1
|
Park J, Polizzi KM, Kim J, Kim J. Manipulating subcellular protein localization to enhance target protein accumulation in minicells. J Biol Eng 2025; 19:27. [PMID: 40158151 PMCID: PMC11955136 DOI: 10.1186/s13036-025-00495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Minicells are chromosome-free derivatives of bacteria formed through irregular cell division. Unlike simplified structures, minicells retain all cellular components of the parent cell except for the chromosome. This feature reduces immunogenic responses, making them advantageous for various biotechnological applications, including chemical production and drug delivery. To effectively utilize minicells, it is essential to ensure the accumulation of target proteins within them, enhancing their efficiency as delivery vehicles. RESULTS In this study, we engineered Escherichia coli by deleting the minCD genes, generating minicell-producing strains, and investigated strategies to enhance protein accumulation within the minicells. Comparative proteomic analysis revealed that minicells retain most parent-cell proteins but exhibit an asymmetric proteome distribution, leading to selective protein enrichment. We demonstrated that heterologous proteins, such as GFP and RFP, accumulate more abundantly in minicells than in parent cells, regardless of expression levels. To further enhance this accumulation, we manipulated protein localization by fusing target proteins to polar localization signals. While proteins fused with PtsI and Tsr exhibited 2.6-fold and 2.8-fold increases in accumulation, respectively, fusion with the heterologous PopZ protein resulted in a remarkable 15-fold increase in protein concentration under low induction conditions. CONCLUSIONS These findings highlight the critical role of spatial protein organization in enhancing the cargo-loading capabilities of minicells. By leveraging polar localization signals, this work provides a robust framework for optimizing minicells as efficient carriers for diverse applications, from therapeutic delivery to industrial biomanufacturing.
Collapse
Grants
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- EP/T005297/1, EP/W00979X/1 EPSRC Adventurous Manufacturing
Collapse
Affiliation(s)
- Junhyeon Park
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Karen M Polizzi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Juhyun Kim
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Ahmed YM, Brown LM, Varga K, Bowman GR. Phospho-signaling couples polar asymmetry and proteolysis within a membraneless microdomain in Caulobacter crescentus. Nat Commun 2024; 15:9282. [PMID: 39468040 PMCID: PMC11519897 DOI: 10.1038/s41467-024-53395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Asymmetric cell division in bacteria is achieved through cell polarization, where regulatory proteins are directed to specific cell poles. In Caulobacter crescentus, both poles contain a membraneless microdomain, established by the polar assembly hub PopZ, through most of the cell cycle, yet many PopZ clients are unipolar and transiently localized. We find that PopZ's interaction with the response regulator CpdR is controlled by phosphorylation, via the histidine kinase CckA. Phosphorylated CpdR does not interact with PopZ and is not localized to cell poles. At poles where CckA acts as a phosphatase, dephosphorylated CpdR binds directly with PopZ and subsequently recruits ClpX, substrates, and other members of a protease complex to the cell pole. We also find that co-recruitment of protease components and substrates to polar microdomains enhances their coordinated activity. This study connects phospho-signaling with polar assembly and the activity of a protease that triggers cell cycle progression and cell differentiation.
Collapse
Affiliation(s)
- Yasin M Ahmed
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Logan M Brown
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
3
|
Stone A, Rijal S, Zhang R, Tian XJ. Enhancing circuit stability under growth feedback with supplementary repressive regulation. Nucleic Acids Res 2024; 52:1512-1521. [PMID: 38164993 PMCID: PMC10853785 DOI: 10.1093/nar/gkad1233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
The field of synthetic biology and biosystems engineering increasingly acknowledges the need for a holistic design approach that incorporates circuit-host interactions into the design process. Engineered circuits are not isolated entities but inherently entwined with the dynamic host environment. One such circuit-host interaction, 'growth feedback', results when modifications in host growth patterns influence the operation of gene circuits. The growth-mediated effects can range from growth-dependent elevation in protein/mRNA dilution rate to changes in resource reallocation within the cell, which can lead to complete functional collapse in complex circuits. To achieve robust circuit performance, synthetic biologists employ a variety of control mechanisms to stabilize and insulate circuit behavior against growth changes. Here we propose a simple strategy by incorporating one repressive edge in a growth-sensitive bistable circuit. Through both simulation and in vitro experimentation, we demonstrate how this additional repressive node stabilizes protein levels and increases the robustness of a bistable circuit in response to growth feedback. We propose the incorporation of repressive links in gene circuits as a control strategy for desensitizing gene circuits against growth fluctuations.
