1
|
Misra CS, Pandey N, Appukuttan D, Rath D. Effective gene silencing using type I-E CRISPR system in the multiploid, radiation-resistant bacterium Deinococcus radiodurans. Microbiol Spectr 2023; 11:e0520422. [PMID: 37671884 PMCID: PMC10581213 DOI: 10.1128/spectrum.05204-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/09/2023] [Indexed: 09/07/2023] Open
Abstract
The extremely radiation-resistant bacterium, Deinococcus radiodurans, is a microbe of importance, both, for studying stress tolerance mechanisms and as a chassis for industrial biotechnology. However, the molecular tools available for use in this organism continue to be limiting, with its multiploid genome presenting an additional challenge. In view of this, the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas tools provide a large repertoire of applications for gene manipulation. We show the utility of the type I-E Cascade system for knocking down gene expression in this organism. A single-vector system was designed for the expression of the Cascade components as well as the crRNA. The type I-E Cascade system was better tolerated than the type II-A dCas9 system in D. radiodurans. An assayable acid phosphatase gene, phoN integrated into the genome of this organism could be knocked down to 10% of its activity using the Cascade system. Cascade-based knockdown of ssb, a gene important for radiation resistance resulted in poor recovery post-irradiation. Targeting the Radiation and Desiccation Response Motif (RDRM), upstream of the ssb, prevented de-repression of its expression upon radiation exposure. In addition to this, multi-locus targeting was demonstrated on the deinococcal genome, by knocking down both phoN and ssb expression simultaneously. The programmable CRISPR interference tool developed in this study will facilitate the study of essential genes, hypothetical genes, and cis-elements involved in radiation response as well as enable metabolic engineering in this organism. Further, the tool can be extended for implementing high-throughput approaches in such studies. IMPORTANCE Deinococcus radiodurans is a microbe that exhibits a very high degree of radiation resistance. In addition, it is also identified as an organism of industrial importance. We report the development of a gene-knockdown system in this organism by engineering a type I-E clustered regularly interspaced short palindromic repeat (CRISPR)-Cascade system. We used this system to silence an assayable acid phosphatase gene, phoN to 10% of its activity. The study further shows the application of the Cascade system to target an essential gene ssb, that caused poor recovery from radiation. We demonstrate the utility of CRISPR-Cascade to study the role of a regulatory cis-element in radiation response as well as for multi-gene silencing. This easy-to-implement CRISPR interference system would provide an effective tool for better understanding of complex phenomena such as radiation response in D. radiodurans and may also enhance the potential of this microbe for industrial application.
Collapse
Affiliation(s)
- Chitra S. Misra
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Neha Pandey
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Life Sciences, Mumbai University, Mumbai, Maharashtra, India
| | - Deepti Appukuttan
- Chemical Engineering Department, IIT Bombay, Mumbai, Maharashtra, India
| | - Devashish Rath
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Brumwell SL, Van Belois KD, Nucifora DP, Karas BJ. SLICER: A Seamless Gene Deletion Method for Deinococcus radiodurans. BIODESIGN RESEARCH 2023; 5:0009. [PMID: 37849465 PMCID: PMC10085245 DOI: 10.34133/bdr.0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/03/2023] [Indexed: 10/19/2023] Open
Abstract
Deinococcus radiodurans' high resistance to various stressors combined with its ability to utilize sustainable carbon sources makes it an attractive bacterial chassis for synthetic biology and industrial bioproduction. However, to fully harness the capabilities of this microbe, further strain engineering and tool development are required. Methods for creating seamless genome modifications are an essential part of the microbial genetic toolkit to enable strain engineering. Here, we report the development of the SLICER method, which can be used to create seamless gene deletions in D. radiodurans. This process involves (a) integration of a seamless deletion cassette replacing a target gene, (b) introduction of the pSLICER plasmid to mediate cassette excision by I-SceI endonuclease cleavage and homologous recombination, and (c) curing of the helper plasmid. We demonstrate the utility of SLICER for creating multiple gene deletions in D. radiodurans by sequentially targeting 5 putative restriction-modification system genes, recycling the same selective and screening markers for each subsequent deletion. While we observed no significant increase in transformation efficiency for most of the knockout strains, we demonstrated SLICER as a promising method to create a fully restriction-minus strain to expand the synthetic biology applications of D. radiodurans, including its potential as an in vivo DNA assembly platform.
Collapse
Affiliation(s)
- Stephanie L. Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | | | - Daniel P. Nucifora
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
3
|
Helalat SH, Jers C, Bebahani M, Mohabatkar H, Mijakovic I. Metabolic engineering of Deinococcus radiodurans for pinene production from glycerol. Microb Cell Fact 2021; 20:187. [PMID: 34565367 PMCID: PMC8474958 DOI: 10.1186/s12934-021-01674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The objective of this work was to engineer Deinococcus radiodurans R1 as a microbial cell factory for the production of pinene, a monoterpene molecule prominently used for the production of fragrances, pharmaceutical products, and jet engine biofuels. Our objective was to produce pinene from glycerol, an abundant by-product of various industries. RESULTS To enable pinene production in D. radiodurans, we expressed the pinene synthase from Abies grandis, the geranyl pyrophosphate (GPP) synthase from Escherichia coli, and overexpressed the native 1-deoxy-D-xylulose 5-phosphate synthase. Further, we disrupted the deinoxanthin pathway competing for the substrate GPP by either inactivating the gene dr0862, encoding phytoene synthase, or substituting the native GPP synthase with that of E. coli. These manipulations resulted in a D. radiodurans strain capable of producing 3.2 ± 0.2 mg/L pinene in a minimal medium supplemented with glycerol, with a yield of 0.13 ± 0.04 mg/g glycerol in shake flask cultures. Additionally, our results indicated a higher tolerance of D. radiodurans towards pinene as compared to E. coli. CONCLUSIONS In this study, we successfully engineered the extremophile bacterium D. radiodurans to produce pinene. This is the first study demonstrating the use of D. radiodurans as a cell factory for the production of terpenoid molecules. Besides, its high resistance to pinene makes D. radiodurans a suitable host for further engineering efforts to increase pinene titer as well as a candidate for the production of the other terpenoid molecules.
Collapse
Affiliation(s)
- Seyed Hossein Helalat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mandana Bebahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
4
|
Boulant E, Cambon E, Vergalli J, Bernard R, Neulat-Ripoll F, Nolent F, Gorgé O, Girleanu M, Favier AL, Leonetti JP, Bolla JM. Tolerance engineering in Deinococcus geothermalis by heterologous efflux pumps. Sci Rep 2021; 11:4280. [PMID: 33608597 PMCID: PMC7896070 DOI: 10.1038/s41598-021-83339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/28/2021] [Indexed: 11/21/2022] Open
Abstract
Producing industrially significant compounds with more environmentally friendly represents a challenging task. The large-scale production of an exogenous molecule in a host microfactory can quickly cause toxic effects, forcing the cell to inhibit production to survive. The key point to counter these toxic effects is to promote a gain of tolerance in the host, for instance, by inducing a constant flux of the neo-synthetized compound out of the producing cells. Efflux pumps are membrane proteins that constitute the most powerful mechanism to release molecules out of cells. We propose here a new biological model, Deinococcus geothermalis, organism known for its ability to survive hostile environment; with the aim of coupling the promising industrial potential of this species with that of heterologous efflux pumps to promote engineering tolerance. In this study, clones of D. geothermalis containing various genes encoding chromosomal heterologous efflux pumps were generated. Resistant recombinants were selected using antibiotic susceptibility tests to screen promising candidates. We then developed a method to determine the efflux efficiency of the best candidate, which contains the gene encoding the MdfA of Salmonella enterica serovar Choleraesuis. We observe 1.6 times more compound in the external medium of the hit recombinant than that of the WT at early incubation time. The data presented here will contribute to better understanding of the parameters required for efficient production in D. geothermalis.
Collapse
Affiliation(s)
- Erika Boulant
- Aix Marseille Univ, INSERM, SSA, IRBA, MCT, Marseille, France
- Deinove, Cap Sigma/ZAC Euromédecine II, Grabels, France
| | | | - Julia Vergalli
- Aix Marseille Univ, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Rémi Bernard
- Deinove, Cap Sigma/ZAC Euromédecine II, Grabels, France
- Vilmorin SA, Centre de Recherche de La Costière, Ledenon, France
| | - Fabienne Neulat-Ripoll
- Institut de Recherche Biomédicale des Armées, Département Microbiologie et Maladies Infectieuses, Unité Bactériologie, Brétigny-sur-Orge, France
| | - Flora Nolent
- Institut de Recherche Biomédicale des Armées, Département Microbiologie et Maladies Infectieuses, Unité Bactériologie, Brétigny-sur-Orge, France
| | - Olivier Gorgé
- Institut de Recherche Biomédicale des Armées, Département Microbiologie et Maladies Infectieuses, Unité Bactériologie, Brétigny-sur-Orge, France
| | - Maria Girleanu
- Institut de Recherche Biomédicale des Armées, Département des Plateformes et Recherche Technologique, Unité Imagerie, Brétigny-sur-Orge, France
| | - Anne-Laure Favier
- Institut de Recherche Biomédicale des Armées, Département des Plateformes et Recherche Technologique, Unité Imagerie, Brétigny-sur-Orge, France
| | - Jean-Paul Leonetti
- Deinove, Cap Sigma/ZAC Euromédecine II, Grabels, France
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004-CNRS/UM, Montpellier, France
| | | |
Collapse
|
5
|
Joshi S, Ujaoney AK, Ghosh P, Deobagkar DD, Basu B. N6-methyladenine and epigenetic immunity of Deinococcus radiodurans. Res Microbiol 2020; 172:103789. [PMID: 33188877 DOI: 10.1016/j.resmic.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
DNA methylation is ubiquitously found in all three domains of life. This epigenetic modification on adenine or cytosine residues serves to regulate gene expression or to defend against invading DNA in bacteria. Here, we report the significance of N6-methyladenine (6mA) to epigenetic immunity in Deinococcus radiodurans. Putative protein encoded by DR_2267 ORF (Dam2DR) contributed 35% of genomic 6mA in D. radiodurans but did not influence gene expression or radiation resistance. Dam2DR was characterized to be a functional S-adenosyl methionine (SAM)-dependent N6-adenine DNA methyltransferase (MTase) but with no endonuclease activity. Adenine methylation from Dam2DR or Dam1DR (N6-adenine MTase encoded by DR_0643) improved DNA uptake during natural transformation. To the contrary, methylation from Escherichia coli N6-adenine MTase (DamEC that methylates adenine in GATC sequence) on donor plasmid drastically reduced DNA uptake in D. radiodurans, even in presence of Dam2DR or Dam1DR methylated adenines. With these results, we conclude that self-type N6-adenine methylation on donor DNA had a protective effect in absence of additional foreign methylation, a separate methylation-dependent Restriction Modification (R-M) system effectively identifies and limits uptake of G6mATC sequence containing donor DNA. This is the first report demonstrating presence of epigenetic immunity in D. radiodurans.
