation, we examined the behavior of a RecA mutant, RecA(730), that displays enhanced biochemical activity in vitro and possesses suppressor function in vivo. We show that the recombination deficiency of the RecBC(1004)D-chi* interaction can be overcome by the enhanced ability of RecA(730) to assemble on single-stranded DNA in vitro and in vivo. These data are consistent with findings showing that the loading of RecA protein by RecBCD is necessary in vivo, and they show that RecA proteins with enhanced single-stranded DNA-binding capacity can partially bypass the need for RecBCD-mediated loading.
Collapse
|
39
|
Ivancić-Bacće I, Vlasić I, Cogelja-Cajo G, Brcić-Kostić K, Salaj-Smic E. Roles of PriA protein and double-strand DNA break repair functions in UV-induced restriction alleviation in Escherichia coli. Genetics 2006; 174:2137-49. [PMID: 17028321 PMCID: PMC1698619 DOI: 10.1534/genetics.106.063750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been widely considered that DNA modification protects the chromosome of bacteria E. coli K-12 against their own restriction-modification systems. Chromosomal DNA is protected from degradation by methylation of target sequences. However, when unmethylated target sequences are generated in the host chromosome, the endonuclease activity of the EcoKI restriction-modification enzyme is inactivated by the ClpXP protease and DNA is protected. This process is known as restriction alleviation (RA) and it can be induced by UV irradiation (UV-induced RA). It has been proposed that chromosomal unmethylated target sequences, a signal for the cell to protect its own DNA, can be generated by homologous recombination during the repair of damaged DNA. In this study, we wanted to further investigate the genetic requirements for recombination proteins involved in the generation of unmethylated target sequences. For this purpose, we monitored the alleviation of EcoKI restriction by measuring the survival of unmodified lambda in UV-irradiated cells. Our genetic analysis showed that UV-induced RA is dependent on the excision repair protein UvrA, the RecA-loading activity of the RecBCD enzyme, and the primosome assembly activity of the PriA helicase and is partially dependent on RecFOR proteins. On the basis of our results, we propose that unmethylated target sequences are generated at the D-loop by the strand exchange of two hemi-methylated duplex DNAs and subsequent initiation of DNA replication.
Collapse
Affiliation(s)
- Ivana Ivancić-Bacće
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
40
|
Watanabe M, Yuzawa H, Handa N, Kobayashi I. Hyperthermophilic DNA methyltransferase M.PabI from the archaeon Pyrococcus abyssi. Appl Environ Microbiol 2006; 72:5367-75. [PMID: 16885288 PMCID: PMC1538712 DOI: 10.1128/aem.00433-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 05/08/2006] [Indexed: 12/31/2022] Open
Abstract
Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5'-(GTA/C)] with a novel structure was discovered. In the present work, the neighboring methyltransferase homologue, M.PabI, was characterized. Its N-terminal half showed high similarities to the M subunit of type I systems and a modification enzyme of an atypical type II system, M.AhdI, while its C-terminal half showed high similarity to the S subunit of type I systems. M.PabI expressed within Escherichia coli protected PabI sites from RsaI, a PabI isoschizomer. M.PabI, purified following overexpression, was shown to generate 5'-GTm6AC, which provides protection against PabI digestion. M.PabI was found to be highly thermophilic; it showed methylation at 95 degrees C and retained at least half the activity after 9 min at 95 degrees C. This hyperthermophilicity allowed us to obtain activation energy and other thermodynamic parameters for the first time for any DNA methyltransferases. We also determined the kinetic parameters of kcat, Km, DNA, and Km, AdoMet. The activity of M.PabI was optimal at a slightly acidic pH and at an NaCl concentration of 200 to 500 mM and was inhibited by Zn2+ but not by Mg2+, Ca2+, or Mn2+. These and previous results suggest that this unique methyltransferase and PabI constitute a type II restriction-modification gene complex that inserted into the P. abyssi genome relatively recently. As the most thermophilic of all the characterized DNA methyltransferases, M.PabI may help in the analysis of DNA methylation and its application to DNA engineering.