Collapse
Affiliation(s)
- Austin Stone
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sadikshya Rijal
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
4
|
Ahmed YM, Bowman GR. Phospho-signaling couples polar asymmetry and proteolysis within a membraneless microdomain in C. crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553945. [PMID: 37645878 PMCID: PMC10462113 DOI: 10.1101/2023.08.19.553945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Asymmetric cell division in bacteria is achieved through cell polarization, where regulatory proteins are directed to specific cell poles. Curiously, both poles contain a membraneless microdomain, established by the polar assembly hub PopZ, through most of the cell cycle, yet many PopZ clients are unipolar and transiently localized. We find that PopZ's interaction with the response regulator CpdR is controlled by phosphorylation, via the histidine kinase CckA. Phosphorylated CpdR does not interact with PopZ and is not localized to cell poles. At poles where CckA acts as a phosphatase, de-phosphorylated CpdR binds directly with PopZ and subsequently recruits ClpX, substrates, and other members of a protease complex to the cell pole. We also find that co-recruitment of protease components and substrates to polar microdomains enhances their coordinated activity. This study connects phosphosignaling with polar assembly and the activity of a protease that triggers cell cycle progression and cell differentiation.
Collapse
Affiliation(s)
- Yasin M Ahmed
- Department of Molecular Biology, University of Wyoming, Laramie Wyoming 82071
| | - Grant R Bowman
- Department of Molecular Biology, University of Wyoming, Laramie Wyoming 82071
| |
Collapse
|
5
|
Govindarajan A, Gnanasambandam V. Toward Intracellular Bioconjugation Using Transition-Metal-Free Techniques. Bioconjug Chem 2021; 32:1431-1454. [PMID: 34197073 DOI: 10.1021/acs.bioconjchem.1c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bioconjugation is the chemical strategy of covalent modification of biomolecules, using either an external reagent or other biomolecules. Since its inception in the twentieth century, the technique has grown by leaps and bounds, and has a variety of applications in chemical biology. However, it is yet to reach its full potential in the study of biochemical processes in live cells, mainly because the bioconjugation strategies conflict with cellular processes. This has mostly been overcome by using transition metal catalysts, but the presence of metal centers limit them to in vitro use, or to the cell surface. These hurdles can potentially be circumvented by using metal-free strategies. However, the very modifications that are necessary to make such metal-free reactions proceed effectively may impact their biocompatibility. This is because biological processes are easily perturbed and greatly depend on the prevailing inter- and intracellular environment. With this taken into consideration, this review analyzes the applicability of the transition-metal-free strategies reported in this decade to the study of biochemical processes in vivo.
Collapse
Affiliation(s)
- Aaditya Govindarajan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| | - Vasuki Gnanasambandam
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| |
Collapse
|
6
|
Fröber K, Bergs C, Pich A, Conrads G. Biofunctionalized zinc peroxide nanoparticles inhibit peri-implantitis associated anaerobes and Aggregatibacter actinomycetemcomitans pH-dependent. Anaerobe 2020; 62:102153. [DOI: 10.1016/j.anaerobe.2020.102153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
|
7
|
Gayen A, Kumar D, Matheshwaran S, Chandra M. Unveiling the Modulating Role of Extracellular pH in Permeation and Accumulation of Small Molecules in Subcellular Compartments of Gram-negative Escherichia coli using Nonlinear Spectroscopy. Anal Chem 2019; 91:7662-7671. [PMID: 30986344 DOI: 10.1021/acs.analchem.9b00574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Quantitative evaluation of small molecule permeation and accumulation in Gram-negative bacteria is important for drug development against these bacteria. While these measurements are commonly performed at physiological pH, Escherichia coli and many other Enterobacteriaceae infect human gastrointestinal and urinary tracts, where they encounter different pH conditions. To understand how external pH affects permeation and accumulation of small molecules in E. coli cells, we apply second harmonic generation (SHG) spectroscopy using SHG-active antimicrobial compound malachite green as the probe molecule. Using SHG, we quantify periplasmic and cytoplasmic accumulations separately in live E. coli cells, which was never done before. Compartment-wise measurements reveal accumulation of the probe molecule in cytoplasm at physiological and alkaline pH, while entrapment in periplasm at weakly acidic pH and retention in external solution at highly acidic pH. Behind such disparity in localizations, up to 2 orders of magnitude reduction in permeability across the inner membrane at weakly acidic pH and outer membrane at highly acidic pH are found to play key roles. Our results unequivocally demonstrate the control of external pH over entry and compartment-wise distribution of small molecules in E. coli cells, which is a vital information and should be taken into account in antibiotic screening against E. coli and other Enterobacteriaceae members. In addition, our results demonstrate the ability of malachite green as an excellent SHG-indicator of changes of individual cell membrane and periplasm properties of live E. coli cells in response to external pH change from acidic to alkaline. This finding, too, has great importance, as there is barely any other molecular probe that can provide similar information.