Collapse
Affiliation(s)
- Suraj Joshi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Molecular Biology Research Laboratory, Department of Zoology, SPPU, Pune 411007, India; Bioinformatics Centre, SPPU, Pune 411007, India.
| | - Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Payel Ghosh
- Bioinformatics Centre, SPPU, Pune 411007, India.
| | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, SPPU, Pune 411007, India.
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
6
|
Kota S, Chaudhary R, Mishra S, Misra HS. Topoisomerase IB interacts with genome segregation proteins and is involved in multipartite genome maintenance in Deinococcus radiodurans. Microbiol Res 2020; 242:126609. [PMID: 33059113 DOI: 10.1016/j.micres.2020.126609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Deinococcus radiodurans, an extremophile, resistant to many abiotic stresses including ionizing radiation, has 2 type I topoisomerases (drTopo IA and drTopo IB) and one type II topoisomerase (DNA gyrase). The role of drTopo IB in guanine quadruplex DNA (G4 DNA) metabolism was demonstrated earlier in vitro. Here, we report that D. radiodurans cells lacking drTopo IB (ΔtopoIB) show sensitivity to G4 DNA binding drug (NMM) under normal growth conditions. The activity of G4 motif containing promoters like mutL and recQ was reduced in the presence of NMM in mutant cells. In mutant, the percentage of anucleate cells was more while the copy number of genome elements were less as compared to wild type. Protein-protein interaction studies showed that drTopo IB interacts with genome segregation and DNA replication initiation (DnaA) proteins. The typical patterns of cellular localization of GFP-PprA were affected in the mutant cells. Microscopic examination of D. radiodurans cells expressing drTopo IB-RFP showed its localization on nucleoid forming a streak parallel to the old division septum and perpendicular to newly formed septum. These results together suggest the role of drTopo IB in genome maintenance in this bacterium.
Collapse
Affiliation(s)
- Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
7
|
Ithurbide S, Coste G, Lisboa J, Eugénie N, Bentchikou E, Bouthier de la Tour C, Liger D, Confalonieri F, Sommer S, Quevillon-Cheruel S, Servant P. Natural Transformation in Deinococcus radiodurans: A Genetic Analysis Reveals the Major Roles of DprA, DdrB, RecA, RecF, and RecO Proteins. Front Microbiol 2020; 11:1253. [PMID: 32625182 PMCID: PMC7314969 DOI: 10.3389/fmicb.2020.01253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/18/2020] [Indexed: 11/14/2022] Open
Abstract
Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The Deinococcus radiodurans bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of D. radiodurans players involved in different steps of natural transformation. First, we identified the factors (PilQ, PilD, type IV pilins, PilB, PilT, ComEC-ComEA, and ComF) involved in DNA uptake and DNA translocation across the external and cytoplasmic membranes and showed that the DNA-uptake machinery is similar to that described in the Gram negative bacterium Vibrio cholerae. Then, we studied the involvement of recombination and DNA repair proteins, RecA, RecF, RecO, DprA, and DdrB into the DNA processing steps of D. radiodurans transformation by plasmid and genomic DNA. The transformation frequency of the cells devoid of DprA, a highly conserved protein among competent species, strongly decreased but was not completely abolished whereas it was completely abolished in ΔdprA ΔrecF, ΔdprA ΔrecO, and ΔdprA ΔddrB double mutants. We propose that RecF and RecO, belonging to the recombination mediator complex, and DdrB, a specific deinococcal DNA binding protein, can replace a function played by DprA, or alternatively, act at a different step of recombination with DprA. We also demonstrated that a ΔdprA mutant is as resistant as wild type to various doses of γ-irradiation, suggesting that DprA, and potentially transformation, do not play a major role in D. radiodurans radioresistance.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Geneviève Coste
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Johnny Lisboa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nicolas Eugénie
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Esma Bentchikou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Claire Bouthier de la Tour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dominique Liger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Suzanne Sommer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
8
|
Discovery and Characterization of Native Deinococcus radiodurans Promoters for Tunable Gene Expression. Appl Environ Microbiol 2019; 85:AEM.01356-19. [PMID: 31471304 DOI: 10.1128/aem.01356-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023] Open
Abstract
The potential utilization of extremophiles as a robust chassis for metabolic engineering applications has prompted interest in the use of Deinococcus radiodurans for bioremediation efforts, but current applications are limited by the lack of availability of genetic tools, such as promoters. In this study, we used a combined computational and experimental approach to identify and screen 30 predicted promoters for expression in D. radiodurans using a fluorescent reporter assay. The top eight candidates were further characterized, compared to currently available promoters, and optimized for engineering through minimization for use in D. radiodurans Of these top eight, two promoter regions, PDR_1261 and PrpmB, were stronger and more consistent than the most widely used promoter sequence in D. radiodurans, PgroES Furthermore, half of the top eight promoters could be minimized by at least 20% (to obtain final sequences that are approximately 24 to 177 bp), and several of the putative promoters either showed activity in Escherichia coli or were D. radiodurans specific, broadening the use of the promoters for various applications. Overall, this work introduces a suite of novel, well-characterized promoters for protein production and metabolic engineering in D. radiodurans IMPORTANCE The tolerance of the extremophile, Deinococcus radiodurans, to numerous oxidative stresses makes it ideal for bioremediation applications, but many of the tools necessary for metabolic engineering are lacking in this organism compared to model bacteria. Although native and engineered promoters have been used to drive gene expression for protein production in D. radiodurans, very few have been well characterized. Informed by bioinformatics, this study expands the repertoire of well-characterized promoters for D. radiodurans via thorough characterization of eight putative promoters with various strengths. These results will help facilitate tunable gene expression, since these promoters demonstrate strong and consistent performance compared to the current standard, PgroES This study also provides a methodology for high-throughput promoter identification and characterization using fluorescence in D. radiodurans The promoters identified in this study will facilitate metabolic engineering of D. radiodurans and enable its use in biotechnological applications ranging from bioremediation to synthesis of commodity chemicals.
Collapse
|
9
|
Guanine Quadruplex DNA Regulates Gamma Radiation Response of Genome Functions in the Radioresistant Bacterium Deinococcus radiodurans. J Bacteriol 2019; 201:JB.00154-19. [PMID: 31235513 DOI: 10.1128/jb.00154-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Guanine quadruplex (G4) DNA/RNA are secondary structures that regulate the various cellular processes in both eukaryotes and bacteria. Deinococcus radiodurans, a Gram-positive bacterium known for its extraordinary radioresistance, shows a genomewide occurrence of putative G4 DNA-forming motifs in its GC-rich genome. N-Methyl mesoporphyrin (NMM), a G4 DNA structure-stabilizing drug, did not affect bacterial growth under normal conditions but inhibited the postirradiation recovery of gamma-irradiated cells. Transcriptome sequencing analysis of cells treated with both radiation and NMM showed repression of gamma radiation-responsive gene expression, which was observed in the absence of NMM. Notably, this effect of NMM on the expression of housekeeping genes involved in other cellular processes was not observed. Stabilization of G4 DNA structures mapped at the upstream of recA and in the encoding region of DR_2199 had negatively affected promoter activity in vivo, DNA synthesis in vitro and protein translation in Escherichia coli host. These results suggested that G4 DNA plays an important role in DNA damage response and in the regulation of expression of the DNA repair proteins required for radioresistance in D. radiodurans IMPORTANCE Deinococcus radiodurans can recover from extensive DNA damage caused by many genotoxic agents. It lacks LexA/RecA-mediated canonical SOS response. Therefore, the molecular mechanisms underlying the regulation of DNA damage response would be worth investigating in this bacterium. D. radiodurans genome is GC-rich and contains numerous islands of putative guanine quadruplex (G4) DNA structure-forming motifs. Here, we showed that in vivo stabilization of G4 DNA structures can impair DNA damage response processes in D. radiodurans Essential cellular processes such as transcription, DNA synthesis, and protein translation, which are also an integral part of the double-strand DNA break repair pathway, are affected by the arrest of G4 DNA structure dynamics. Thus, the role of DNA secondary structures in DNA damage response and radioresistance is demonstrated.
