1
|
St John E, Reysenbach AL. Genomic comparison of deep-sea hydrothermal genera related to Aeropyrum, Thermodiscus and Caldisphaera, and proposed emended description of the family Acidilobaceae. Syst Appl Microbiol 2024; 47:126507. [PMID: 38703419 DOI: 10.1016/j.syapm.2024.126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.
Collapse
Affiliation(s)
- Emily St John
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
2
|
Syukur Purwanto H, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, Lee JH. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. J Biotechnol 2018; 282:92-100. [DOI: 10.1016/j.jbiotec.2018.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
|
3
|
Schoenenberger B, Wszolek A, Meier R, Brundiek H, Obkircher M, Wohlgemuth R. Recombinant AroL-Catalyzed Phosphorylation for the Efficient Synthesis of Shikimic Acid 3-Phosphate. Biotechnol J 2018; 13:e1700529. [PMID: 29697210 DOI: 10.1002/biot.201700529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Shikimic acid 3-phosphate, as a central metabolite of the shikimate pathway, is of high interest as enzyme substrate for 5-enolpyruvoyl-shikimate 3-phosphate synthase, a drug target in infectious diseases and a prime enzyme target for the herbicide glyphosate. As the important substrate shikimic acid 3-phosphate is only accessible via a chemical multi-step route, a new straightforward preparative one-step enzymatic phosphorylation of shikimate using a stable recombinant shikimate kinase has been developed for the selective phosphorylation of shikimate in the 3-position. Highly active shikimate kinase is produced by straightforward expression of a synthetic aroL gene in Escherichia coli. The time course of the shikimate kinase-catalyzed phosphorylation is investigated by 1 H- and 31 P-NMR, using the phosphoenolpyruvate/pyruvate kinase system for the regeneration of the ATP cofactor. This enables the development of a quantitative biocatalytic 3-phosphorylation of shikimic acid. After a standard workup procedure, a good yield of shikimic acid 3-phosphate, with high HPLC- and NMR purity, is obtained. This efficient biocatalytic synthesis of shikimic acid 3-phosphate is superior to any other method and has been successfully scaled up to multi-gram scale.
Collapse
Affiliation(s)
| | - Agata Wszolek
- Enzymicals, Walther-Rathenau-Strasse 49a, 17489, Greifswald, Germany
| | - Roland Meier
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| | - Henrike Brundiek
- Enzymicals, Walther-Rathenau-Strasse 49a, 17489, Greifswald, Germany
| | - Markus Obkircher
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| | - Roland Wohlgemuth
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| |
Collapse
|
4
|
Fluegge KR, Fluegge KR. Glyphosate Use Predicts ADHD Hospital Discharges in the Healthcare Cost and Utilization Project Net (HCUPnet): A Two-Way Fixed-Effects Analysis. PLoS One 2015; 10:e0133525. [PMID: 26287729 PMCID: PMC4543553 DOI: 10.1371/journal.pone.0133525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022] Open
Abstract
There has been considerable international study on the etiology of rising mental disorders, such as attention-deficit hyperactivity disorder (ADHD), in human populations. As glyphosate is the most commonly used herbicide in the world, we sought to test the hypothesis that glyphosate use in agriculture may be a contributing environmental factor to the rise of ADHD in human populations. State estimates for glyphosate use and nitrogen fertilizer use were obtained from the U.S. Geological Survey (USGS). We queried the Healthcare Cost and Utilization Project net (HCUPNET) for state-level hospitalization discharge data in all patients for all-listed ADHD from 2007 to 2010. We used rural-urban continuum codes from the USDA-Economic Research Service when exploring the effect of urbanization on the relationship between herbicide use and ADHD. Least squares dummy variable (LSDV) method and within method using two-way fixed effects was used to elucidate the relationship between glyphosate use and all-listed ADHD hospital discharges. We show that a one kilogram increase in glyphosate use, in particular, in one year significantly positively predicts state-level all-listed ADHD discharges, expressed as a percent of total mental disorders, the following year (coefficient = 5.54E-08, p<.01). A study on the effect of urbanization on the relationship between glyphosate and ADHD indicates that the relationship is marginally significantly positive after multiple comparison correction only in urban U.S. counties (p<.025). Furthermore, total glyphosate use is strongly positively associated with total farm use of nitrogen fertilizers from 1992 to 2006 (p<.001). We present evidence from the biomedical research literature of a plausible link among glyphosate, nitrogen dysbiosis and ADHD. Glyphosate use is a significant predictor of state hospitalizations for all-listed ADHD hospital discharges, with the effect concentrated in urban U.S. counties. This effect is seen even after controlling for individual state characteristics, strong correlations over time, and other significant associations with ADHD in the literature. We draw upon the econometric results to propose unique mechanisms, borrowing principles from soil and atmospheric sciences, for how glyphosate-based herbicides may be contributing to the rise of ADHD in all populations.
Collapse
Affiliation(s)
- Keith R. Fluegge
- Institute of Health and Environmental Research (IHER), Cleveland, Ohio, 44118 United States of America
- Graduate School, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Kyle R. Fluegge
- Institute of Health and Environmental Research (IHER), Cleveland, Ohio, 44118 United States of America
- Department of Epidemiology & Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, United States of America
| |
Collapse
|
5
|
Rodionova IA, Zuccola HJ, Sorci L, Aleshin AE, Kazanov MD, Ma CT, Sergienko E, Rubin EJ, Locher CP, Osterman AL. Mycobacterial nicotinate mononucleotide adenylyltransferase: structure, mechanism, and implications for drug discovery. J Biol Chem 2015; 290:7693-706. [PMID: 25631047 DOI: 10.1074/jbc.m114.628016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinate mononucleotide adenylyltransferase NadD is an essential enzyme in the biosynthesis of the NAD cofactor, which has been implicated as a target for developing new antimycobacterial therapies. Here we report the crystal structure of Mycobacterium tuberculosis NadD (MtNadD) at a resolution of 2.4 Å. A remarkable new feature of the MtNadD structure, compared with other members of this enzyme family, is a 310 helix that locks the active site in an over-closed conformation. As a result, MtNadD is rendered inactive as it is topologically incompatible with substrate binding and catalysis. Directed mutagenesis was also used to further dissect the structural elements that contribute to the interactions of the two MtNadD substrates, i.e. ATP and nicotinic acid mononucleotide (NaMN). For inhibitory profiling of partially active mutants and wild type MtNadD, we used a small molecule inhibitor of MtNadD with moderate affinity (Ki ∼ 25 μM) and antimycobacterial activity (MIC80) ∼ 40-80 μM). This analysis revealed interferences with some of the residues in the NaMN binding subsite consistent with the competitive inhibition observed for the NaMN substrate (but not ATP). A detailed steady-state kinetic analysis of MtNadD suggests that ATP must first bind to allow efficient NaMN binding and catalysis. This sequential mechanism is consistent with the requirement of transition to catalytically competent (open) conformation hypothesized from structural modeling. A possible physiological significance of this mechanism is to enable the down-regulation of NAD synthesis under ATP-limiting dormancy conditions. These findings point to a possible new strategy for designing inhibitors that lock the enzyme in the inactive over-closed conformation.
Collapse
Affiliation(s)
- Irina A Rodionova
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Harmon J Zuccola
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts 02210
| | - Leonardo Sorci
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy
| | - Alexander E Aleshin
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Marat D Kazanov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127051 Moscow, Russia, and
| | - Chen-Ting Ma
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Eduard Sergienko
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | - Andrei L Osterman
- From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
| |
Collapse
|
6
|
Zhi XY, Yao JC, Li HW, Huang Y, Li WJ. Genome-wide identification, domain architectures and phylogenetic analysis provide new insights into the early evolution of shikimate pathway in prokaryotes. Mol Phylogenet Evol 2014; 75:154-64. [DOI: 10.1016/j.ympev.2014.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/30/2022]
|
7
|
da Silva ACB, da Silva DR, Macêdo Ferreira SAD, Agripino GG, Albuquerque AR, Rêgo TGD. <i>In Silico</i> Approach for the Identification of Potential Targets and Specific Antimicrobials for <i>Streptococcus mutans</i>. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.54045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130088. [PMID: 23754820 PMCID: PMC3685469 DOI: 10.1098/rstb.2013.0088] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood-Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent-ocean interface via the ATP synthase, (iii) harnessing of Na(+) gradients generated by H(+)/Na(+) antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type 'reduced iron → reduced carbon' at the beginning of bioenergetic evolution.