Collapse
|
8
|
Peng B, Zhang X, Aarts DGAL, Dullens RPA. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability. NATURE NANOTECHNOLOGY 2018; 13:478-482. [PMID: 29610527 DOI: 10.1038/s41565-018-0108-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/28/2018] [Indexed: 05/14/2023]
Abstract
Recent progress in synthetic nanotechnology and the ancient use of metals in food preservation and the antibacterial treatment of wounds have prompted the development of nanometallic materials for antimicrobial applications1-4. However, the materials designed so far do not simultaneously display antimicrobial activity and the capability of binding and capturing bacteria and spores. Here, we develop a one-step pyrolysis procedure to synthesize monodisperse superparamagnetic nickel colloidal nanocrystal clusters (SNCNCs), which show both antibacterial activity and the ability to bind Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as bacterial spores. The SNCNCs are formed from a rapid burst of nickel nanoparticles, which self-assemble slowly into clusters. The clusters can magnetically extract 99.99% of bacteria and spores and provide a promising approach for the removal of microbes, including hard-to-treat microorganisms. We believe that our work illustrates the exciting opportunities that nanotechnology offers for alternative antimicrobial strategies and other applications in microbiology.
Collapse
Affiliation(s)
- Bo Peng
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| | - Xinglin Zhang
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Abstract
Many single-cell observables are highly heterogeneous. A part of this heterogeneity stems from age-related phenomena: the fact that there is a nonuniform distribution of cells with different ages. This has led to a renewed interest in analytic methodologies including use of the 'von Foerster equation' for predicting population growth and cell age distributions. Here we discuss how some of the most popular implementations of this machinery assume a strong condition on the ergodicity of the cell cycle duration ensemble. We show that one common definition for the term ergodicity, 'a single individual observed over many generations recapitulates the behavior of the entire ensemble' is implied by the other, 'the probability of observing any state is conserved across time and over all individuals' in an ensemble with a fixed number of individuals but that this is not true when the ensemble is growing. We further explore the impact of generational correlations between cell cycle durations on the population growth rate. Finally, we explore the 'growth rate gain'-the phenomenon that variations in the cell cycle duration leads to an improved population-level growth rate-in this context. We highlight that, fundamentally, this effect is due to asymmetric division.
Collapse
Affiliation(s)
- Nash D Rochman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | | | | |
Collapse
|
10
|
Briegel A, Jensen G. Progress and Potential of Electron Cryotomography as Illustrated by Its Application to Bacterial Chemoreceptor Arrays. Annu Rev Biophys 2017; 46:1-21. [PMID: 28301773 DOI: 10.1146/annurev-biophys-070816-033555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron cryotomography (ECT) can produce three-dimensional images of biological samples such as intact cells in a near-native, frozen-hydrated state to macromolecular resolution (∼4 nm). Because one of its first and most common applications has been to bacterial chemoreceptor arrays, ECT's contributions to this field illustrate well its past, present, and future. While X-ray crystallography and nuclear magnetic resonance spectroscopy have revealed the structures of nearly all the individual components of chemoreceptor arrays, ECT has revealed the mesoscale information about how the components are arranged within cells. Receptors assemble into a universally conserved 12-nm hexagonal lattice linked by CheA/CheW rings. Membrane-bound arrays are single layered; cytoplasmic arrays are double layered. Images of in vitro reconstitutions have led to a model of how arrays assemble, and images of native arrays in different states have shown that the conformational changes associated with signal transduction are subtle, constraining models of activation and system cooperativity. Phase plates, better detectors, and more stable stages promise even higher resolution and broader application in the near future.