Collapse
|
10
|
DdrI, a cAMP Receptor Protein Family Member, Acts as a Major Regulator for Adaptation of Deinococcus radiodurans to Various Stresses. J Bacteriol 2018; 200:JB.00129-18. [PMID: 29686138 DOI: 10.1128/jb.00129-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
The DNA damage response ddrI gene encodes a transcription regulator belonging to the cAMP receptor protein (CRP) family. Cells devoid of the DdrI protein exhibit a pleiotropic phenotype, including growth defects and sensitivity to DNA-damaging agents and to oxidative stress. Here, we show that the absence of the DdrI protein also confers sensitivity to heat shock treatment, and several genes involved in heat shock response were shown to be upregulated in a DdrI-dependent manner. Interestingly, expression of the Escherichia coli CRP partially compensates for the absence of the DdrI protein. Microscopic observations of ΔddrI mutant cells revealed an increased proportion of two-tetrad and anucleated cells in the population compared to the wild-type strain, indicating that DdrI is crucial for the completion of cell division and/or chromosome segregation. We show that DdrI is also involved in the megaplasmid MP1 stability and in efficient plasmid transformation by facilitating the maintenance of the incoming plasmid in the cell. The in silico prediction of putative DdrI binding sites in the D. radiodurans genome suggests that hundreds of genes, belonging to several functional groups, may be regulated by DdrI. In addition, the DdrI protein absolutely requires cAMP for in vitro binding to specific target sequences, and it acts as a dimer. All these data underline the major role of DdrI in D. radiodurans physiology under normal and stress conditions by regulating, both directly and indirectly, a cohort of genes involved in various cellular processes, including central metabolism and specific responses to diverse harmful environments.IMPORTANCEDeinococcus radiodurans has been extensively studied to elucidate the molecular mechanisms responsible for its exceptional ability to withstand lethal effects of various DNA-damaging agents. A complex network, including efficient DNA repair, protein protection against oxidation, and diverse metabolic pathways, plays a crucial role for its radioresistance. The regulatory networks orchestrating these various pathways are still missing. Our data provide new insights into the crucial contribution of the transcription factor DdrI for the D. radiodurans ability to withstand harmful conditions, including UV radiation, mitomycin C treatment, heat shock, and oxidative stress. Finally, we highlight that DdrI is also required for accurate cell division, for maintenance of plasmid replicons, and for central metabolism processes responsible for the overall cell physiology.
Collapse
|
11
|
Zhang W, Zhu J, Zhu X, Song M, Zhang T, Xin F, Dong W, Ma J, Jiang M. Expression of global regulator IrrE for improved succinate production under high salt stress by Escherichia coli. BIORESOURCE TECHNOLOGY 2018; 254:151-156. [PMID: 29413916 DOI: 10.1016/j.biortech.2018.01.091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Poor high salt stress resistance remained as a main hurdle limiting the efficient bio-based succinic acid production. In this study, the metabolically engineered E. coli not only showed improvement of high salt stress tolerance through expression of a global regulator IrrE, but also could use seawater for succinic acid fermentation. The recombinant strain showed an increased 1.20-fold of cell growth rate and 1.24-fold of succinic acid production. Expression levels of genes related glucose uptake and succinic acid synthesis were up-regulated, and more glycerol and trehalose were accumulated. Moreover, no significant differences were observed in cell growth even when tap water was replaced by 60% artificial seawater. In the fermentation using Yellow Sea seawater, 24.5 g/L succinic acid was achieved with a yield of 0.88 g/g. This strategy set up a platform for improving abiotic stress tolerances and provide a possible approach for fermentation processes with low cost.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Junru Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xinggui Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Meng Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Ting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
12
|
Schmier BJ, Chen X, Wolin S, Shuman S. Deletion of the rnl gene encoding a nick-sealing RNA ligase sensitizes Deinococcus radiodurans to ionizing radiation. Nucleic Acids Res 2017; 45:3812-3821. [PMID: 28126918 PMCID: PMC5397189 DOI: 10.1093/nar/gkx038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/23/2017] [Indexed: 11/14/2022] Open
Abstract
Deinococcus radiodurans RNA ligase (DraRnl) seals 3΄-OH/5΄-PO4 nicks in duplex nucleic acids in which the 3΄-OH nick terminus consists of two or more ribonucleotides. DraRnl exemplifies a widely distributed Rnl5 family of nick-sealing RNA ligases, the physiological functions of which are uncharted. Here we show via gene knockout that whereas DraRnl is inessential for growth of D. radiodurans, its absence sensitizes the bacterium to killing by ionizing radiation (IR). DraRnl protein is present in exponentially growing and stationary phase cells, but is depleted during the early stages of recovery from 10 kGy of IR and subsequently replenished during the late phase of post-IR genome reassembly. Absence of DraRnl elicts a delay in reconstitution of the 10 kGy IR-shattered D. radiodurans replicons that correlates with the timing of DraRnl replenishment in wild-type cells. Complementation with a catalytically dead mutant highlights that nick sealing activity is important for the radioprotective function of DraRnl. Our findings suggest a scenario in which DraRnl acts at genomic nicks resulting from gap-filling by a ribonucleotide-incorporating repair polymerase.
Collapse
Affiliation(s)
- Brad J Schmier
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Xinguo Chen
- Cell Biology Department, Yale School of Medicine, New Haven, CT 06536, USA
| | - Sandra Wolin
- Cell Biology Department, Yale School of Medicine, New Haven, CT 06536, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
13
|
Anaganti N, Basu B, Mukhopadhyaya R, Apte SK. Proximity of Radiation Desiccation Response Motif to the core promoter is essential for basal repression as well as gamma radiation-induced gyrB gene expression in Deinococcus radiodurans. Gene 2017; 615:8-17. [DOI: 10.1016/j.gene.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/14/2017] [Accepted: 03/01/2017] [Indexed: 11/28/2022]
|
14
|
Agapov AA, Kulbachinskiy AV. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans. BIOCHEMISTRY (MOSCOW) 2016; 80:1201-16. [PMID: 26567564 DOI: 10.1134/s0006297915100016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.
Collapse
Affiliation(s)
- A A Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
15
|
Ithurbide S, Bentchikou E, Coste G, Bost B, Servant P, Sommer S. Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium. PLoS Genet 2015; 11:e1005636. [PMID: 26517555 PMCID: PMC4627823 DOI: 10.1371/journal.pgen.1005636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/08/2015] [Indexed: 11/18/2022] Open
Abstract
The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA) pathway, strongly reduces the frequency of RecA- (and RecO-) independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation. Deinococcus radiodurans is known for its exceptional ability to tolerate exposure to DNA damaging agents and, in particular, to very high doses of ionizing radiation. This exceptional radioresistance results from many features including efficient DNA double strand break repair. Here, we examine genome stability in D. radiodurans before and after exposure to ionizing radiation. Rearrangements between repeated sequences are a major source of genome instability and can be deleterious to the organism. Thus, we measured the frequency of recombination between direct repeats separated by intervening sequences of various lengths in the presence or absence of radiation-induced DNA double strand breaks. Strikingly, we showed that the frequency of deletions was as high in strains devoid of the RecA, RecF or RecO proteins as in wild type bacteria, suggesting a very efficient RecA-independent process able to generate genome rearrangements. Our results suggest that single strand annealing may play a major role in genome instability in the absence of homologous recombination.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Esma Bentchikou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Geneviève Coste
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Bruno Bost
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
16
|
G-quadruplex forming structural motifs in the genome of Deinococcus radiodurans and their regulatory roles in promoter functions. Appl Microbiol Biotechnol 2015. [PMID: 26201493 DOI: 10.1007/s00253-015-6808-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Deinococcus radiodurans displays compromised radioresistance in the presence of guanine quadruplex (G4)-binding drugs (G4 drugs). Genome-wide scanning showed islands of guanine runs (G-motif) in the upstream regions of coding sequences as well as in the structural regions of many genes, indicating a role for G4 DNA in the regulation of genome functions in this bacterium. G-motifs present upstream to some of the DNA damage-responsive genes like lexA, pprI, recF, recQ, mutL and radA were synthesized, and the formation of G4 DNA structures was probed in vitro. The G-motifs present at the 67th position upstream to recQ and at the 121st position upstream to mutL produced parallel and mixed G4 DNA structures, respectively. Expression of β-galactosidase under recQ and mutL promoters containing respective G-motifs was inhibited by G4 drugs under normal growth conditions in D. radiodurans. However, when such cells were exposed to γ radiation, mutL promoter activity was stimulated while recQ promoter activity was inhibited in the presence of G4 drugs. Deletion of the G-motif from the recQ promoter could relax it from G4 drug repression. D. radiodurans cells treated with G4 drug showed reduction in recQ expression and γ radiation resistance, indicating an involvement of G4 DNA in the radioresistance of this bacterium. These results suggest that G-motifs from D. radiodurans genome form different types of G4 DNA structures at least in vitro, and the recQ and mutL promoters seem to be differentially regulated at the levels of G4 DNA structures.
Collapse
|
17
|
Dulermo R, Onodera T, Coste G, Passot F, Dutertre M, Porteron M, Confalonieri F, Sommer S, Pasternak C. Identification of new genes contributing to the extreme radioresistance of Deinococcus radiodurans using a Tn5-based transposon mutant library. PLoS One 2015; 10:e0124358. [PMID: 25884619 PMCID: PMC4401554 DOI: 10.1371/journal.pone.0124358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 01/19/2023] Open
Abstract
Here, we have developed an extremely efficient in vivo Tn5-based mutagenesis procedure to construct a Deinococcus radiodurans insertion mutant library subsequently screened for sensitivity to genotoxic agents such as γ and UV radiations or mitomycin C. The genes inactivated in radiosensitive mutants belong to various functional categories, including DNA repair functions, stress responses, signal transduction, membrane transport, several metabolic pathways, and genes of unknown function. Interestingly, preliminary characterization of previously undescribed radiosensitive mutants suggests the contribution of cyclic di-AMP signaling in the recovery of D. radiodurans cells from genotoxic stresses, probably by modulating several pathways involved in the overall cell response. Our analyses also point out a new transcriptional regulator belonging to the GntR family, encoded by DR0265, and a predicted RNase belonging to the newly described Y family, both contributing to the extreme radioresistance of D. radiodurans. Altogether, this work has revealed new cell responses involved either directly or indirectly in repair of various cell damage and confirmed that D. radiodurans extreme radiation resistance is determined by a multiplicity of pathways acting as a complex network.