Collapse
Affiliation(s)
- Filipa L. Sousa
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Thorsten Thiergart
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giddy Landan
- Institute of Genomic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Shijulal Nelson-Sathi
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - John F. Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK
| | - Nick Lane
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Zhuang N, Seo KH, Chen C, Zhou J, Kim SW, Lee KH. Crystallization and preliminary X-ray diffraction analysis of mevalonate kinase from Methanosarcina mazei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1560-3. [PMID: 23192048 PMCID: PMC3509989 DOI: 10.1107/s1744309112047070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/15/2012] [Indexed: 11/11/2022]
Abstract
Mevalonate kinase (MVK), which plays an important role in catalysing the biosynthesis of isoprenoid compounds derived from the mevalonate pathway, transforms mevalonate to 5-phosphomevalonate using ATP as a cofactor. Mevalonate kinase from Methanosarcina mazei (MmMVK) was expressed in Escherichia coli, purified and crystallized for structural analysis. Diffraction-quality crystals of MmMVK were obtained by the vapour-diffusion method using 0.32 M MgCl2, 0.08 M bis-tris pH 5.5, 16%(w/v) PEG 3350. The crystals belonged to space group P2(1)2(1)2, with unit-cell parameters a=97.11, b=135.92, c=46.03 Å. Diffraction data were collected to 2.08 Å resolution.
Collapse
Affiliation(s)
- Ningning Zhuang
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Kyung Hye Seo
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Cong Chen
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jia Zhou
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Seon Won Kim
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Kon Ho Lee
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| |
Collapse
|
10
|
Quinolinate salvage and insights for targeting NAD biosynthesis in group A streptococci. J Bacteriol 2012. [PMID: 23204464 DOI: 10.1128/jb.02002-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The essential coenzyme NAD plays important roles in metabolic reactions and cell regulation in all organisms. As such, NAD synthesis has been investigated as a source for novel antibacterial targets. Cross-species genomics-based reconstructions of NAD metabolism in group A streptococci (GAS), combined with focused experimental testing in Streptococcus pyogenes, led to a better understanding of NAD metabolism in the pathogen. The predicted niacin auxotrophy was experimentally verified, as well as the essential role of the nicotinamidase PncA in the utilization of nicotinamide (Nm). PncA is dispensable in the presence of nicotinate (Na), ruling it out as a viable antibacterial target. The function of the "orphan" NadC enzyme, which is uniquely present in all GAS species despite the absence of other genes of NAD de novo synthesis, was elucidated. Indeed, the quinolinate (Qa) phosphoribosyltransferase activity of NadC from S. pyogenes allows the organism to sustain growth when Qa is present as a sole pyridine precursor. Finally, the redundancy of functional upstream salvage pathways in GAS species narrows the choice of potential drug targets to the two indispensable downstream enzymes of NAD synthesis, nicotinate adenylyltransferase (NadD family) and NAD synthetase (NadE family). Biochemical characterization of NadD confirmed its functional role in S. pyogenes, and its potential as an antibacterial target was supported by inhibition studies with previously identified class I inhibitors of the NadD enzyme family. One of these inhibitors efficiently inhibited S. pyogenes NadD (sp.NadD) in vitro (50% inhibitory concentration [IC(50)], 15 μM), exhibiting a noncompetitive mechanism with a K(i) of 8 μM.
Collapse
|
11
|
Biochemical characterization of pantoate kinase, a novel enzyme necessary for coenzyme A biosynthesis in the Archaea. J Bacteriol 2012; 194:5434-43. [PMID: 22865846 DOI: 10.1128/jb.06624-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although bacteria and eukaryotes share a pathway for coenzyme A (CoA) biosynthesis, we previously clarified that most archaea utilize a distinct pathway for the conversion of pantoate to 4'-phosphopantothenate. Whereas bacteria/eukaryotes use pantothenate synthetase and pantothenate kinase (PanK), the hyperthermophilic archaeon Thermococcus kodakarensis utilizes two novel enzymes: pantoate kinase (PoK) and phosphopantothenate synthetase (PPS). Here, we report a detailed biochemical examination of PoK from T. kodakarensis. Kinetic analyses revealed that the PoK reaction displayed Michaelis-Menten kinetics toward ATP, whereas substrate inhibition was observed with pantoate. PoK activity was not affected by the addition of CoA/acetyl-CoA. Interestingly, PoK displayed broad nucleotide specificity and utilized ATP, GTP, UTP, and CTP with comparable k(cat)/K(m) values. Sequence alignment of 27 PoK homologs revealed seven conserved residues with reactive side chains, and variant proteins were constructed for each residue. Activity was not detected when mutations were introduced to Ser104, Glu134, and Asp143, suggesting that these residues play vital roles in PoK catalysis. Kinetic analysis of the other variant proteins, with mutations S28A, H131A, R155A, and T186A, indicated that all four residues are involved in pantoate recognition and that Arg155 and Thr186 play important roles in PoK catalysis. Gel filtration analyses of the variant proteins indicated that Thr186 is also involved in dimer assembly. A sequence comparison between PoK and other members of the GHMP kinase family suggests that Ser104 and Glu134 are involved in binding with phosphate and Mg(2+), respectively, while Asp143 is the base responsible for proton abstraction from the pantoate hydroxy group.
Collapse
|
12
|
De Ingeniis J, Kazanov MD, Shatalin K, Gelfand MS, Osterman AL, Sorci L. Glutamine versus ammonia utilization in the NAD synthetase family. PLoS One 2012; 7:e39115. [PMID: 22720044 PMCID: PMC3376133 DOI: 10.1371/journal.pone.0039115] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/16/2012] [Indexed: 11/18/2022] Open
Abstract
NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS). Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine) in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown) glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine) is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS structural elements associated with glutamine-utilizing capabilities.
Collapse
Affiliation(s)
- Jessica De Ingeniis
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Marat D. Kazanov
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Shatalin
- Department of Biochemistry, New York University School of Medicine, New York, United States of America
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Andrei L. Osterman
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (LS); (ALO)
| | - Leonardo Sorci
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
- * E-mail: (LS); (ALO)
| |
Collapse
|
13
|
Abstract
Comparative analysis of the sequences of enzymes encoded in a variety of prokaryotic and eukaryotic genomes reveals convergence and divergence at several levels. Functional convergence can be inferred when structurally distinct and hence non-homologous enzymes show the ability to catalyze the same biochemical reaction. In contrast, as a result of functional diversification, many structurally similar enzyme molecules act on substantially distinct substrates and catalyze diverse biochemical reactions. Here, we present updates on the ATP-grasp, alkaline phosphatase, cupin, HD hydrolase, and N-terminal nucleophile (Ntn) hydrolase enzyme superfamilies and discuss the patterns of sequence and structural conservation and diversity within these superfamilies. Typically, enzymes within a superfamily possess common sequence motifs and key active site residues, as well as (predicted) reaction mechanisms. These observations suggest that the strained conformation (the entatic state) of the active site, which is responsible for the substrate binding and formation of the transition complex, tends to be conserved within enzyme superfamilies. The subsequent fate of the transition complex is not necessarily conserved and depends on the details of the structures of the enzyme and the substrate. This variability of reaction outcomes limits the ability of sequence analysis to predict the exact enzymatic activities of newly sequenced gene products. Nevertheless, sequence-based (super)family assignments and generic functional predictions, even if imprecise, provide valuable leads for experimental studies and remain the best approach to the functional annotation of uncharacterized proteins from new genomes.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894.
| |
Collapse
|
14
|
De Pascale G, Griffiths EJ, Shakya T, Nazi I, Wright GD. Identification and Characterization of New Inhibitors of Fungal Homoserine Kinase. Chembiochem 2011; 12:1179-82. [DOI: 10.1002/cbic.201100121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Indexed: 11/09/2022]
|
15
|
The role of the active site residues in human galactokinase: implications for the mechanisms of GHMP kinases. Bioorg Chem 2011; 39:120-6. [PMID: 21474160 DOI: 10.1016/j.bioorg.2011.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
Galactokinase catalyses the phosphorylation of galactose at the expense of ATP. Like other members of the GHMP family of kinases it is postulated to function through an active site base mechanism in which Asp-186 abstracts a proton from galactose. This asparate residue was altered to alanine and to asparagine by site-directed mutagenesis of the corresponding gene. This resulted in variant enzyme with no detectable galactokinase activity. Alteration of Arg-37, which lies adjacent to Asp-186 and is postulated to assist the catalytic base, to lysine resulted in an active enzyme. However, alteration of this residue to glutamate abolished activity. All the variant enzymes, except the arginine to lysine substitution, were structurally unstable (as judged by native gel electrophoresis in the presence of urea) compared to the wild type. This suggests that the lack of activity results from this structural instability, in addition to any direct effects on the catalytic mechanism. Computational estimations of the pK(a) values of the arginine and aspartate residues, suggest that Arg-37 remains protonated throughout the catalytic cycle whereas Asp-186 has an abnormally high pK(a) value (7.18). Quantum mechanics/molecular mechanics (QM/MM) calculations suggest that Asp-186 moves closer to the galactose molecule during catalysis. The experimental and theoretical studies presented here argue for a mechanism in which the C(1)-OH bond in the sugar is weakened by the presence of Asp-186 thus facilitating nucleophilic attack by the oxygen atom on the γ-phosphorus of ATP.