Collapse
Affiliation(s)
- Miki Watanabe
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
41
|
Abstract
The processes of DNA replication and recombination are intertwined at many different levels. In diverse systems, extensive DNA replication can be triggered by genetic recombination, with assembly of a replication complex onto a D-loop recombination intermediate. This and related pathways of replisome assembly allow the completion of DNA replication when forks initiated at a conventional replication origin fail before completing replication of the genome. In addition, the repair of double-strand breaks or gaps by homologous recombination requires at least limited DNA replication to replace the missing information. An intricate interplay between replication and recombination is also evident during the termination of bacterial DNA replication and during the induction of the bacterial SOS response to DNA damage.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
42
|
Bichara M, Pinet I, Origas M, Fuchs RPP. Inactivation of recG stimulates the RecF pathway during lesion-induced recombination in E. coli. DNA Repair (Amst) 2006; 5:129-37. [PMID: 16257588 DOI: 10.1016/j.dnarep.2005.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/01/2005] [Accepted: 08/25/2005] [Indexed: 12/23/2022]
Abstract
Lesions that transiently block DNA synthesis generate replication intermediates with recombinogenic potential. In order to investigate the mechanisms involved in lesion-induced recombination, we developed an homologous recombination assay involving the transfer of genetic information from a plasmid donor molecule to the Escherichia coli chromosome. The replication blocking lesion used in the present assay is formed by covalent binding of the carcinogen N-2-acetylaminofluorene to the C8 position of guanine residues (G-AAF adducts). The frequency of recombination events was monitored as a function of the number of lesions present on the donor plasmid. These DNA adducts are found to trigger high levels of homologous recombination events in a dose-dependent manner. Formation of recombinants is entirely RecA-dependent, the RecF and RecBCD sub-pathways accounting for about 2/3 and 1/3, respectively. Inactivation of recG stimulates recombinant formation about five-fold. In a recG background, the RecF pathway is stimulated about four-fold, while the contribution of the RecBCD pathway remains constant. In addition, in the recG strain, a recombination pathway that accounts for about 30% of the recombinants and requires genes that belong to both RecF and RecBCD pathways is revealed.
Collapse
Affiliation(s)
- Marc Bichara
- Departement Intégrité du Génome, UMR 7100, CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, 67412 Illkirch-Cedex, France.
| | | | | | | |
Collapse
|
43
|
Handa N, Kobayashi I. Type III restriction is alleviated by bacteriophage (RecE) homologous recombination function but enhanced by bacterial (RecBCD) function. J Bacteriol 2005; 187:7362-73. [PMID: 16237019 PMCID: PMC1272966 DOI: 10.1128/jb.187.21.7362-7373.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 08/18/2005] [Indexed: 11/20/2022] Open
Abstract
Previous works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage-presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine. To our surprise, however, we found that the efficiency of plaque formation in the presence of a type III restriction system, EcoP1 or EcoP15, is increased by the bacteriophage-mediated homologous recombination functions recE and recT of Rac prophage. This type III restriction alleviation does not depend on lar on Rac, unlike type I restriction alleviation. On the other hand, bacterial RecBCD-homologous recombination function enhances type III restriction. These results led us to hypothesize that the action of type III restriction enzymes takes place on replicated or replicating DNA in vivo and leaves daughter DNAs with breaks at nonallelic sites, that bacteriophage-mediated homologous recombination reconstitutes an intact DNA from them, and that RecBCD exonuclease blocks this repair by degradation from the restriction breaks.
Collapse
Affiliation(s)
- Naofumi Handa
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
44
|
Ichige A, Kobayashi I. Stability of EcoRI restriction-modification enzymes in vivo differentiates the EcoRI restriction-modification system from other postsegregational cell killing systems. J Bacteriol 2005; 187:6612-21. [PMID: 16166522 PMCID: PMC1251573 DOI: 10.1128/jb.187.19.6612-6621.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/11/2005] [Indexed: 11/20/2022] Open
Abstract
Certain type II restriction modification gene systems can kill host cells when these gene systems are eliminated from the host cells. Such ability to cause postsegregational killing of host cells is the feature of bacterial addiction modules, each of which consists of toxin and antitoxin genes. With these addiction modules, the differential stability of toxin and antitoxin molecules in cells plays an essential role in the execution of postsegregational killing. We here examined in vivo stability of the EcoRI restriction enzyme (toxin) and modification enzyme (antitoxin), the gene system of which has previously been shown to cause postsegregational host killing in Escherichia coli. Using two different methods, namely, quantitative Western blot analysis and pulse-chase immunoprecipitation analysis, we demonstrated that both the EcoRI restriction enzyme and modification enzyme are as stable as bulk cellular proteins and that there is no marked difference in their stability. The numbers of EcoRI restriction and modification enzyme molecules present in a host cell during the steady-state growth were estimated. We monitored changes in cellular levels of the EcoRI restriction and modification enzymes during the postsegregational killing. Results from these analyses together suggest that the EcoRI gene system does not rely on differential stability between the toxin and the antitoxin molecules for execution of postsegregational cell killing. Our results provide insights into the mechanism of postsegregational killing by restriction-modification systems, which seems to be distinct from mechanisms of postsegregational killing by other bacterial addiction modules.