Collapse
Affiliation(s)
- Rémi Dulermo
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Takefumi Onodera
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Geneviève Coste
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Fanny Passot
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Murielle Dutertre
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Martine Porteron
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Fabrice Confalonieri
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Suzanne Sommer
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Cécile Pasternak
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
18
|
Devigne A, Ithurbide S, Bouthier de la Tour C, Passot F, Mathieu M, Sommer S, Servant P. DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium. Mol Microbiol 2015; 96:1069-84. [PMID: 25754115 DOI: 10.1111/mmi.12991] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 02/04/2023]
Abstract
Deinococcus radiodurans is known for its extreme radioresistance. Comparative genomics identified a radiation-desiccation response (RDR) regulon comprising genes that are highly induced after DNA damage and containing a conserved motif (RDRM) upstream of their coding region. We demonstrated that the RDRM sequence is involved in cis-regulation of the RDR gene ddrB in vivo. Using a transposon mutagenesis approach, we showed that, in addition to ddrO encoding a predicted RDR repressor and irrE encoding a positive regulator recently shown to cleave DdrO in Deinococcus deserti, two genes encoding α-keto-glutarate dehydrogenase subunits are involved in ddrB regulation. In wild-type cells, the DdrO cell concentration decreased transiently in an IrrE-dependent manner at early times after irradiation. Using a conditional gene inactivation system, we showed that DdrO depletion enhanced expression of three RDR proteins, consistent with the hypothesis that DdrO acts as a repressor of the RDR regulon. DdrO-depleted cells loose viability and showed morphological changes evocative of an apoptotic-like response, including membrane blebbing, defects in cell division and DNA fragmentation. We propose that DNA repair and apoptotic-like death might be two responses mediated by the same regulators, IrrE and DdrO, but differently activated depending on the persistence of IrrE-dependent DdrO cleavage.
Collapse
Affiliation(s)
- Alice Devigne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Solenne Ithurbide
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Claire Bouthier de la Tour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Fanny Passot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Martine Mathieu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| |
Collapse
|
19
|
Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. J Biotechnol 2014; 189:88-93. [DOI: 10.1016/j.jbiotec.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/20/2022]
|
20
|
Telang S, Patel P, Sarangdhar V, Donde S. Isolation and cloning of the endoglucanase gene from Bacillus pumilus and its expression in Deinococcus radiodurans. 3 Biotech 2014; 4:57-65. [PMID: 28324463 PMCID: PMC3909571 DOI: 10.1007/s13205-013-0127-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/21/2013] [Indexed: 12/01/2022] Open
Abstract
With the aim of engineering a strain of bacteria that could be used for bioremediation of cellulosic waste in radioactive environments, the gene for the secreted endoglucanase enzyme of Bacillus pumilis was decided to be cloned into the radiotolerant bacterium, Deinococcus radiodurans. The endoglucanase gene from B. pumilus was PCR amplified and cloned into Escherichiacoli DH5α using a pDrive vector. It was subsequently sub-cloned into E.coli–Deinococcus shuttle vector pRAD1 downstream of the Deinococcus heat-shock promoter, groESL, and the construct was inserted into D. radiodurans. Functional endoglucanase enzyme was expressed in both E.coli and D.radiodurans.
Collapse
Affiliation(s)
- Sachin Telang
- Department of Life Science and Biochemistry, Caius Research Laboratory, St. Xavier’s College, Mumbai, 400001 India
- Caius Research Laboratory, St. Xavier’s College, Mumbai, 400001 India
| | - Poonam Patel
- Caius Research Laboratory, St. Xavier’s College, Mumbai, 400001 India
| | | | - Sheela Donde
- Department of Life Science and Biochemistry, Caius Research Laboratory, St. Xavier’s College, Mumbai, 400001 India
- Caius Research Laboratory, St. Xavier’s College, Mumbai, 400001 India
- Present Address: Indian Institute of Science Education and Research (IISER), Sai Trinity Building, Sutarwadi Road, Pashan, Pune, 411021 India
| |
Collapse
|
21
|
DR1769, a protein with N-terminal beta propeller repeats and a low-complexity hydrophilic tail, plays a role in desiccation tolerance of Deinococcus radiodurans. J Bacteriol 2013; 195:3888-96. [PMID: 23794625 DOI: 10.1128/jb.00418-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Deinococcus radiodurans genome encodes five putative quinoproteins. Among these, the Δdr2518 and Δdr1769 mutants became sensitive to gamma radiation. DR2518 with beta propeller repeats in the C-terminal domain was characterized as a radiation-responsive serine/threonine protein kinase in this bacterium. DR1769 contains beta propeller repeats at the N terminus, while its C-terminal domain is a proline-rich disordered structure and constitutes a low-complexity hydrophilic region with aliphatic-proline dipeptide motifs. The Δdr1769 mutant showed nearly a 3-log cycle sensitivity to desiccation at 5% humidity compared to that of the wild type. Interestingly, the gamma radiation and mitomycin C (MMC) resistance in mutant cells also dropped by ∼1-log cycle at 10 kGy and ∼1.5-fold, respectively, compared to those in wild-type cells. But there was no effect of UV (254 nm) exposure up to 800 J · m(-2). These cells showed defective DNA double-strand break repair, and the average size of the nucleoid in desiccated wild-type and Δdr1769 cells was reduced by approximately 2-fold compared to that of respective controls. However, the nucleoid in wild-type cells returned to a size almost similar to that of the untreated control, which did not happen in mutant cells, at least up to 24 h postdesiccation. These results suggest that DR1769 plays an important role in desiccation and radiation resistance of D. radiodurans, possibly by protecting genome integrity under extreme conditions.
Collapse
|
22
|
Pasternak C, Dulermo R, Ton-Hoang B, Debuchy R, Siguier P, Coste G, Chandler M, Sommer S. ISDra2 transposition in Deinococcus radiodurans is downregulated by TnpB. Mol Microbiol 2013; 88:443-55. [PMID: 23461641 DOI: 10.1111/mmi.12194] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/30/2022]
Abstract
Transposable elements belonging to the recently identified IS200/IS605 family radically differ from classical insertion sequences in their transposition mechanism by strictly requiring single-stranded DNA substrates. This IS family includes elements encoding only the transposase (TnpA), and others, like ISDra2 from Deinococcus radiodurans, which contain a second gene, tnpB, dispensable for transposition and of unknown function to date. Here, we show that TnpB has an inhibitory effect on the excision and insertion steps of ISDra2 transposition. This inhibitory action of TnpB was maintained when ISDra2 transposition was induced by γ-irradiation of the host cells and required the integrity of its putative zinc finger motif. We also demonstrate the negative role of TnpB when ISDra2 transposition was monitored in a heterologous Escherichia coli host, indicating that TnpB-mediated inhibition does not involve Deinococcus-specific factors. TnpB therefore appears to play a regulatory role in ISDra2 transposition.
Collapse
Affiliation(s)
- Cécile Pasternak
- University Paris-Sud, Institut de Génétique et Microbiologie (Bât. 409), UMR 8621, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Norais C, Servant P, Bouthier-de-la-Tour C, Coureux PD, Ithurbide S, Vannier F, Guerin PP, Dulberger CL, Satyshur KA, Keck JL, Armengaud J, Cox MM, Sommer S. The Deinococcus radiodurans DR1245 protein, a DdrB partner homologous to YbjN proteins and reminiscent of type III secretion system chaperones. PLoS One 2013; 8:e56558. [PMID: 23441204 PMCID: PMC3575483 DOI: 10.1371/journal.pone.0056558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterium Deinococcus radiodurans exhibits an extreme resistance to ionizing radiation. A small subset of Deinococcus genus-specific genes were shown to be up-regulated upon exposure to ionizing radiation and to play a role in genome reconstitution. These genes include an SSB-like protein called DdrB. Here, we identified a novel protein encoded by the dr1245 gene as an interacting partner of DdrB. A strain devoid of the DR1245 protein is impaired in growth, exhibiting a generation time approximately threefold that of the wild type strain while radioresistance is not affected. We determined the three-dimensional structure of DR1245, revealing a relationship with type III secretion system chaperones and YbjN family proteins. Thus, DR1245 may display some chaperone activity towards DdrB and possibly other substrates.