Collapse
Affiliation(s)
- Ariane Briegel
- Department of Biology, Leiden University, 2333 Leiden, Netherlands
| | - Grant Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; .,Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
11
|
Guo Y, Stärk HJ, Hause G, Schmidt M, Harms H, Wick LY, Müller S. Heterogenic response of prokaryotes toward silver nanoparticles and ions is facilitated by phenotypes and attachment of silver aggregates to cell surfaces. Cytometry A 2017; 91:775-784. [PMID: 28110496 DOI: 10.1002/cyto.a.23055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 11/09/2022]
Abstract
Tons of anthropogenic silver nanoparticles (AgNPs) are assumed to be released into the environment due to their use in many consumer products. AgNPs are known to be toxic toward microorganisms and thus may harm their specific functions in ecosystems. Here we explore the impact of AgNPs on functioning of single cells in microbial populations at doses typically found in anthropogenic environments. The response of single cells to AgNPs was analyzed by flow cytometry and using the fluorescent dyes propidium iodide and DiBAC4 (3) as markers for cell membrane disintegration and depolarization, respectively. The effects of 10-nm and 30-nm AgNPs on three bacterial species (Mycobacterium frederiksbergense, Pseudomonas putida, and Escherichia coli) showed that the populations split into affected cells and others not showing any malfunction, with varying abundances depending on strains and cell growth states. Further, the dissolution of AgNPs measured with 3 KDa ultrafiltration and inductively coupled plasma-mass-spectrometry to distinguish particle-related effects from toxicity of dissolved Ag revealed that Ag ions were the principal toxicant. AgNP aggregate formation was followed by dynamic light scattering and the aggregates' attachment to cell surfaces was visualized by transmission electron microscopy and scanning electron microscopy-energy dispersive X-ray spectroscopy. An increased AgNP-affected cell fraction relative to the Ag ion impact was identified. The study shows that individual cells in a population cope differently with AgNP induced stress by evolving heterogeneous phenotypes. The response is linked to cell death and cell energy depletion depending on cell type and cell growth states. The attachment of AgNP aggregates to cell surfaces seems to amplify the heterogeneous response. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yuting Guo
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Hans J Stärk
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Gerd Hause
- Biocenter of the Martin-Luther-University Halle-Wittenberg, Halle, Saale, 06120, Gemany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| |
Collapse
|
12
|
Clark MW, Yie AM, Eder EK, Dennis RG, Basting PJ, Martinez KA, Jones BD, Slonczewski JL. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli. PLoS One 2015; 10:e0144650. [PMID: 26713733 PMCID: PMC4694651 DOI: 10.1371/journal.pone.0144650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022] Open
Abstract
Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2–7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.
Collapse
Affiliation(s)
- Michelle W Clark
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Anna M Yie
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Elizabeth K Eder
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Richard G Dennis
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Preston J Basting
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Keith A Martinez
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Brian D Jones
- Department of Mathematics and Statistics, Kenyon College, Gambier, Ohio, United States of America
| | - Joan L Slonczewski
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| |
Collapse
|
13
|
Briegel A, Ortega DR, Huang A, Oikonomou CM, Gunsalus RP, Jensen GJ. Structural conservation of chemotaxis machinery across Archaea and Bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:414-9. [PMID: 25581459 PMCID: PMC4782749 DOI: 10.1111/1758-2229.12265] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/12/2014] [Accepted: 12/25/2014] [Indexed: 05/27/2023]
Abstract
Chemotaxis allows cells to sense and respond to their environment. In Bacteria, stimuli are detected by arrays of chemoreceptors that relay the signal to a two-component regulatory system. These arrays take the form of highly stereotyped super-lattices comprising hexagonally packed trimers-of-receptor-dimers networked by rings of histidine kinase and coupling proteins. This structure is conserved across chemotactic Bacteria, and between membrane-bound and cytoplasmic arrays, and gives rise to the highly cooperative, dynamic nature of the signalling system. The chemotaxis system, absent in eukaryotes, is also found in Archaea, where its structural details remain uncharacterized. Here we provide evidence that the chemotaxis machinery was not present in the last archaeal common ancestor, but rather was introduced in one of the waves of lateral gene transfer that occurred after the branching of Eukaryota but before the diversification of Euryarchaeota. Unlike in Bacteria, the chemotaxis system then evolved largely vertically in Archaea, with very few subsequent successful lateral gene transfer events. By electron cryotomography, we find that the structure of both membrane-bound and cytoplasmic chemoreceptor arrays is conserved between Bacteria and Archaea, suggesting the fundamental importance of this signalling architecture across diverse prokaryotic lifestyles.