Collapse
Affiliation(s)
- Asao Ichige
- Department of Medical Genome Sciences, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
45
|
Ito T, Ma XX, Takeuchi F, Okuma K, Yuzawa H, Hiramatsu K. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 2004; 48:2637-51. [PMID: 15215121 PMCID: PMC434217 DOI: 10.1128/aac.48.7.2637-2651.2004] [Citation(s) in RCA: 493] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element composed of the mec gene complex, which encodes methicillin resistance, and the ccr gene complex, which encodes the recombinases responsible for its mobility. The mec gene complex has been classified into four classes, and the ccr gene complex has been classified into three allotypes. Different combinations of mec gene complex classes and ccr gene complex types have so far defined four types of SCCmec elements. Now we introduce the fifth allotype of SCCmec, which was found on the chromosome of a community-acquired methicillin-resistant Staphylococcus aureus strain (strain WIS [WBG8318]) isolated in Australia. The element shared the same chromosomal integration site with the four extant types of SCCmec and the characteristic nucleotide sequences at the chromosome-SCCmec junction regions. The novel SCCmec carried mecA bracketed by IS431 (IS431-mecA-DeltamecR1-IS431), which is designated the class C2 mec gene complex; and instead of ccrA and ccrB genes, it carried a single copy of a gene homologue that encoded cassette chromosome recombinase. Since the open reading frame (ORF) was found to encode an enzyme which catalyzes the precise excision as well as site- and orientation-specific integration of the element, we designated the ORF cassette chromosome recombinase C (ccrC), and we designated the element type V SCCmec. Type V SCCmec is a small SCCmec element (28 kb) and does not carry any antibiotic resistance genes besides mecA. Unlike the extant SCCmec types, it carries a set of foreign genes encoding a restriction-modification system that might play a role in the stabilization of the element on the chromosome.
Collapse
Affiliation(s)
- Teruyo Ito
- Department of Bacteriology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Mruk I, Cichowicz M, Kaczorowski T. Characterization of the LlaCI methyltransferase from Lactococcus lactis subsp. cremoris W15 provides new insights into the biology of type II restriction-modification systems. MICROBIOLOGY-SGM 2004; 149:3331-3341. [PMID: 14600245 DOI: 10.1099/mic.0.26562-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene encoding the LlaCI methyltransferase (M.LlaCI) from Lactococcus lactis subsp. cremoris W15 was overexpressed in Escherichia coli. The enzyme was purified to apparent homogeneity using three consecutive steps of chromatography on phosphocellulose, blue-agarose and Superose 12HR, yielding a protein of M(r) 31 300+/-1000 under denaturing conditions. The exact position of the start codon AUG was determined by protein microsequencing. This enzyme recognizes the specific palindromic sequence 5'-AAGCTT-3'. Purified M.LlaCI was characterized. Unlike many other methyltransferases, M.LlaCI exists in solution predominantly as a dimer. It modifies the first adenine residue at the 5' end of the specific sequence to N(6)-methyladenine and thus is functionally identical to the corresponding methyltransferases of the HindIII (Haemophilus influenzae Rd) and EcoVIII (Escherichia coli E1585-68) restriction-modification systems. This is reflected in the identity of M.LlaCI with M.HindIII and M.EcoVIII noted at the amino acid sequence level (50 % and 62 %, respectively) and in the presence of nine sequence motifs conserved among N(6)-adenine beta-class methyltransferases. However, polyclonal antibodies raised against M.EcoVIII cross-reacted with M.LlaCI but not with M.HindIII. Restriction endonucleases require Mg(2+) for phosphodiester bond cleavage. Mg(2+) was shown to be a strong inhibitor of the M.LlaCI enzyme and its isospecific homologues. This observation suggests that sensitivity of the M.LlaCI to Mg(2+) may strengthen the restriction activity of the cognate endonuclease in the bacterial cell. Other biological implications of this finding are also discussed.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Magdalena Cichowicz
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| |
Collapse
|
47
|
|
48
|
Makovets S, Powell LM, Titheradge AJB, Blakely GW, Murray NE. Is modification sufficient to protect a bacterial chromosome from a resident restriction endonuclease? Mol Microbiol 2003; 51:135-47. [PMID: 14651617 DOI: 10.1046/j.1365-2958.2003.03801.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been generally accepted that DNA modification protects the chromosome of a bacterium encoding a restriction and modification system. But, when target sequences within the chromosome of one such bacterium (Escherichia coli K-12) are unmodified, the cell does not destroy its own DNA; instead, ClpXP inactivates the nuclease, and restriction is said to be alleviated. Thus, the resident chromosome is recognized as 'self' rather than 'foreign' even in the absence of modification. We now provide evidence that restriction alleviation may be a characteristic of Type I restriction-modification systems, and that it can be achieved by different mechanisms. Our experiments support disassembly of active endonuclease complexes as a potential mechanism. We identify amino acid substitutions in a restriction endonuclease, which impair restriction alleviation in response to treatment with a mutagen, and demonstrate that restriction alleviation serves to protect the chromosome even in the absence of mutagenic treatment. In the absence of efficient restriction alleviation, a Type I restriction enzyme cleaves host DNA and, under these conditions, homologous recombination maintains the integrity of the bacterial chromosome.