Collapse
Affiliation(s)
- Cédric Norais
- Department of Biochemistry, University of Wisconsin College of Agriculture and Life Sciences, Madison, Wisconsin, United States of America
- Ecole polytechnique, Laboratoire de Biochimie, Centre national de la recherche scientifique, Palaiseau, France
| | - Pascale Servant
- Univ. Paris-Sud, Institut de Génétique et Microbiologie (Bât. 409), UMR8621, Orsay, France
- Centre national de la recherche scientifique, Orsay, France
| | - Claire Bouthier-de-la-Tour
- Univ. Paris-Sud, Institut de Génétique et Microbiologie (Bât. 409), UMR8621, Orsay, France
- Centre national de la recherche scientifique, Orsay, France
| | - Pierre-Damien Coureux
- Ecole polytechnique, Laboratoire de Biochimie, Centre national de la recherche scientifique, Palaiseau, France
| | - Solenne Ithurbide
- Univ. Paris-Sud, Institut de Génétique et Microbiologie (Bât. 409), UMR8621, Orsay, France
- Centre national de la recherche scientifique, Orsay, France
| | - Françoise Vannier
- Univ. Paris-Sud, Institut de Génétique et Microbiologie (Bât. 409), UMR8621, Orsay, France
- Centre national de la recherche scientifique, Orsay, France
| | - Philippe P. Guerin
- Commissariat à l’énergie atomique et aux énergies alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Charles L. Dulberger
- Department of Biochemistry, University of Wisconsin College of Agriculture and Life Sciences, Madison, Wisconsin, United States of America
| | - Kenneth A. Satyshur
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jean Armengaud
- Commissariat à l’énergie atomique et aux énergies alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin College of Agriculture and Life Sciences, Madison, Wisconsin, United States of America
| | - Suzanne Sommer
- Univ. Paris-Sud, Institut de Génétique et Microbiologie (Bât. 409), UMR8621, Orsay, France
- Centre national de la recherche scientifique, Orsay, France
- * E-mail:
| |
Collapse
|
24
|
The PprA protein is required for accurate cell division of γ-irradiated Deinococcus radiodurans bacteria. DNA Repair (Amst) 2013; 12:265-72. [PMID: 23403184 DOI: 10.1016/j.dnarep.2013.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/03/2013] [Accepted: 01/13/2013] [Indexed: 11/22/2022]
Abstract
Deinococcus radiodurans, one of the most radioresistant organisms known to date is able to reconstruct an intact genome from hundreds of DNA fragments. Here, we investigate the in vivo role of PprA, a radiation-induced Deinococcus specific protein. We report that DNA double strand break repair in cells devoid of PprA and exposed to 3800Gy γ-irradiation takes place efficiently with a delay of only 1h as compared to the wild type, whereas massive DNA synthesis begins 90min after irradiation as in the wild type, a phenotype insufficient to explain the severe radiosensitivity of the ΔpprA mutant. We show that the slow kinetics of reassembly of DNA fragments in a ΔpprA ΔrecA double mutant was the same as that observed in a ΔrecA single mutant demonstrating that PprA does not play a major role in DNA repair through RecA-independent pathways. Using a tagged PprA protein and immunofluorescence microscopy, we show that PprA is recruited onto the nucleoid after γ-irradiation before DNA double strand break repair completion, and then is found as a thread across the septum in dividing cells. Moreover, whereas untreated cells devoid of PprA displayed a wild type morphology, they showed a characteristic cell division abnormality after irradiation not found in other radiosensitive mutants committed to die, as DNA is present equally in the two daughter cells but not separated at the division septum. We propose that PprA may play a crucial role in the control of DNA segregation and/or cell division after DNA double strand break repair.
Collapse
|
25
|
Functional comparison of Deinococcus radiodurans Dps proteins suggests distinct in vivo roles. Biochem J 2012; 447:381-91. [PMID: 22857940 DOI: 10.1042/bj20120902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deinococcus radiodurans exhibits extreme resistance to DNA damage and is one of only few bacteria that encode two Dps (DNA protection during starvation) proteins. Dps-1 was shown previously to bind DNA with high affinity and to localize to the D. radiodurans nucleoid. A unique feature of Dps-2 is its predicted signal peptide. In the present paper, we report that Dps-2 assembly into a dodecamer requires the C-terminal extension and, whereas Dps-2 binds DNA with low affinity, it protects against degradation by reactive oxygen species. Consistent with a role for Dps-2 in oxidative stress responses, the Dps-2 promoter is up-regulated by oxidative stress, whereas the Dps-1 promoter is not. Although DAPI (4',6-diamidino-2-phenylindole) staining of Escherichia coli nucleoids shows that Dps-1 can compact genomic DNA, such nucleoid condensation is absent from cells expressing Dps-2. A fusion of EGFP (enhanced green fluorescent protein) to the Dps-2 signal peptide results in green fluorescence at the perimeter of D. radiodurans cells. The differential response of the Dps-1 and Dps-2 promoters to oxidative stress, the distinct cellular localization of the proteins and the differential ability of Dps-1 and Dps-2 to attenuate hydroxyl radical production suggest distinct functional roles; whereas Dps-1 may function in DNA metabolism, Dps-2 may protect against exogenously derived reactive oxygen species.
Collapse
|
26
|
Onodera T, Satoh K, Ohta T, Narumi I. Deinococcus radiodurans YgjD and YeaZ are involved in the repair of DNA cross-links. Extremophiles 2012; 17:171-9. [DOI: 10.1007/s00792-012-0506-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022]
|
27
|
Wang H, Wang F, Hua X, Ma T, Chen J, Xu X, Wang L, Tian B, Hua Y. Genetic and biochemical characteristics of the histone-like protein DR0199 in Deinococcus radiodurans. MICROBIOLOGY-SGM 2012; 158:936-943. [PMID: 22282513 DOI: 10.1099/mic.0.053702-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial histone-like proteins are important for nucleoid structure, cell growth, DNA replication, recombination and gene regulation. In this study, we focused on the role of DR0199 (the EbfC orthologue), a newly identified member of the nucleoid-associated protein family in Deinococcus radiodurans. The survival fraction of DR0199-null mutant decreased by tenfold after treatment with 50 mM H(2)O(2), nearly sixfold at a 10 kGy dose of gamma ray and nearly eightfold at a UV exposure of 1000 J m(-2) compared with wild-type cells. The results of fluorescence labelling assays indicated that DR0199 protein localized in the nucleoid area of cells. Electrophoretic mobility shift assays demonstrated that D. radiodurans DR0199 is a DNA-binding protein. Furthermore, DNA protection assays suggested that DR0199 shields DNA from hydroxyl radical- and DNase I-mediated cleavage. The supercoiling of relaxed plasmid DNA in the presence of topoisomerase I revealed that DR0199 constrains DNA supercoils in vitro. Collectively, these findings suggest that DR0199 is a protein with DNA-protective properties and histone-like features that are involved in protecting D. radiodurans DNA from damage.
Collapse
Affiliation(s)
- Hu Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Fei Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 310016 Hangzhou, PR China
| | - Tingting Ma
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Jianhui Chen
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Xin Xu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Liangyan Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029 Hangzhou, PR China
| |
Collapse
|
28
|
Bouthier de la Tour C, Boisnard S, Norais C, Toueille M, Bentchikou E, Vannier F, Cox MM, Sommer S, Servant P. The deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity. DNA Repair (Amst) 2011; 10:1223-31. [PMID: 21968057 DOI: 10.1016/j.dnarep.2011.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/05/2011] [Accepted: 09/10/2011] [Indexed: 02/04/2023]
Abstract
The Deinococcus radiodurans bacterium exhibits an extreme resistance to ionizing radiation. Here, we investigated the in vivo role of DdrB, a radiation-induced Deinococcus specific protein that was previously shown to exhibit some in vitro properties akin to those of SSB protein from Escherichia coli but also to promote annealing of single stranded DNA. First we report that the deletion of the C-terminal motif of the DdrB protein, which is similar to the SSB C-terminal motif involved in recruitment to DNA of repair proteins, did neither affect cell radioresistance nor DNA binding properties of purified DdrB protein. We show that, in spite of their different quaternary structure, DdrB and SSB occlude the same amount of ssDNA in vitro. We also show that DdrB is recruited early and transiently after irradiation into the nucleoid to form discrete foci. Absence of DdrB increased the lag phase of the extended synthesis-dependent strand annealing (ESDSA) process, affecting neither the rate of DNA synthesis nor the efficiency of fragment reassembly, as indicated by monitoring DNA synthesis and genome reconstitution in cells exposed to a sub-lethal ionizing radiation dose. Moreover, cells devoid of DdrB were affected in the establishment of plasmid DNA during natural transformation, a process that requires pairing of internalized plasmid single stranded DNA fragments, whereas they were proficient in transformation by a chromosomal DNA marker that integrates into the host chromosome through homologous recombination. Our data are consistent with a model in which DdrB participates in an early step of DNA double strand break repair in cells exposed to very high radiation doses. DdrB might facilitate the accurate assembly of the myriad of small fragments generated by extreme radiation exposure through a single strand annealing (SSA) process to generate suitable substrates for subsequent ESDSA-promoted genome reconstitution.
Collapse
Affiliation(s)
- Claire Bouthier de la Tour
- Univ. Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bâtiment 409, Université Paris-Sud, 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Desai SS, Rajpurohit YS, Misra HS, Deobagkar DN. Characterization of the role of the RadS/RadR two-component system in the radiation resistance of Deinococcus radiodurans. MICROBIOLOGY-SGM 2011; 157:2974-2982. [PMID: 21737498 DOI: 10.1099/mic.0.049361-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deinococcus radiodurans shows extraordinary tolerance to DNA damage, and exhibits differential gene expression and protein recycling. A putative response regulator, the DRB0091 (RadR) ORF, was identified from a pool of DNA-binding proteins induced in response to gamma radiation in this bacterium. radR is located upstream of drB0090, which encodes a putative sensor histidine kinase (RadS) on the megaplasmid. Deletion of these genes both individually and together resulted in hypersensitivity to DNA-damaging agents and a delayed or altered double-strand break repair. A ΔradRradS double mutant and a ΔradR single mutant showed nearly identical responses to gamma radiation and UVC. Wild-type RadR and RadS complemented the corresponding mutant strains, but also exhibited significant cross-complementation, albeit at lower doses of gamma radiation. The radS transcript was not detected in the ΔradR mutant, suggesting the existence of a radRS operon. Recombinant RadS was autophosphorylated and could catalyse the transfer of γ phosphate from ATP to RadR in vitro. These results indicated the functional interaction of RadS and RadR, and suggested a role for the RadS/RadR two-component system in the radiation resistance of this bacterium.