Collapse
|
16
|
Khomyakova M, Bükmez Ö, Thomas LK, Erb TJ, Berg IA. A methylaspartate cycle in haloarchaea. Science 2011; 331:334-7. [PMID: 21252347 DOI: 10.1126/science.1196544] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Access to novel ecological niches often requires adaptation of metabolic pathways to cope with new environments. For conversion to cellular building blocks, many substrates enter central carbon metabolism via acetyl-coenzyme A (acetyl-CoA). Until now, only two such pathways have been identified: the glyoxylate cycle and the ethylmalonyl-CoA pathway. Prokaryotes in the haloarchaea use a third pathway by which acetyl-CoA is oxidized to glyoxylate via the key intermediate methylaspartate. Glyoxylate condensation with another acetyl-CoA molecule yields malate, the final assimilation product. This cycle combines reactions that originally belonged to different metabolic processes in different groups of prokaryotes, which suggests lateral gene transfer and evolutionary tinkering of acetate assimilation. Moreover, it requires elevated intracellular glutamate concentrations, as well as coupling carbon assimilation with nitrogen metabolism.
Collapse
Affiliation(s)
- Maria Khomyakova
- Mikrobiologie, Fakultät Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Zucko J, Dunlap WC, Shick JM, Cullum J, Cercelet F, Amin B, Hammen L, Lau T, Williams J, Hranueli D, Long PF. Global genome analysis of the shikimic acid pathway reveals greater gene loss in host-associated than in free-living bacteria. BMC Genomics 2010; 11:628. [PMID: 21070645 PMCID: PMC3018139 DOI: 10.1186/1471-2164-11-628] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background A central tenet in biochemistry for over 50 years has held that microorganisms, plants and, more recently, certain apicomplexan parasites synthesize essential aromatic compounds via elaboration of a complete shikimic acid pathway, whereas metazoans lacking this pathway require a dietary source of these compounds. The large number of sequenced bacterial and archaean genomes now available for comparative genomic analyses allows the fundamentals of this contention to be tested in prokaryotes. Using Hidden Markov Model profiles (HMM profiles) to identify all known enzymes of the pathway, we report the presence of genes encoding shikimate pathway enzymes in the hypothetical proteomes constructed from the genomes of 488 sequenced prokaryotes. Results Amongst free-living prokaryotes most Bacteria possess, as expected, genes encoding a complete shikimic acid pathway, whereas of the culturable Archaea, only one was found to have a complete complement of recognisable enzymes in its predicted proteome. It may be that in the Archaea, the primary amino-acid sequences of enzymes of the pathway are highly divergent and so are not detected by HMM profiles. Alternatively, structurally unrelated (non-orthologous) proteins might be performing the same biochemical functions as those encoding recognized genes of the shikimate pathway. Most surprisingly, 30% of host-associated (mutualistic, commensal and pathogenic) bacteria likewise do not possess a complete shikimic acid pathway. Many of these microbes show some degree of genome reduction, suggesting that these host-associated bacteria might sequester essential aromatic compounds from a parasitised host, as a 'shared metabolic adaptation' in mutualistic symbiosis, or obtain them from other consorts having the complete biosynthetic pathway. The HMM results gave 84% agreement when compared against data in the highly curated BioCyc reference database of genomes and metabolic pathways. Conclusions These results challenge the conventional belief that the shikimic acid pathway is universal and essential in prokaryotes. The possibilities that non-orthologous enzymes catalyse reactions in this pathway (especially in the Archaea), or that there exist specific uptake mechanisms for the acquisition of shikimate intermediates or essential pathway products, warrant further examination to better understand the precise metabolic attributes of host-beneficial and pathogenic bacteria.
Collapse
Affiliation(s)
- Jurica Zucko
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sorci L, Blaby I, De Ingeniis J, Gerdes S, Raffaelli N, de Crécy Lagard V, Osterman A. Genomics-driven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection. J Biol Chem 2010; 285:39490-9. [PMID: 20926389 DOI: 10.1074/jbc.m110.185629] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymes involved in the last steps of NAD biogenesis, nicotinate mononucleotide adenylyltransferase (NadD) and NAD synthetase (NadE), are conserved and essential in most bacterial species and are established targets for antibacterial drug development. Our genomics-based reconstruction of NAD metabolism in the emerging pathogen Acinetobacter baumannii revealed unique features suggesting an alternative targeting strategy. Indeed, genomes of all analyzed Acinetobacter species do not encode NadD, which is functionally replaced by its distant homolog NadM. We combined bioinformatics with genetic and biochemical techniques to elucidate this and other important features of Acinetobacter NAD metabolism using a model (nonpathogenic) strain Acinetobacter baylyi sp. ADP1. Thus, a comparative kinetic characterization of PncA, PncB, and NadV enzymes allowed us to suggest distinct physiological roles for the two alternative, deamidating and nondeamidating, routes of nicotinamide salvage/recycling. The role of the NiaP transporter in both nicotinate and nicotinamide salvage was confirmed. The nondeamidating route was shown to be transcriptionally regulated by an ADP-ribose-responsive repressor NrtR. The NadM enzyme was shown to possess dual substrate specificity toward both nicotinate and nicotinamide mononucleotide substrates, which is consistent with its essential role in all three routes of NAD biogenesis, de novo synthesis as well as the two salvage pathways. The experimentally confirmed unconditional essentiality of nadM provided support for the choice of the respective enzyme as a drug target. In contrast, nadE, encoding a glutamine-dependent NAD synthetase, proved to be dispensable when the nondeamidating salvage pathway functioned as the only route of NAD biogenesis.
Collapse
Affiliation(s)
- Leonardo Sorci
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Agnew A, Timson D. Mechanistic studies on human N-acetylgalactosamine kinase. J Enzyme Inhib Med Chem 2010; 25:370-6. [PMID: 19874134 DOI: 10.3109/14756360903179492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
N-Acetylgalactosamine kinase (GALK2) is a small molecule kinase from the GHMP family which phosphorylates N-acetylgalactosamine at the expense of ATP. Recombinant GALK2 expressed in, and purified from, Escherichia coli was shown to be active with the following kinetic parameters: Michaelis constant for ATP, 14 +/- 3 microM; Michaelis constant for N-acetylgalactosamine, 40 +/- 14 microM; and turnover number, 1.0 +/- 0.1 s(-1). The combination of substrate inhibition by N-acetylgalactosamine and alpha-methylgalactopyranoside acting as an uncompetitive inhibitor with respect to ATP suggested that the enzyme has an ordered ternary complex mechanism in which ATP is the first substrate to bind. The effects of pH on the kinetic parameters provided evidence for ionizable residues playing a role in substrate binding and catalysis. These results are discussed in the context of the mechanisms of the GHMP kinases.
Collapse
Affiliation(s)
- Andrew Agnew
- Queen's University Belfast, Belfast, United Kingdom
| | | |
Collapse
|
20
|
Omelchenko MV, Galperin MY, Wolf YI, Koonin EV. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Biol Direct 2010; 5:31. [PMID: 20433725 PMCID: PMC2876114 DOI: 10.1186/1745-6150-5-31] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. RESULTS We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. CONCLUSIONS These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.