Collapse
Affiliation(s)
- Svetlana Makovets
- Institute of Cell and Molecular Biology, Darwin Building, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | | | | | |
Collapse
|
49
|
Handa N, Kobayashi I. Accumulation of large non-circular forms of the chromosome in recombination-defective mutants of Escherichia coli. BMC Mol Biol 2003; 4:5. [PMID: 12718760 PMCID: PMC156651 DOI: 10.1186/1471-2199-4-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 04/28/2003] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Double-strand breakage of chromosomal DNA is obviously a serious threat to cells because various activities of the chromosome depend on its integrity. However, recent experiments suggest that such breakage may occur frequently during "normal" growth in various organisms - from bacteria through vertebrates, possibly through arrest of a replication fork at some endogenous DNA damage. RESULTS In order to learn how the recombination processes contribute to generation and processing of the breakage, large (> 2000 kb) linear forms of Escherichia coli chromosome were detected by pulsed-field gel electrophoresis in various recombination-defective mutants. The mutants were analyzed in a rich medium, in which the wild-type strain showed fewer of these huge broken chromosomes than in a synthetic medium, and the following results were obtained: (i) Several recB and recC null mutants (in an otherwise rec+ background) accumulated these huge linear forms, but several non-null recBCD mutants (recD, recC1001, recC1002, recC1003, recC1004, recC2145, recB2154, and recB2155) did not. (ii) In a recBC sbcA background, in which RecE-mediated recombination is active, recA, recJ, recQ, recE, recT, recF, recO, and recR mutations led to their accumulation. The recJ mutant accumulated many linear forms, but this effect was suppressed by a recQ mutation. (iii) The recA, recJ, recQ, recF and recR mutations led to their accumulation in a recBC sbcBC background. The recJ mutation showed the largest amount of these forms. (iv) No accumulation was detected in mutants affecting resolution of Holliday intermediates, recG, ruvAB and ruvC, in any of these backgrounds. CONCLUSION These results are discussed in terms of stepwise processing of chromosomal double-strand breaks.
Collapse
Affiliation(s)
- Naofumi Handa
- Division of Molecular Biology, Institute of Medical Science, University of Tokyo, Shirokanedai, Tokyo 108-8639 Japan.
| | | |
Collapse
|
50
|
Sadykov M, Asami Y, Niki H, Handa N, Itaya M, Tanokura M, Kobayashi I. Multiplication of a restriction-modification gene complex. Mol Microbiol 2003; 48:417-27. [PMID: 12675801 DOI: 10.1046/j.1365-2958.2003.03464.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous works have suggested that some gene complexes encoding a restriction (R) enzyme and a cognate modification (M) enzyme may behave as selfish mobile genetic elements. RM gene complexes, which destroy 'non-self' elements marked by the absence of proper methylation, are often associated with mobile genetic elements and are involved in various genome rearrangements. Here, we found amplification of a restriction-modification gene complex. BamHI gene complex inserted into the Bacillus chromosome showed resistance to replacement by a homologous stretch of DNA. Some cells became transformed with the donor without losing BamHI. In most of these transformants, multiple copies of BamHI and the donor allele were arranged as tandem repeats. When a clone carrying one copy of each allele was propagated, extensive amplification of BamHI and the donor unit was observed in a manner dependent on restriction enzyme gene. This suggests that restriction cutting of the genome participates in the amplification. Visualization by fluorescent in situ hybridization revealed that the amplification occurred in single cells in a burst-like fashion that is reminiscent of induction of provirus replication. The multiplication ability in a bacterium with natural capacity for DNA release, uptake and transformation will be discussed in relation to spreading of RM gene -complexes.
Collapse
Affiliation(s)
- Marat Sadykov
- Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|