Collapse
Affiliation(s)
- Shruti S Desai
- Centre for Advanced Studies in Zoology, Department of Zoology, University of Pune, Pune 411007, India.,Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Dileep N Deobagkar
- Centre for Advanced Studies in Zoology, Department of Zoology, University of Pune, Pune 411007, India
| |
Collapse
|
30
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
31
|
Kota S, Kamble VA, Rajpurohit YS, Misra HS. ATP-type DNA ligase requires other proteins for its activity in vitro and its operon components for radiation resistance in Deinococcus radiodurans in vivo. Biochem Cell Biol 2011; 88:783-90. [PMID: 20921990 DOI: 10.1139/o10-075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A multiprotein DNA processing complex isolated from Deinococcus radiodurans contains the DNA repair protein PprA, an ATP-type DNA repair ligase (LigB) encoded by the drB0100 gene, and protein kinase activity. An ATP-dependent DNA end-joining activity was detected in the complex. To elucidate the function of the drB0100 gene, we generated the deletion mutant for the DR_B0100 ORF. The mutant exhibited a nearly 2-log cycle reduction in growth rate when exposed to a 10,000 Gray dose of γ-radiation, and a significant loss in mitomycin C and methylmethane sulphonate tolerance as compared with wild type. Functional complementation of these phenotypes required the wild-type copy of drB0100 along with other genes such as drb0099 and drb0098, organized downstream in the operon. The in vitro DNA ligase activity of LigB was stimulated severalfold by PprA in the presence of the recombinant DRB0098 protein. However, this activity did not improve when PprA was substituted with purified DRB0099 protein or when DRB0098 protein was substituted with the DRB0099 protein in the presence of PprA in solution. These results suggest that PprA and DRB0098 protein are required for LigB function. Furthermore, they also suggest that the LigB operon components contribute to radiation resistance and double-strand break (DSB) repair in D. radiodurans.
Collapse
Affiliation(s)
- Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, MS 400 085, India
| | | | | | | |
Collapse
|
32
|
Radiation desiccation response motif-like sequences are involved in transcriptional activation of the Deinococcal ssb gene by ionizing radiation but not by desiccation. J Bacteriol 2010; 192:5637-44. [PMID: 20802034 DOI: 10.1128/jb.00752-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-stranded-DNA binding protein (SSB) levels during poststress recovery of Deinococcus radiodurans were significantly enhanced by (60)Co gamma rays or mitomycin C treatment but not by exposure to UV rays, hydrogen peroxide (H₂O₂), or desiccation. Addition of rifampin prior to postirradiation recovery blocked such induction. In silico analysis of the ssb promoter region revealed a 17-bp palindromic radiation/desiccation response motif (RDRM1) at bp -114 to -98 and a somewhat similar sequence (RDRM2) at bp -213 to -197, upstream of the ssb open reading frame. Involvement of these cis elements in radiation-responsive ssb gene expression was assessed by constructing transcriptional fusions of edited versions of the ssb promoter region with a nonspecific acid phosphatase encoding reporter gene, phoN. Recombinant D. radiodurans strains carrying such constructs clearly revealed (i) transcriptional induction of the ssb promoter upon irradiation and mitomycin C treatment but not upon UV or H₂O₂ treatment and (ii) involvement of both RDRM-like sequences in such activation of SSB expression, in an additive manner.
Collapse
|
33
|
Rajpurohit YS, Misra HS. Characterization of a DNA damage-inducible membrane protein kinase from Deinococcus radiodurans and its role in bacterial radioresistance and DNA strand break repair. Mol Microbiol 2010; 77:1470-82. [PMID: 20633226 DOI: 10.1111/j.1365-2958.2010.07301.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deinococcus radiodurans mutant lacking pyrroloquinoline-quinone (PQQ) synthesis shows sensitivity to γ-rays and impairment of DNA double strand break repair. The genome of this bacterium encodes five putative proteins having multiple PQQ binding motifs. The deletion mutants of corresponding genes were generated, and their response to DNA damage was monitored. Only the Δdr2518 mutant exhibited higher sensitivity to DNA damage. Survival of these cells decreased by 3-log cycle both at 6 kGy γ-rays and 1200 Jm(-2) UV (254 nm) radiation, and 2.5-log cycle upon 14 days desiccation at 5% humidity. The Δdr2518 mutant showed complete inhibition of DSB repair until 24 h PIR and disappearance of a few phosphoproteins. The Δdr2518pqqE:cat double mutant showed γ-ray sensitivity similar to Δdr2518 indicating functional interaction of these genes in D. radiodurans. DR2518 contains a eukaryotic type Ser/Thr kinase domain and structural topology suggesting stress responsive transmembrane protein. Its autokinase activity in solution was stimulated by nearly threefold with PQQ and twofold with linear DNA, but not with circular plasmid DNA. More than 15-fold increase in dr2518 transcription and several-fold enhanced in vivo phosphorylation of DR2518 were observed in response to γ irradiation. These results suggest that DR2518 as a DNA damage-responsive protein kinase plays an important role in radiation resistance and DNA strand break repair in D. radiodurans.
Collapse
|
34
|
Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S. Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 2010; 6:e1000799. [PMID: 20090938 PMCID: PMC2806898 DOI: 10.1371/journal.pgen.1000799] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/07/2009] [Indexed: 11/18/2022] Open
Abstract
Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA-damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences.
Collapse
Affiliation(s)
- Cécile Pasternak
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, Toulouse, France
| | - Geneviève Coste
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Adriana Bailone
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, Toulouse, France
| | - Suzanne Sommer
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| |
Collapse
|
35
|
Bentchikou E, Servant P, Coste G, Sommer S. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLoS Genet 2010; 6:e1000774. [PMID: 20090937 PMCID: PMC2806897 DOI: 10.1371/journal.pgen.1000774] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/16/2009] [Indexed: 11/19/2022] Open
Abstract
In Deinococcus radiodurans, the extreme resistance to DNA-shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a DeltarecA mutant: DeltarecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to gamma-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, DeltauvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of DeltauvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA.
Collapse
Affiliation(s)
- Esma Bentchikou
- Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Orsay, France
| | - Pascale Servant
- Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Orsay, France
| | - Geneviève Coste
- Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Orsay, France
| | - Suzanne Sommer
- Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Orsay, France
- * E-mail:
| |
Collapse
|
36
|
Khairnar NP, Misra HS. DNA polymerase X from Deinococcus radiodurans implicated in bacterial tolerance to DNA damage is characterized as a short patch base excision repair polymerase. Microbiology (Reading) 2009; 155:3005-3014. [DOI: 10.1099/mic.0.029223-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Deinococcus radiodurans R1 genome encodes an X-family DNA repair polymerase homologous to eukaryotic DNA polymerase β. The recombinant deinococcal polymerase X (PolX) purified from transgenic Escherichia coli showed deoxynucleotidyltransferase activity. Unlike the Klenow fragment of E. coli, this enzyme showed short patch DNA synthesis activity on heteropolymeric DNA substrate. The recombinant enzyme showed 5′-deoxyribose phosphate (5′-dRP) lyase activity and base excision repair function in vitro, with the help of externally supplied glycosylase and AP endonuclease functions. A polX disruption mutant of D. radiodurans expressing 5′-dRP lyase and a truncated polymerase domain was comparatively less sensitive to γ-radiation than a polX deletion mutant. Both mutants showed higher sensitivity to hydrogen peroxide. Excision repair mutants of E. coli expressing this polymerase showed functional complementation of UV sensitivity. These results suggest the involvement of deinococcal polymerase X in DNA-damage tolerance of D. radiodurans, possibly by contributing to DNA double-strand break repair and base excision repair.
Collapse
Affiliation(s)
- Nivedita P. Khairnar
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400 085, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai-400 085, India
| |
Collapse
|
37
|
Abstract
To develop new shuttle vectors for Deinococcus species, the nucleotide sequence of the small cryptic plasmid pUE30 from Deinococcus radiopugnans ATCC19172 was determined. The 2467-bp plasmid possesses two open reading frames, one encoding 88 amino acid residues (Orf1) and the other encoding 501 amino acid residues (Orf2). The predicted amino acid sequence encoded by Orf1 exhibits similarity to the N-terminal regions of replication proteins encoded by repABC-type plasmids of a-proteobacteria. On the other hand, the predicted amino acid sequence encoded by Orf2 exhibits similarity to replication proteins encoded by plasmids of D. radiodurans SARK and Thermus species. Hybrid plasmids consisting of pUE30 and pKatCAT5, which replicates in E. coli with a chloramphenicol resistance determinant, were shown to autonomously replicate in D. grandis ATCC43672. Deletion analysis revealed that Orf2 was necessary for replication of the plasmids in D. grandis. On the other hand, a DNA fragment encompassing the Orf1-coding region was involved in the instability of the plasmid in D. grandis. An expression plasmid that possesses the D. radiodurans minimal groE promoter was constructed, and a firefly luciferase gene was successfully expressed in D. grandis. The D. grandis host-vector system developed in this study should prove useful in the bioremediation of radioactive waste and for the investigation of DNA repair mechanisms.