Collapse
Affiliation(s)
- Marina V Omelchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
21
|
Mano A, Tuller T, Béjà O, Pinter RY. Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways. BMC Bioinformatics 2010; 11 Suppl 1:S38. [PMID: 20122211 PMCID: PMC3009510 DOI: 10.1186/1471-2105-11-s1-s38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Pathways provide topical descriptions of cellular circuitry. Comparing analogous pathways reveals intricate insights into individual functional differences among species. While previous works in the field performed genomic comparisons and evolutionary studies that were based on specific genes or proteins, whole genomic sequence, or even single pathways, none of them described a genomic system level comparative analysis of metabolic pathways. In order to properly implement such an analysis one should overcome two specific challenges: how to combine the effect of many pathways under a unified framework and how to appropriately analyze co-evolution of pathways. Here we present a computational approach for solving these two challenges. First, we describe a comprehensive, scalable, information theory based computational pipeline that calculates pathway alignment information and then compiles it in a novel manner that allows further analysis. This approach can be used for building phylogenies and for pointing out specific differences that can then be analyzed in depth. Second, we describe a new approach for comparing the evolution of metabolic pathways. This approach can be used for detecting co-evolutionary relationships between metabolic pathways. RESULTS We demonstrate the advantages of our approach by applying our pipeline to data from the MetaCyc repository (which includes a total of 205 organisms and 660 metabolic pathways). Our analysis revealed several surprising biological observations. For example, we show that the different habitats in which Archaea organisms reside are reflected by a pathway based phylogeny. In addition, we discover two striking clusters of metabolic pathways, each cluster includes pathways that have very similar evolution. CONCLUSION We demonstrate that distance measures that are based on the topology and the content of metabolic networks are useful for studying evolution and co-evolution.
Collapse
Affiliation(s)
- Adi Mano
- Dept, of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | | | | | | |
Collapse
|
22
|
Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PLoS One 2009; 4:e7979. [PMID: 19956731 PMCID: PMC2776528 DOI: 10.1371/journal.pone.0007979] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/28/2009] [Indexed: 11/19/2022] Open
Abstract
Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across phylogenetically diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG's regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov.
Collapse
|
23
|
Stockbridge RB, Wolfenden R. The intrinsic reactivity of ATP and the catalytic proficiencies of kinases acting on glucose, N-acetylgalactosamine, and homoserine: a thermodynamic analysis. J Biol Chem 2009; 284:22747-57. [PMID: 19531469 DOI: 10.1074/jbc.m109.017806] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To evaluate the rate enhancements produced by representative kinases and their thermodynamic basis, rate constants were determined as a function of changing temperature for 1) the spontaneous methanolysis of ATP and 2) reactions catalyzed by kinases to which different mechanisms of action have been ascribed. For each of these enzymes, the minor effects of changing viscosity indicate that k(cat)/K(m) is governed by the central chemical events in the enzyme-substrate complex rather than by enzyme-substrate encounter. Individual Arrhenius plots, obtained at intervals between pH 4.8 and 11.0, yielded Delta H(#) and T Delta S(#) for the nonenzymatic methanolysis of ATP(2-), ATP(3-), and ATP(4-) in the absence of Mg(2+). The addition of Mg(2+) led to partly compensating changes in Delta H(#) and T Delta S(#), accelerating the nonenzymatic methanolysis of ATP 11-fold at pH 7 and 25 degrees C. The rate enhancements produced by yeast hexokinase, homoserine kinase, and N-acetylgalactosamine kinase (obtained by comparison of their k(cat)/K(m) values in the presence of saturating phosphoryl acceptor with the second order rate constant for methanolysis of MgATP) ranged between 10(12)- and 10(14)-fold. Their nominal affinities for the altered substrates in the transition state were 2.1 x 10(-16) m for N-acetylgalactosamine kinase, 7.4 x 10(-17) m for homoserine kinase, and 6.4 x 10(-18) m for hexokinase. Compared with nonenzymatic phosphoryl transfer, all three kinases were found to produce major reductions in the entropy of activation, in accord with the likelihood that substrate juxtaposition and desolvation play prominent roles in their catalytic action.
Collapse
Affiliation(s)
- Randy B Stockbridge
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
24
|
Fan C, Fromm HJ, Bobik TA. Kinetic and functional analysis of L-threonine kinase, the PduX enzyme of Salmonella enterica. J Biol Chem 2009; 284:20240-8. [PMID: 19509296 DOI: 10.1074/jbc.m109.027425] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PduX enzyme of Salmonella enterica is an l-threonine kinase used for the de novo synthesis of coenzyme B(12) and the assimilation of cobyric acid. PduX with an N-terminal histidine tag (His(8)-PduX) was produced in Escherichiacoli and purified. The recombinant enzyme was soluble and active. Kinetic analysis indicated a steady-state Ordered Bi Bi complex mechanism in which ATP is the first substrate to bind. Based on a multiple sequence alignment of PduX homologues and other GHMP (galactokinase, homoserine kinase, mevalonate kinase, and phosphomevalonate kinase) family members, 14 PduX variants having changes at 10 conserved serine/threonine and aspartate/glutamate sites were constructed by site-directed mutagenesis. Each variant was produced in E. coli and purified. Comparison of the circular dichroism spectra and kinetic properties of the PduX variants with those of the wild-type enzyme indicated that Glu-24 and Asp-135 are needed for proper folding, Ser-99 and Glu-132 are used for ATP binding, and Ser-253 and Ser-255 are critical to l-threonine binding whereas Ser-100 is essential to catalysis, but its precise role is uncertain. The studies reported here are the first to investigate the kinetic and catalytic mechanisms of l-threonine kinase from any organism.
Collapse
Affiliation(s)
- Chenguang Fan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
25
|
Mashhadi Z, Zhang H, Xu H, White RH. Identification and characterization of an archaeon-specific riboflavin kinase. J Bacteriol 2008; 190:2615-8. [PMID: 18245297 PMCID: PMC2293203 DOI: 10.1128/jb.01900-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/25/2008] [Indexed: 11/20/2022] Open
Abstract
The riboflavin kinase in Methanocaldococcus jannaschii has been identified as the product of the MJ0056 gene. Recombinant expression of the MJ0056 gene in Escherichia coli led to a large increase in the amount of flavin mononucleotide (FMN) in the E. coli cell extract. The unexpected features of the purified recombinant enzyme were its use of CTP as the phosphoryl donor and the absence of a requirement for added metal ion to catalyze the formation of FMN. Identification of this riboflavin kinase fills another gap in the archaeal flavin biosynthetic pathway. Some divalent metals were found to be potent inhibitors of the reaction. The enzyme represents a unique CTP-dependent family of kinases.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
26
|
|
27
|
Grochowski LL, White RH. Promiscuous anaerobes: new and unconventional metabolism in methanogenic archaea. Ann N Y Acad Sci 2007; 1125:190-214. [PMID: 18096851 DOI: 10.1196/annals.1419.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of an oxygenated atmosphere on earth resulted in the polarization of life into two major groups, those that could live in the presence of oxygen and those that could not-the aerobes and the anaerobes. The evolution of aerobes from the earliest anaerobic prokaryotes resulted in a variety of metabolic adaptations. Many of these adaptations center on the need to sustain oxygen-sensitive reactions and cofactors to function in the new oxygen-containing atmosphere. Still other metabolic pathways that were not sensitive to oxygen also diverged. This is likely due to the physical separation of the organisms, based on their ability to live in the presence of oxygen, which allowed for the independent evolution of the pathways. Through the study of metabolic pathways in anaerobes and comparison to the more established pathways from aerobes, insight into metabolic evolution can be gained. This, in turn, can allow for extra- polation to those metabolic pathways occurring in the Last Universal Common Ancestor (LUCA). Some of the unique and uncanonical metabolic pathways that have been identified in the archaea with emphasis on the biochemistry of an obligate anaerobic methanogen, Methanocaldococcus jannaschii are reviewed.
Collapse
Affiliation(s)
- Laura L Grochowski
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
28
|
Morar M, White RH, Ealick SE. Structure of 2-Amino-3,7-dideoxy-d-threo-hept-6-ulosonic Acid Synthase, a Catalyst in the Archaeal Pathway for the Biosynthesis of Aromatic Amino Acids,. Biochemistry 2007; 46:10562-71. [PMID: 17713928 DOI: 10.1021/bi700934v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genes responsible for the generation of 3-dehydroquinate (DHQ), an early metabolite in the established shikimic pathway of aromatic amino acid biosynthesis, are absent in most euryarchaeotes. Alternative gene products, Mj0400 and Mj1249, have been identified in Methanocaldococcus jannaschii as the enzymes involved in the synthesis of DHQ. 2-Amino-3,7-dideoxy-d-threo-hept-6-ulosonic acid (ADH) synthase, the product of the Mj0400 gene, catalyzes a transaldol reaction between 6-deoxy-5-ketofructose 1-phosphate and l-aspartate semialdehyde to yield ADH. Dehydroquinate synthase II, the product of the Mj1249 gene, then catalyzes deamination and cyclization of ADH, resulting in DHQ, which is fed into the canonical pathway. Three crystal structures of ADH synthase were determined in this work: a complex with a substrate analogue, fructose 1,6-bisphosphate, a complex with dihydroxyacetone phosphate (DHAP), thought to be a product of fructose 1-phosphate cleavage, and a native structure containing copurified ligands, modeled as DHAP and glycerol. On the basis of the structural analysis and comparison of the enzyme with related aldolases, ADH synthase is classified as a new member of the class I aldolase superfamily. The description of the active site allows for the identification and characterization of possible catalytic residues, Lys184, which is responsible for formation of the Schiff base intermediate, and Asp33 and Tyr153, which are candidates for the general acid/base catalysis.
Collapse
Affiliation(s)
- Mariya Morar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
29
|
Byres E, Alphey MS, Smith TK, Hunter WN. Crystal structures of Trypanosoma brucei and Staphylococcus aureus mevalonate diphosphate decarboxylase inform on the determinants of specificity and reactivity. J Mol Biol 2007; 371:540-53. [PMID: 17583736 DOI: 10.1016/j.jmb.2007.05.094] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 05/24/2007] [Accepted: 05/29/2007] [Indexed: 11/27/2022]
Abstract
Mevalonate diphosphate decarboxylase (MDD) catalyzes the ATP-dependent decarboxylation of mevalonate 5-diphosphate (MDP) to form isopentenyl pyrophosphate, a ubiquitous precursor for isoprenoid biosynthesis. MDD is a poorly understood component of this important metabolic pathway. Complementation of a temperature-sensitive yeast mutant by the putative mdd genes of Trypanosoma brucei and Staphylococcus aureus provides proof-of-function. Crystal structures of MDD from T. brucei (TbMDD, at 1.8 A resolution) and S. aureus (SaMDD, in two distinct crystal forms, each diffracting to 2.3 A resolution) have been determined. Gel-filtration chromatography and analytical ultracentrifugation experiments indicate that TbMDD is predominantly monomeric in solution while SaMDD is dimeric. The new crystal structures and comparison with that of the yeast Saccharomyces cerevisiae enzyme (ScMDD) reveal the structural basis for this variance in quaternary structure. The presence of an ordered sulfate in the structure of TbMDD reveals for the first time details of a ligand binding in the MDD active site and, in conjunction with well-ordered water molecules, comparisons with the related enzyme mevalonate kinase, structural and biochemical data derived on ScMDD and SaMDD, allows us to model a ternary complex with MDP and ATP. This model facilitates discussion of the molecular determinants of substrate recognition and contributions made by specific residues to the enzyme mechanism.
Collapse
Affiliation(s)
- Emma Byres
- Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
30
|
Structure, substrate recognition and reactivity of Leishmania major mevalonate kinase. BMC STRUCTURAL BIOLOGY 2007; 7:20. [PMID: 17397541 PMCID: PMC1851959 DOI: 10.1186/1472-6807-7-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 03/30/2007] [Indexed: 12/31/2022]
Abstract
BACKGROUND Isoprenoid precursor synthesis via the mevalonate route in humans and pathogenic trypanosomatids is an important metabolic pathway. There is however, only limited information available on the structure and reactivity of the component enzymes in trypanosomatids. Since isoprenoid biosynthesis is essential for trypanosomatid viability and may provide new targets for therapeutic intervention it is important to characterize the pathway components. RESULTS Putative mevalonate kinase encoding genes from Leishmania major (LmMK) and Trypanosoma brucei (TbMK) have been cloned, over-expressed in and proteins isolated from procyclic-form T. brucei. A highly sensitive radioactive assay was developed and shows ATP-dependent phosphorylation of mevalonate. Apo and (R)-mevalonate bound crystal structures of LmMK, from a bacterial expression system, have been determined to high resolution providing, for the first time, information concerning binding of mevalonate to an MK. The mevalonate binds in a deep cavity lined by highly conserved residues. His25 is key for binding and for discrimination of (R)- over (S)-mevalonate, with the main chain amide interacting with the C3 hydroxyl group of (R)-mevalonate, and the side chain contributing, together with Val202 and Thr283, to the construction of a hydrophobic binding site for the C3 methyl substituent. The C5 hydroxyl, where phosphorylation occurs, points towards catalytic residues, Lys18 and Asp155. The activity of LmMK was significantly reduced compared to MK from other species and we were unable to obtain ATP-binding data. Comparisons with the rat MK:ATP complex were used to investigate how this substrate might bind. In LmMK, helix alpha2 and the preceding polypeptide adopt a conformation, not seen in related kinase structures, impeding access to the nucleotide triphosphate binding site suggesting that a conformational rearrangement is required to allow ATP binding. CONCLUSION Our new structural information, consistent with data on homologous enzymes allows a detailed description of how mevalonate is recognized and positioned for catalysis in MK. The mevalonate-binding site is highly conserved yet the ATP-binding site is structurally distinct in LmMK. We are unable to provide a definitive explanation for the low activity of recombinant protein isolated from a bacterial expression system compared to material isolated from procyclic-form Trypanosoma brucei.
Collapse
|
31
|
Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 2007; 8:86. [PMID: 17394648 PMCID: PMC1852104 DOI: 10.1186/1471-2164-8-86] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 03/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Archaea are highly diverse in terms of their physiology, metabolism and ecology. Presently, very few molecular characteristics are known that are uniquely shared by either all archaea or the different main groups within archaea. The evolutionary relationships among different groups within the Euryarchaeota branch are also not clearly understood. RESULTS We have carried out comprehensive analyses on each open reading frame (ORFs) in the genomes of 11 archaea (3 Crenarchaeota--Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus acidocaldarius; 8 Euryarchaeota--Pyrococcus abyssi, Methanococcus maripaludis, Methanopyrus kandleri, Methanococcoides burtonii, Halobacterium sp. NCR-1, Haloquadratum walsbyi, Thermoplasma acidophilum and Picrophilus torridus) to search for proteins that are unique to either all Archaea or for its main subgroups. These studies have identified 1448 proteins or ORFs that are distinctive characteristics of Archaea and its various subgroups and whose homologues are not found in other organisms. Six of these proteins are unique to all Archaea, 10 others are only missing in Nanoarchaeum equitans and a large number of other proteins are specific for various main groups within the Archaea (e.g. Crenarchaeota, Euryarchaeota, Sulfolobales and Desulfurococcales, Halobacteriales, Thermococci, Thermoplasmata, all methanogenic archaea or particular groups of methanogens). Of particular importance is the observation that 31 proteins are uniquely present in virtually all methanogens (including M. kandleri) and 10 additional proteins are only found in different methanogens as well as A. fulgidus. In contrast, no protein was exclusively shared by various methanogen and any of the Halobacteriales or Thermoplasmatales. These results strongly indicate that all methanogenic archaea form a monophyletic group exclusive of other archaea and that this lineage likely evolved from Archaeoglobus. In addition, 15 proteins that are uniquely shared by M. kandleri and Methanobacteriales suggest a close evolutionary relationship between them. In contrast to the phylogenomics studies, a monophyletic grouping of archaea is not supported by phylogenetic analyses based on protein sequences. CONCLUSION The identified archaea-specific proteins provide novel molecular markers or signature proteins that are distinctive characteristics of Archaea and all of its major subgroups. The species distributions of these proteins provide novel insights into the evolutionary relationships among different groups within Archaea, particularly regarding the origin of methanogenesis. Most of these proteins are of unknown function and further studies should lead to discovery of novel biochemical and physiological characteristics that are unique to either all archaea or its different subgroups.