Collapse
|
38
|
Nguyen HH, de la Tour CB, Toueille M, Vannier F, Sommer S, Servant P. The essential histone-like protein HU plays a major role inDeinococcus radioduransnucleoid compaction. Mol Microbiol 2009; 73:240-52. [DOI: 10.1111/j.1365-2958.2009.06766.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Norais CA, Chitteni-Pattu S, Wood EA, Inman RB, Cox MM. DdrB protein, an alternative Deinococcus radiodurans SSB induced by ionizing radiation. J Biol Chem 2009; 284:21402-11. [PMID: 19515845 DOI: 10.1074/jbc.m109.010454] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deinococcus radiodurans exhibits an extraordinary resistance to the effects of exposure to ionizing radiation (IR). DdrB is one of five proteins induced to high levels in Deinococcus following extreme IR exposure and that play a demonstrable role in genome reconstitution. Although homology is limited, DdrB is a bacterial single-stranded DNA-binding protein. DdrB features a stable core with a putative OB-fold, and a C-terminal segment with properties consistent with other bacterial SSBs. In solution, the protein functions as a pentamer. The protein binds single-stranded DNA but not duplex DNA. Electron microscopy and assays with two RecA proteins provide further structural and functional identification with bacterial SSB. Overall, the results establish DdrB as the prototype of a new bacterial SSB family. Given the role of SSB as a mobilization scaffold for many processes in DNA metabolism, the induction of an alternative and quite novel SSB following irradiation has potentially broad significance for the organization of genome reconstitution functions.
Collapse
Affiliation(s)
- Cédric A Norais
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
40
|
IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One 2009; 4:e4422. [PMID: 19204796 PMCID: PMC2635966 DOI: 10.1371/journal.pone.0004422] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/31/2008] [Indexed: 11/29/2022] Open
Abstract
Background Globally, about 20% of cultivated land is now affected by salinity. Salt tolerance is a trait of importance to all crops in saline soils. Previous efforts to improve salt tolerance in crop plants have met with only limited success. Bacteria of the genus Deinococcus are known for their ability to survive highly stressful conditions, and therefore possess a unique pool of genes conferring extreme resistance. In Deinococcus radiodurans, the irrE gene encodes a global regulator responsible for extreme radioresistance. Methodology/Principal Findings Using plate assays, we showed that IrrE protected E. coli cells against salt shock and other abiotic stresses such as oxidative, osmotic and thermal shocks. Comparative proteomic analysis revealed that IrrE functions as a switch to regulate different sets of proteins such as stress responsive proteins, protein kinases, glycerol-degrading enzymes, detoxification proteins, and growth-related proteins in E. coli. We also used quantitative RT-PCR to investigate expression of nine selected stress-responsive genes in transgenic and wild-type Brassica napus plants. Transgenic B. napus plants expressing the IrrE protein can tolerate 350 mM NaCl, a concentration that inhibits the growth of almost all crop plants. Conclusions Expression of IrrE, a global regulator for extreme radiation resistance in D. radiodurans, confers significantly enhanced salt tolerance in both E. coli and B. napus. We thus propose that the irrE gene might be used as a potentially promising transgene to improve abiotic stress tolerances in crop plants.
Collapse
|
41
|
Lu H, Gao G, Xu G, Fan L, Yin L, Shen B, Hua Y. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage. Mol Cell Proteomics 2008; 8:481-94. [PMID: 18953020 DOI: 10.1074/mcp.m800123-mcp200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preliminary findings indicate that PprI is a regulatory protein that stimulates transcription and translation of recA and other DNA repair genes in response to DNA damage in the extremely radioresistant bacterium Deinococcus radiodurans. To define the repertoire of proteins regulated by PprI and investigate the in vivo regulatory mechanism of PprI in response to gamma radiation, we performed comparative proteomics analyses on wild type (R1) and a pprI knock-out strain (YR1) under conditions of ionizing irradiation. Results of two-dimensional electrophoresis and MALDI-TOF MS or MALDI-TOF/TOF MS indicated that in response to low dose gamma ray exposure 31 proteins were significantly up-regulated in the presence of PprI. Among them, RecA and PprA are well known for their roles in DNA replication and repair. Others are involved in six different pathways, including stress response, energy metabolism, transcriptional regulation, signal transduction, protein turnover, and chaperoning. The last group consists of many proteins with uncharacterized functions. Expression of an additional four proteins, most of which act in metabolic pathways, was down-regulated in irradiated R1. Additionally phosphorylation of two proteins was under the control of PprI in response to irradiation. The different functional roles of representative PprI-regulated genes in extreme radioresistance were validated by gene knock-out analysis. These results suggest a role, either directly or indirectly, for PprI as a general switch to efficiently enhance the DNA repair capability and extreme radioresistance of D. radiodurans via regulation of a series of pathways.
Collapse
Affiliation(s)
- Huiming Lu
- Institute of Nuclear-Agricultural Sciences, Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Gutsche I, Vujicić-Zagar A, Siebert X, Servant P, Vannier F, Castaing B, Gallet B, Heulin T, de Groot A, Sommer S, Serre L. Complex oligomeric structure of a truncated form of DdrA: a protein required for the extreme radiotolerance of Deinococcus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1050-8. [PMID: 18424274 DOI: 10.1016/j.bbapap.2008.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/28/2008] [Accepted: 03/11/2008] [Indexed: 11/30/2022]
Abstract
In order to preserve their genome integrity, organisms have developed elaborate tactics for genome protection and repair. The Deinococcus radiodurans bacteria famous for their extraordinary tolerance toward high doses of radiations or long period of desiccation, possess some specific genes with unknown function which are related to their survival in such extreme conditions. Among them, ddrA is an orphan gene specific of Deinococcus genomes. DdrA, the product of this gene was suggested to be a component of the DNA end protection system. Here we provide a three-dimensional reconstruction of the Deinococcus deserti DdrA((1-160)) by electron microscopy. Although not functional in vivo, this truncated protein keeps its DNA binding ability at the wild-type level. DdrA((1-160)) has a complex three-dimensional structure based on a heptameric ring that can self-associate to form a larger molecular weight assembly. We suggest that the complex architecture of DdrA plays a role in the substrate specificity and favors an efficient DNA repair.
Collapse
Affiliation(s)
- Irina Gutsche
- Unit for Virus Host-Cell Interactions UMR5233 (CNRS/EMBL/Université Joseph Fourier), 6 rue Jules Horowitz, 38042 Grenoble Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans. J Bacteriol 2008; 190:3948-54. [PMID: 18375565 DOI: 10.1128/jb.00026-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transgenic bacteria producing pyrroloquinoline quinone, a known cofactor for dehydrogenases and an inducer of a periplasmic protein kinase activity, show resistance to both oxidative stress and protection from nonoxidative effects of radiation and DNA-damaging agents. Deinococcus radiodurans R1 encodes an active pyrroloquinoline quinone synthase, and constitutive synthesis of pyrroloquinoline quinone occurred in wild-type bacteria. Disruption of a genomic copy of pqqE resulted in cells that lacked this cofactor. The mutant showed a nearly 3-log decrease in gamma radiation resistance and a 2-log decrease in mitomycin C tolerance compared to wild-type cells. The mutant cells did not show sensitivity to UVC radiation. Expression of pyrroloquinoline quinone synthase in trans showed that there was functional complementation of gamma resistance and mitomycin C tolerance in the pqqE mutant. The sensitivity to gamma radiation was due to impairment or slow kinetics of DNA double strand break repair. Low levels of (32)P incorporation were observed in total soluble proteins of mutant cells compared to the wild type. The results suggest that pyrroloquinoline quinone has a regulatory role as a cofactor for dehydrogenases and an inducer of selected protein kinase activity in radiation resistance and DNA strand break repair in a radioresistant bacterium.
Collapse
|
44
|
Gao G, Lu H, Yin L, Hua Y. Ring-like nucleoid does not play a key role in radioresistance of Deinococcus radiodurans. ACTA ACUST UNITED AC 2007; 50:525-9. [PMID: 17653675 DOI: 10.1007/s11427-007-0061-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 02/27/2007] [Indexed: 11/28/2022]
Abstract
The conclusion based on transmission electron microscopy, "the tightly packed ring-like nucleoid of the Deinococcus radiodurans R1 is a key to radioresistance", has instigated lots of debates. In this study, according to the previous research of Pprl's crucial role in radioresistance of D. radiodurans, we have attempted to examine and compare the nucleoid morphology differences among wild-type D. radiodurans R1 strain, pprf function-deficient mutant (YR1), and pprl function-complementary strains (YR1001, YR1002, and YR1004) before and after exposure to ionizing irradiation. Fluorescence microscopy images indicate: (1) the majority of nucleoid structures in radioresistant strain R1 cells exhibit the tightly packed ring-like morphology, while the pprl function-deficient mutant YR1 cells carrying predominate ring-like structure represent high sensitivity to irradiation; (2) as an extreme radioresistant strain similar to wild-type R1, pprl completely function-complementary strain YR1001 almost displays the loose and irregular nucleoid morphologies. On the other hand, another radioresistant pprl partly function-complementary strain YR1002's nucleiods exhibit about 60% ring-like structure; (3) a Pprl C-terminal deletion strain YR1004 consisting of approximately 60% of ring-like nucleoid is very sensitive to radiation. Therefore, our present experiments do not support the conclusion that the ring-like nucleoid of D. radiodurans does play a key role in radioresistance.