Collapse
|
32
|
Abstract
As the molecular adapters between codons and amino acids, transfer-RNAs are pivotal molecules of the genetic code. The coding properties of a tRNA molecule do not reside only in its primary sequence. Posttranscriptional nucleoside modifications, particularly in the anticodon loop, can modify cognate codon recognition, affect aminoacylation properties, or stabilize the codon-anticodon wobble base pairing to prevent ribosomal frameshifting. Despite a wealth of biophysical and structural knowledge of the tRNA modifications themselves, their pathways of biosynthesis had been until recently only partially characterized. This discrepancy was mainly due to the lack of obvious phenotypes for tRNA modification-deficient strains and to the difficulty of the biochemical assays used to detect tRNA modifications. However, the availability of hundreds of whole-genome sequences has allowed the identification of many of these missing tRNA-modification genes. This chapter reviews the methods that were used to identify these genes with a special emphasis on the comparative genomic approaches. Methods that link gene and function but do not rely on sequence homology will be detailed, with examples taken from the tRNA modification field.
Collapse
|
33
|
Funke T, Han H, Healy-Fried ML, Fischer M, Schönbrunn E. Molecular basis for the herbicide resistance of Roundup Ready crops. Proc Natl Acad Sci U S A 2006; 103:13010-5. [PMID: 16916934 PMCID: PMC1559744 DOI: 10.1073/pnas.0603638103] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Indexed: 11/18/2022] Open
Abstract
The engineering of transgenic crops resistant to the broad-spectrum herbicide glyphosate has greatly improved agricultural efficiency worldwide. Glyphosate-based herbicides, such as Roundup, target the shikimate pathway enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, the functionality of which is absolutely required for the survival of plants. Roundup Ready plants carry the gene coding for a glyphosate-insensitive form of this enzyme, obtained from Agrobacterium sp. strain CP4. Once incorporated into the plant genome, the gene product, CP4 EPSP synthase, confers crop resistance to glyphosate. Although widely used, the molecular basis for this glyphosate-resistance has remained obscure. We generated a synthetic gene coding for CP4 EPSP synthase and characterized the enzyme using kinetics and crystallography. The CP4 enzyme has unexpected kinetic and structural properties that render it unique among the known EPSP synthases. Glyphosate binds to the CP4 EPSP synthase in a condensed, noninhibitory conformation. Glyphosate sensitivity can be restored through a single-site mutation in the active site (Ala-100-Gly), allowing glyphosate to bind in its extended, inhibitory conformation.
Collapse
Affiliation(s)
- Todd Funke
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045; and
| | - Huijong Han
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045; and
| | | | - Markus Fischer
- Department of Organic Chemistry and Biochemistry, Technical University Munich, D-85747 Garching, Germany
| | - Ernst Schönbrunn
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045; and
| |
Collapse
|
34
|
Grochowski LL, Xu H, White RH. Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 2006; 188:3192-8. [PMID: 16621811 PMCID: PMC1447442 DOI: 10.1128/jb.188.9.3192-3198.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaea have been shown to produce isoprenoids from mevalonate; however, genome analysis has failed to identify several genes in the mevalonate pathway on the basis of sequence similarity. A predicted archaeal kinase, coded for by the MJ0044 gene, was associated with other mevalonate pathway genes in the archaea and was predicted to be the "missing" phosphomevalonate kinase. The MJ0044-derived protein was tested for phosphomevalonate kinase activity and was found not to catalyze this reaction. The MJ0044 gene product was found to phosphorylate isopentenyl phosphate, generating isopentenyl diphosphate. Unlike other known kinases associated with isoprene biosynthesis, Methanocaldococcus jannaschii isopentenyl phosphate kinase is predicted to be a member of the aspartokinase superfamily.
Collapse
Affiliation(s)
- Laura L. Grochowski
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308
| | - Robert H. White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0308
- Corresponding author. Mailing address: Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061. Phone: (540) 231-6605. Fax: (540) 231-9070. E-mail:
| |
Collapse
|
35
|
Gerdes SY, Kurnasov OV, Shatalin K, Polanuyer B, Sloutsky R, Vonstein V, Overbeek R, Osterman AL. Comparative genomics of NAD biosynthesis in cyanobacteria. J Bacteriol 2006; 188:3012-23. [PMID: 16585762 PMCID: PMC1446974 DOI: 10.1128/jb.188.8.3012-3023.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 01/23/2006] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of NAD(P) cofactors is of special importance for cyanobacteria due to their role in photosynthesis and respiration. Despite significant progress in understanding NAD(P) biosynthetic machinery in some model organisms, relatively little is known about its implementation in cyanobacteria. We addressed this problem by a combination of comparative genome analysis with verification experiments in the model system of Synechocystis sp. strain PCC 6803. A detailed reconstruction of the NAD(P) metabolic subsystem using the SEED genomic platform (http://theseed.uchicago.edu/FIG/index.cgi) helped us accurately annotate respective genes in the entire set of 13 cyanobacterial species with completely sequenced genomes available at the time. Comparative analysis of operational variants implemented in this divergent group allowed us to elucidate both conserved (de novo and universal pathways) and variable (recycling and salvage pathways) aspects of this subsystem. Focused genetic and biochemical experiments confirmed several conjectures about the key aspects of this subsystem. (i) The product of the slr1691 gene, a homolog of Escherichia coli gene nadE containing an additional nitrilase-like N-terminal domain, is a NAD synthetase capable of utilizing glutamine as an amide donor in vitro. (ii) The product of the sll1916 gene, a homolog of E. coli gene nadD, is a nicotinic acid mononucleotide-preferring adenylyltransferase. This gene is essential for survival and cannot be compensated for by an alternative nicotinamide mononucleotide (NMN)-preferring adenylyltransferase (slr0787 gene). (iii) The product of the slr0788 gene is a nicotinamide-preferring phosphoribosyltransferase involved in the first step of the two-step non-deamidating utilization of nicotinamide (NMN shunt). (iv) The physiological role of this pathway encoded by a conserved gene cluster, slr0787-slr0788, is likely in the recycling of endogenously generated nicotinamide, as supported by the inability of this organism to utilize exogenously provided niacin. Positional clustering and the co-occurrence profile of the respective genes across a diverse collection of cellular organisms provide evidence of horizontal transfer events in the evolutionary history of this pathway.
Collapse
Affiliation(s)
- Svetlana Y. Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Oleg V. Kurnasov
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Konstantin Shatalin
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Boris Polanuyer
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Roman Sloutsky
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Veronika Vonstein
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Ross Overbeek
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - Andrei L. Osterman
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527, Burnham Institute for Medical Research, La Jolla, California 92037, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, Rohm and Haas Company, Advanced Biosciences Division, Spring House, Pennsylvania 19477, Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
36
|
Chen JW, Romero P, Uversky VN, Dunker AK. Conservation of intrinsic disorder in protein domains and families: II. functions of conserved disorder. J Proteome Res 2006; 5:888-98. [PMID: 16602696 PMCID: PMC2533134 DOI: 10.1021/pr060049p] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regions of conserved disorder prediction (CDP) were found in protein domains from all available InterPro member databases, although with varying frequency. These CDP regions were found in proteins from all kingdoms of life, including viruses. However, eukaryotes had 1 order of magnitude more proteins containing long disordered regions than did archaea and bacteria. Sequence conservation in CDP regions varied, but was on average slightly lower than in regions of conserved order. In some cases, disordered regions evolve faster than ordered regions, in others they evolve slower, and in the rest they evolve at roughly the same rate. A variety of functions were found to be associated with domains containing conserved disorder. The most common were DNA/RNA binding, and protein binding. Many ribosomal proteins also were found to contain conserved disordered regions. Other functions identified included membrane translocation and amino acid storage for germination. Due to limitations of current knowledge as well as the methodology used for this work, it was not determined whether these functions were directly associated with the predicted disordered region. However, the functions associated with conserved disorder in this work are in agreement with the functions found in other studies to correlate to disordered regions. We have established that intrinsic disorder may be more common in bacterial and archaeal proteins than previously thought, but this disorder is likely to be used for different purposes than in eukaryotic proteins, as well as occurring in shorter stretches of protein. Regions of predicted disorder were found to be conserved within a large number of protein families and domains. Although many think of such conserved domains as being ordered, in fact a significant number of them contain regions of disorder that are likely to be crucial to their functions.
Collapse
Affiliation(s)
- Jessica Walton Chen
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Molecular Kinetics, Inc., Indianapolis, IN 46268, USA
| | - Pedro Romero
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- School of Informatics, Indiana University – Purdue University Indianapolis, IN, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Molecular Kinetics, Inc., Indianapolis, IN 46268, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Molecular Kinetics, Inc., Indianapolis, IN 46268, USA
| |
Collapse
|
37
|
Priestman MA, Healy ML, Funke T, Becker A, Schönbrunn E. Molecular basis for the glyphosate-insensitivity of the reaction of 5-enolpyruvylshikimate 3-phosphate synthase with shikimate. FEBS Lett 2005; 579:5773-80. [PMID: 16225867 DOI: 10.1016/j.febslet.2005.09.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 11/21/2022]
Abstract
The shikimate pathway enzyme 5-enolpyruvyl shikimate-3-phosphate synthase (EPSP synthase) has received attention in the past because it is the target of the broad-spectrum herbicide glyphosate. The natural substrate of EPSP synthase is shikimate-3-phosphate. However, this enzyme can also utilize shikimate as substrate. Remarkably, this reaction is insensitive to inhibition by glyphosate. Crystallographic analysis of EPSP synthase from Escherichia coli, in complex with shikimate/glyphosate at 1.5 Angstroms resolution, revealed that binding of shikimate induces changes around the backbone of the active site, which in turn impact the efficient binding of glyphosate. The implications from these findings with respect to the design of novel glyphosate-insensitive EPSP synthase enzymes are discussed.
Collapse
Affiliation(s)
- Melanie A Priestman
- Department of Medicinal Chemistry, University of Kansas, 4040a Malott Hall, Lawrence, 66045, USA
| | | | | | | | | |
Collapse
|
38
|
Ettema TJG, de Vos WM, van der Oost J. Discovering novel biology by in silico archaeology. Nat Rev Microbiol 2005; 3:859-69. [PMID: 16175172 DOI: 10.1038/nrmicro1268] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are prokaryotes that evolved in parallel with bacteria. Since the discovery of the distinct status of the Archaea, extensive physiological and biochemical research has been conducted to elucidate the molecular basis of their remarkable lifestyle and their unique biology. Here, we discuss how in-depth comparative genomics has been used to improve the annotation of archaeal genomes. Combined with experimental verification, bioinformatic analysis contributes to the ongoing discovery of novel metabolic conversions and control mechanisms, and as such to a better understanding of the intriguing biology of the Archaea.
Collapse
Affiliation(s)
- Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, 6703 CT Wageningen, The Netherlands
| | | | | |
Collapse
|
39
|
Tsoka S, Simon D, Ouzounis CA. Automated metabolic reconstruction for Methanococcus jannaschii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:223-9. [PMID: 15810431 PMCID: PMC2685575 DOI: 10.1155/2004/324925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present the computational prediction and synthesis of the metabolic pathways in Methanococcus jannaschii from its genomic sequence using the PathoLogic software. Metabolic reconstruction is based on a reference knowledge base of metabolic pathways and is performed with minimal manual intervention. We predict the existence of 609 metabolic reactions that are assembled in 113 metabolic pathways and an additional 17 super-pathways consisting of one or more component pathways. These assignments represent significantly improved enzyme and pathway predictions compared with previous metabolic reconstructions, and some key metabolic reactions, previously missing, have been identified. Our results, in the form of enzymatic assignments and metabolic pathway predictions, form a database (MJCyc) that is accessible over the World Wide Web for further dissemination among members of the scientific community.
Collapse
Affiliation(s)
- Sophia Tsoka
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK.
| | | | | |
Collapse
|
40
|
Soderberg T. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:347-52. [PMID: 15876568 PMCID: PMC2685555 DOI: 10.1155/2005/314760] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP), the ribulose monophosphate (RuMP) pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium) produce ribose-5-phosphate via the nonoxidative PPP (NOPPP), whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1) lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP), the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P) among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii) probably does not synthesize aromatic amino acids at all.
Collapse
Affiliation(s)
- Tim Soderberg
- Division of Science and Mathematics, University of Minnesota, Morris, 600 E. 4th Street, Morris, MN 56267, USA.
| |
Collapse
|
41
|
Priestman MA, Healy ML, Becker A, Alberg DG, Bartlett PA, Lushington GH, Schönbrunn E. Interaction of Phosphonate Analogues of the Tetrahedral Reaction Intermediate with 5-Enolpyruvylshikimate-3-phosphate Synthase in Atomic Detail†,‡. Biochemistry 2005; 44:3241-8. [PMID: 15736934 DOI: 10.1021/bi048198d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway and is the target of the broad-spectrum herbicide glyphosate. Since the functionality of the shikimate pathway is vital not only for plants but also for microorganisms, EPSPS is considered a prospective target for the development of novel antibiotics. We have kinetically analyzed and determined the crystal structures of Escherichia coli EPSPS inhibited by (R)- and (S)-configured phosphonate analogues of the tetrahedral reaction intermediate. Both diastereomers are competitive inhibitors with respect to the substrates of the EPSPS reaction, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). Remarkably, the (S)-phosphonate (K(iS3P) = 750 nM), whose configuration corresponds to that of the genuine tetrahedral intermediate, is a much weaker inhibitor than the (R)-phosphonate analogue (K(iS3P) = 16 nM). The crystal structures of EPSPS liganded with the (S)- and (R)-phosphonates, at 1.5 and 1.9 A resolution, respectively, revealed that binding of the (R)-phosphonate induces conformational changes of the strictly conserved residues Arg124 and Glu341 within the active site. This appears to give rise to substantial structural alterations in the amino-terminal globular domain of the enzyme. By contrast, binding of the (S)-phosphonate renders the enzyme structure unchanged. Thus, EPSPS may facilitate the tight binding of structurally diverse ligands through conformational flexibility. Molecular docking calculations did not explain why the (R)-phosphonate is the better inhibitor. Therefore, we propose that the structural events during the open-closed transition of EPSPS are altered as a result of inhibitor action.
Collapse
Affiliation(s)
- Melanie A Priestman
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Priestman MA, Funke T, Singh IM, Crupper SS, Schönbrunn E. 5-Enolpyruvylshikimate-3-phosphate synthase from Staphylococcus aureus is insensitive to glyphosate. FEBS Lett 2005; 579:728-32. [PMID: 15670836 DOI: 10.1016/j.febslet.2004.12.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 11/18/2022]
Abstract
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway, and is the target of the broad-spectrum herbicide glyphosate. Kinetic analysis of the cloned EPSPS from Staphylococcus aureus revealed that this enzyme exerts a high tolerance to glyphosate, while maintaining a high affinity for its substrate phosphoenolpyruvate. Enzymatic activity is markedly influenced by monovalent cations such as potassium or ammonium, which is due to an increase in catalytic turnover. However, insensitivity to glyphosate appears to be independent from the presence of cations. Therefore, we propose that the Staphylococcus aureus EPSPS should be classified as a class II EPSPS. This research illustrates a critical mechanism of glyphosate resistance naturally occurring in certain pathogenic bacteria.
Collapse
Affiliation(s)
- Melanie A Priestman
- Department of Medicinal Chemistry, University of Kansas, 4040a Malott Hall, Lawrence, KS 66049, USA
| | | | | | | | | |
Collapse
|
43
|
Korbel JO, Jensen LJ, von Mering C, Bork P. Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat Biotechnol 2005; 22:911-7. [PMID: 15229555 DOI: 10.1038/nbt988] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several widely used methods for predicting functional associations between proteins are based on the systematic analysis of genomic context. Efforts are ongoing to improve these methods and to search for novel aspects in genomes that could be exploited for function prediction. Here, we use gene expression data to demonstrate two functional implications of genome organization: first, chromosomal proximity indicates gene coregulation in prokaryotes independent of relative gene orientation; and second, adjacent bidirectionally transcribed genes (that is,'divergently' organized coding regions) with conserved gene orientation are strongly coregulated. We further demonstrate that such bidirectionally transcribed gene pairs are functionally associated and derive from this a novel genomic context method that reliably predicts links between >2,500 pairs of genes in approximately 100 species. Around 650 of these functional associations are supported by other genomic context methods. In most instances, one gene encodes a transcriptional regulator, and the other a nonregulatory protein. In-depth analysis in Escherichia coli shows that the vast majority of these regulators both control transcription of the divergently transcribed target gene/operon and auto-regulate their own biosynthesis. The method thus enables the prediction of target processes and regulatory features for several hundred transcriptional regulators.