Collapse
Affiliation(s)
- GuanJun Gao
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | |
Collapse
|
45
|
Servant P, Jolivet E, Bentchikou E, Mennecier S, Bailone A, Sommer S. The ClpPX protease is required for radioresistance and regulates cell division after gamma-irradiation in Deinococcus radiodurans. Mol Microbiol 2007; 66:1231-9. [PMID: 17986186 DOI: 10.1111/j.1365-2958.2007.06003.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein degradation in bacteria is involved in diverse cellular responses to environmental stimuli and in removing potentially toxic damaged proteins or protein aggregates. ATP-dependent proteases play a key role in these processes. Here, we have individually inactivated all the ATP-dependent proteases belonging to the Clp or Lon families in Deinococcus radiodurans. The mutants were tested for survival after gamma-irradiation and for sensitivity to the tRNA analogue puromycin in order to assess the impact of each disruption on radioresistance, as well as on proteolysis of misfolded proteins. We found that inactivation of the ClpPX protease significantly decreased cell survival at elevated gamma-irradiation doses, while inactivation of Lon1 and Lon2 proteases reduced resistance to puromycin, suggesting that they play a role in eliminating damaged proteins. Mutants devoid of ClpPX protease displayed altered kinetics of DNA double-strand break repair and resumed cell division after an exceedingly long lag phase following completion of DNA repair. During this stasis period, most of the DeltaclpPX irradiated cells showed decondensed nucleoids and abnormal septa and some cells were devoid of DNA. We propose that the ClpPX protease is involved in the control of proper chromosome segregation and cell division in cells recovering from DNA damage.
Collapse
Affiliation(s)
- Pascale Servant
- Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bâtiment 409, F-91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
46
|
Khairnar NP, Kamble VA, Misra HS. RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans. DNA Repair (Amst) 2007; 7:40-7. [PMID: 17720630 DOI: 10.1016/j.dnarep.2007.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 06/26/2007] [Accepted: 07/16/2007] [Indexed: 01/28/2023]
Abstract
Deinococcus radiodurans recovering from the effect of acute dose of gamma (gamma) radiation shows a biphasic mechanism of DNA double strands breaks repair that involves an efficient homologous recombination. However, it shows higher sensitivity to near-UV (NUV) than Escherichia coli and lacks RecBC, a DNA strand break (DSB) repair enzyme in some bacteria. Recombinant Deinococcus expressing the recBC genes of E. coli showed nearly three-fold improvements in near-UV tolerance and nearly 2 log cycle reductions in wild type gamma radiation resistance. RecBC over expression effect on radiation response of D. radiodurans was independent of indigenous RecD. Loss of gamma radiation tolerance was attributed to the enhanced rate of in vivo degradation of radiation damaged DNA and delayed kinetics of DSB repair during post-irradiation recovery. RecBC expressing cells of Deinococcus showed wild type response to Far-UV. These results suggest that the overproduction of RecBC competes with the indigenous mechanism of gamma radiation damaged DNA repair while it supports near-UV tolerance in D. radiodurans.
Collapse
Affiliation(s)
- Nivedita P Khairnar
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | |
Collapse
|
47
|
Chen X, Wurtmann EJ, Van Batavia J, Zybailov B, Washburn MP, Wolin SL. An ortholog of the Ro autoantigen functions in 23S rRNA maturation in D. radiodurans. Genes Dev 2007; 21:1328-39. [PMID: 17510283 PMCID: PMC1877746 DOI: 10.1101/gad.1548207] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/03/2007] [Indexed: 01/03/2023]
Abstract
In both animal cells and the eubacterium Deinococcus radiodurans, the Ro autoantigen, a ring-shaped RNA-binding protein, associates with small RNAs called Y RNAs. In vertebrates, Ro also binds the 3' ends of misfolded RNAs and is proposed to function in quality control. However, little is known about the function of Ro and the Y RNAs in vivo. Here, we report that the D. radiodurans ortholog Rsr (Ro sixty related) functions with exoribonucleases in 23S rRNA maturation. During normal growth, 23S rRNA maturation is inefficient, resulting in accumulation of precursors containing 5' and 3' extensions. During growth at elevated temperature, maturation is efficient and requires Rsr and the exoribonucleases RNase PH and RNase II. Consistent with the hypothesis that Y RNAs inhibit Ro activity, maturation is efficient at all temperatures in cells lacking the Y RNA. In the absence of Rsr, 23S rRNA maturation halts at positions of potential secondary structure. As Rsr exhibits genetic and biochemical interactions with the exoribonuclease polynucleotide phosphorylase, Rsr likely functions in an additional process with this nuclease. We propose that Rsr functions as a processivity factor to assist RNA maturation by exoribonucleases. This is the first demonstration of a role for Ro and a Y RNA in vivo.
Collapse
Affiliation(s)
- Xinguo Chen
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Elisabeth J. Wurtmann
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Jason Van Batavia
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Boris Zybailov
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Sandra L. Wolin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
48
|
Fung JM, Morris RM, Adrian L, Zinder SH. Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl Environ Microbiol 2007; 73:4439-45. [PMID: 17513589 PMCID: PMC1932842 DOI: 10.1128/aem.00215-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reductive dehalogenase (RD) gene transcript levels in Dehalococcoides ethenogenes strain 195 were investigated using reverse transcriptase quantitative PCR during growth and reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), or 2,3-dichlorophenol (2,3-DCP). Cells grown with PCE or TCE had high transcript levels (greater than that for rpoB) for tceA, which encodes the TCE RD, pceA, which encodes the PCE RD, and DET0162, which contains a predicted stop codon and is considered nonfunctional. In cells grown with 2,3-DCP, tceA mRNA was less than 1% of that for rpoB, indicating that its transcription was regulated. pceA and DET0162 were the only RD genes with high transcript levels in cells grown with 2,3-DCP. Proteomic analysis of PCE-grown cells detected both PceA and TceA with high peptide coverage but not DET0162, and analysis of 2,3-DCP-grown cells detected PceA with high coverage but not TceA, DET0162, or any other potential RD. Cells grown with PCE or 2,3-DCP were tested for the ability to dechlorinate PCE, TCE, or 2,3-DCP with H2 as the electron donor. 2,3-DCP-grown cells were unable to dechlorinate TCE but dechlorinated PCE to TCE without a lag, and PCE-grown cells dechlorinated 2,3-DCP without a lag. These results show that 2,3-DCP-grown cells do not produce TceA and that DET0162 is transcribed but its translation product is not detectable in cells and are consistent with PceA's being bifunctional, also serving as the 2,3-DCP RD. Chlorophenols naturally occur in soils and are good candidates for the original substrates for PceA.
Collapse
Affiliation(s)
- Jennifer M Fung
- Department of Microbiology, Cornell University, Ithaca, NY 14840, USA
| | | | | | | |
Collapse
|
49
|
Gao G, Le D, Huang L, Lu H, Narumi I, Hua Y. Internal promoter characterization and expression of the Deinococcus radiodurans pprI-folP gene cluster. FEMS Microbiol Lett 2006; 257:195-201. [PMID: 16553853 DOI: 10.1111/j.1574-6968.2006.00169.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PprI is a general gene switch responsible for the extraordinary radioresistance of Deinococcus radiodurans. From NCBI DNA sequence analysis, it was predicted that the translation start codon of the downstream folP (DR0168) gene overlaps the pprI (DR0167) stop codon, suggesting that these genes may form an operon. In this study, we show that a mutant containing an inserted sequence in folP does not grow unless folate is added to the medium, but is not affected in extreme radioresistance, whereas a pprI disruptant strain could grow in the absence of folate. It was found that expression of a pprI-lacZ fusion is constitutive and unaltered following ionizing radiation as is the production of the PprI protein. PprI protein is not expressed if its promoter is deleted and the transcription from the entire pprI promoter is essential for radioresistance of D. radiodurans. However, the deletion of pprI promoter has no effect on the expression of the folP-lacZ fusion. Primer extension analysis of the folP promoter region shows that folP is transcribed from its own promoter located within the pprI structural gene. All these results do support neither the existence of a pprI-folP operon nor a regulatory role of FolP in pprI expression.
Collapse
Affiliation(s)
- Guanjun Gao
- Department of Applied Biosciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
50
|
Jolivet E, Lecointe F, Coste G, Satoh K, Narumi I, Bailone A, Sommer S. Limited concentration of RecA delays DNA double-strand break repair in Deinococcus radiodurans R1. Mol Microbiol 2006; 59:338-49. [PMID: 16359339 DOI: 10.1111/j.1365-2958.2005.04946.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To evaluate the importance of RecA in DNA double-strand break (DSB) repair, we examined the effect of low and high RecA concentrations such as 2500 and 100 000 molecules per cell expressed from the inducible Pspac promoter in Deinococcus radiodurans in absence or in presence of IPTG respectively. We showed that at low concentration, RecA has a negligible effect on cell survival after gamma-irradiation when bacteria were immediately plated on TGY agar whereas it significantly decreased the survival to gamma-irradiation of DeltaddrA cells while overexpression of RecA can partially compensate the loss of DdrA protein. In contrast, when cells expressing limited concentration of RecA were allowed to recover in TGY2X liquid medium, they showed a delay in mending DSB, failed to reinitiate DNA replication and were committed to die during incubation. A deletion of irrE resulted in sensitivity to gamma-irradiation and mitomycin C treatment. Interestingly, constitutive high expression of RecA compensates partially the DeltairrE sensitization to mitomycin C. The cells with low RecA content also failed to cleave LexA after DNA damage. However, neither a deletion of the lexA gene nor the expression of a non-cleavable LexA(Ind-) mutant protein had an effect on survival or kinetics of DNA DSB repair compared with their lexA+ counterparts in recA+ as well as in bacteria expressing limiting concentration of RecA, suggesting an absence of relationship between the absence of LexA cleavage and the loss of viability or the delay in the kinetics of DSB repair. Thus, LexA protein seems to play no major role in the recovery processes after gamma-irradiation in D. radiodurans.
Collapse
Affiliation(s)
- Edmond Jolivet
- Institut de Génétique et Microbiologie, CNRS UMR 8621, LRC CEA 42V, Bâtiment 409, Université Paris-Sud, F-91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|