Collapse
Affiliation(s)
- Jan O Korbel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
44
|
Andreassi JL, Leyh TS. Molecular functions of conserved aspects of the GHMP kinase family. Biochemistry 2005; 43:14594-601. [PMID: 15544330 DOI: 10.1021/bi048963o] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sequences and three-dimensional structures of the galactokinase, homoserine kinase, mevalonate kinase, and phosphomevalonate kinase (GHMP) family were compared to identify highly conserved surface residues. The functions of these solvent-accessible residues were assessed by determining the effects of their substitution, via mutagenesis, on the initial-rate parameters of a representative member of the GHMP kinase family, phosphomevalonate kinase from Streptococcus pneumoniae. What emerges from this study is a profile of the conserved surface-linked functions of the family. Certain substitutions produce highly selective effects on the steady-state affinity of a particular substrate, while one residue, Asp150, appears to be a pure k(cat) effector. Substitutions elsewhere affect multiple initial-rate parameters with varying, and sometimes compensatory, patterns. An alpha-helix that repositions during catalysis was substituted along its length to assess how its different segments contribute to catalysis-the substrate-proximal edge of the helix affects ATP recognition and k(cat), while the distal edge affects recognition of both substrates without affecting turnover. GHMP kinase mutations at the conserved surface residues corresponding to Ser291 and Ala293 in phosphomevalonate kinase are linked to mevalonic acid deficiency, which can lead to early fatality, and galactokinase deficiency, which causes cataracts. Our results suggest that the molecular basis for this particular galactokinase deficiency is an increase in the K(m) for galactose.
Collapse
Affiliation(s)
- John L Andreassi
- The Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1926, USA
| | | |
Collapse
|
45
|
Dhaliwal B, Nichols CE, Ren J, Lockyer M, Charles I, Hawkins AR, Stammers DK. Crystallographic studies of shikimate binding and induced conformational changes in Mycobacterium tuberculosis shikimate kinase. FEBS Lett 2004; 574:49-54. [PMID: 15358538 DOI: 10.1016/j.febslet.2004.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/07/2004] [Accepted: 08/04/2004] [Indexed: 11/19/2022]
Abstract
The X-ray crystal structure of Mycobacterium tuberculosis shikimate kinase (SK) with bound shikimate and adenosine diphosphate (ADP) has been determined to a resolution of 2.15 A. The binding of shikimate in a shikimate kinase crystal structure has not previously been reported. The substrate binds in a pocket lined with hydrophobic residues and interacts with several highly conserved charged residues including Asp34, Arg58, Glu61 and Arg136 which project into the cavity. Comparisons of our ternary SK-ADP-shikimate complex with an earlier binary SK-ADP complex show that conformational changes occur on shikimate binding with the substrate-binding domain rotating by 10 degrees. Detailed knowledge of shikimate binding is an important step in the design of inhibitors of SK, which have potential as novel anti-tuberculosis agents.
Collapse
Affiliation(s)
- Balvinder Dhaliwal
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
Affiliation(s)
- E L Hendrickson
- University of Washington, Dept. of Microbiology, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Galperin MY, Koonin EV. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res 2004; 32:5452-63. [PMID: 15479782 PMCID: PMC524295 DOI: 10.1093/nar/gkh885] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparative genomics shows that a substantial fraction of the genes in sequenced genomes encodes 'conserved hypothetical' proteins, i.e. those that are found in organisms from several phylogenetic lineages but have not been functionally characterized. Here, we briefly discuss recent progress in functional characterization of prokaryotic 'conserved hypothetical' proteins and the possible criteria for prioritizing targets for experimental study. Based on these criteria, the chief one being wide phyletic spread, we offer two 'top 10' lists of highly attractive targets. The first list consists of proteins for which biochemical activity could be predicted with reasonable confidence but the biological function was predicted only in general terms, if at all ('known unknowns'). The second list includes proteins for which there is no prediction of biochemical activity, even if, for some, general biological clues exist ('unknown unknowns'). The experimental characterization of these and other 'conserved hypothetical' proteins is expected to reveal new, crucial aspects of microbial biology and could also lead to better functional prediction for medically relevant human homologs.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
48
|
Porat I, Waters BW, Teng Q, Whitman WB. Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis. J Bacteriol 2004; 186:4940-50. [PMID: 15262931 PMCID: PMC451642 DOI: 10.1128/jb.186.15.4940-4950.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon. Aromatic amino acids (AroAAs) are biosynthesized in this autotroph either by the de novo pathway, with chorismate as an intermediate, or by the incorporation of exogenous aryl acids via indolepyruvate oxidoreductase (IOR). In order to evaluate the roles of these pathways, the gene that encodes the third step in the de novo pathway, 3-dehydroquinate dehydratase (DHQ), was deleted. This mutant required all three AroAAs for growth, and no DHQ activity was detectible in cell extracts, compared to 6.0 +/- 0.2 mU mg(-1) in the wild-type extract. The growth requirement for the AroAAs could be fulfilled by the corresponding aryl acids phenylacetate, indoleacetate, and p-hydroxyphenylacetate. The specific incorporation of phenylacetate into phenylalanine by the IOR pathway was demonstrated in vivo by labeling with [1-(13)C]phenylacetate. M. maripaludis has two IOR homologs. A deletion mutant for one of these homologs contained 76, 74, and 42% lower activity for phenylpyruvate, p-hydoxyphenylpyruvate, and indolepyruvate oxidation, respectively, than the wild type. Growth of this mutant in minimal medium was inhibited by the aryl acids, but the AroAAs partially restored growth. Genetic complementation of the IOR mutant also restored much of the wild-type phenotype. Thus, aryl acids appear to regulate the expression or activity of the de novo pathway. The aryl acids did not significantly inhibit the activity of the biosynthetic enzymes chorismate mutase, prephenate dehydratase, and prephenate dehydrogenase in cell extracts, so the inhibition of growth was probably not due to an effect on these enzymes.
Collapse
Affiliation(s)
- Iris Porat
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | | | | | | |
Collapse
|
49
|
McConkey GA, Pinney JW, Westhead DR, Plueckhahn K, Fitzpatrick TB, Macheroux P, Kappes B. Annotating the Plasmodium genome and the enigma of the shikimate pathway. Trends Parasitol 2004; 20:60-5. [PMID: 14747018 DOI: 10.1016/j.pt.2003.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The completion of the Plasmodium falciparum genome sequence heralds a new era in the effort to identify all the parasite's genes along with their cellular functions. A combination of bioinformatics and experimental proof will facilitate this process. Many enzymes in metabolic processes have been identified, but several examples exist of incomplete pathways, such as the shikimate pathway. This review uses the example of the shikimate pathway to examine the application of bioinformatics to lead experimental design in post-genomic biology.
Collapse
Affiliation(s)
- Glenn A McConkey
- Faculty of Biological Sciences, University of Leeds, Clarendon Way, LS2 9JT, Leeds, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Singh SK, Yang K, Karthikeyan S, Huynh T, Zhang X, Phillips MA, Zhang H. The thrH gene product of Pseudomonas aeruginosa is a dual activity enzyme with a novel phosphoserine:homoserine phosphotransferase activity. J Biol Chem 2003; 279:13166-73. [PMID: 14699121 DOI: 10.1074/jbc.m311393200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thrH gene product of Pseudomonas aeruginosa has been shown to complement both homoserine kinase (thrB gene product) and phosphoserine phosphatase (serB gene product) activities in vivo. Sequence comparison has revealed that ThrH is related to phosphoserine phosphatases (PSP, EC 3.1.3.3) and belongs to the l-2-haloacid dehalogenase-like protein superfamily. We have solved the crystal structures of ThrH in the apoform and in complex with a bound product phosphate. The structure confirms an overall fold similar to that of PSP. Most of the catalytic residues of PSP are also conserved in ThrH, suggesting that similar catalytic mechanisms are used by both enzymes. Spectrophotometry-based in vitro assays show that ThrH is indeed a phosphoserine phosphatase with a K(m) of 0.207 mm and k(cat) of 13.4 min(-1), comparable with those of other PSPs. More interestingly, using high pressure liquid chromatography-based assays, we have demonstrated that ThrH is able to further transfer the phosphoryl group to homoserine using phosphoserine as the phosphoryl group donor, indicating that ThrH has a novel phosphoserine:homoserine phosphotransferase activity.
Collapse
Affiliation(s)
- S Kumar Singh
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|