Collapse
Affiliation(s)
- Ariane Briegel
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125
| | - Davi R. Ortega
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125
| | - Audrey Huang
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125
| | | | - Robert P. Gunsalus
- University of California Los Angeles, 609 Charles E. Young Dr. S., Los Angeles, CA 90095
| | - Grant J. Jensen
- California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125
- Howard Hughes Medical Institute, 1200 E. California Blvd., Pasadena, CA 91125
| |
Collapse
|
14
|
Buxa SV, Degola F, Polizzotto R, De Marco F, Loschi A, Kogel KH, di Toppi LS, van Bel AJE, Musetti R. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements. FRONTIERS IN PLANT SCIENCE 2015; 6:650. [PMID: 26347766 PMCID: PMC4541602 DOI: 10.3389/fpls.2015.00650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/05/2015] [Indexed: 05/22/2023]
Abstract
Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.
Collapse
Affiliation(s)
- Stefanie V. Buxa
- Department of Phytopathology and Applied Zoology, Justus Liebig UniversityGiessen, Germany
| | | | - Rachele Polizzotto
- Department of Agricultural and Environmental Sciences, University of UdineUdine, Italy
| | - Federica De Marco
- Department of Agricultural and Environmental Sciences, University of UdineUdine, Italy
| | - Alberto Loschi
- Department of Agricultural and Environmental Sciences, University of UdineUdine, Italy
| | - Karl-Heinz Kogel
- Department of Phytopathology and Applied Zoology, Justus Liebig UniversityGiessen, Germany
| | | | - Aart J. E. van Bel
- Department of Phytopathology and Applied Zoology, Justus Liebig UniversityGiessen, Germany
| | - Rita Musetti
- Department of Agricultural and Environmental Sciences, University of UdineUdine, Italy
- *Correspondence: Rita Musetti, Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze, 206, I-33100 Udine, Italy,
| |
Collapse
|
15
|
Kuwada NJ, Traxler B, Wiggins PA. Genome-scale quantitative characterization of bacterial protein localization dynamics throughout the cell cycle. Mol Microbiol 2014; 95:64-79. [PMID: 25353361 PMCID: PMC4309519 DOI: 10.1111/mmi.12841] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Abstract
Bacterial cells display both spatial and temporal organization, and this complex structure is known to play a central role in cellular function. Although nearly one-fifth of all proteins in Escherichia coli localize to specific subcellular locations, fundamental questions remain about how cellular-scale structure is encoded at the level of molecular-scale interactions. One significant limitation to our understanding is that the localization behavior of only a small subset of proteins has been characterized in detail. As an essential step toward a global model of protein localization in bacteria, we capture and quantitatively analyze spatial and temporal protein localization patterns throughout the cell cycle for nearly every protein in E. coli that exhibits nondiffuse localization. This genome-scale analysis reveals significant complexity in patterning, notably in the behavior of DNA-binding proteins. Complete cell-cycle imaging also facilitates analysis of protein partitioning to daughter cells at division, revealing a broad and robust assortment of asymmetric partitioning behaviors.
Collapse
Affiliation(s)
- Nathan J Kuwada
- Department of Physics, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | | | | |
Collapse
|
16
|
Cerca F, França Â, Pérez-Cabezas B, Carvalhais V, Ribeiro A, Azeredo J, Pier G, Cerca N, Vilanova M. Dormant bacteria within Staphylococcus epidermidis biofilms have low inflammatory properties and maintain tolerance to vancomycin and penicillin after entering planktonic growth. J Med Microbiol 2014; 63:1274-1283. [PMID: 25053799 DOI: 10.1099/jmm.0.073163-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus epidermidis is the most commonly isolated aetiological agent of nosocomial infections, mainly due to its ability to establish biofilms on indwelling medical devices. Detachment of bacteria from S. epidermidis biofilms and subsequent growth in the planktonic form is a hallmark of the pathogenesis of these infections leading to dissemination. Here we showed that S. epidermidis cells collected from biofilms cultured in conditions that promote cell viability present marked changes in their physiological status upon initiating a planktonic mode of growth. When compared to cells growing in biofilms, they displayed an increased SYBR green I staining intensity, increased transcription of the rpiA gene, decreased transcription of the icaA gene, as well as higher susceptibility to vancomycin and penicillin. When bacteria collected from biofilms with high proportions of dormant cells were subsequently cultured in the planktonic mode, a large proportion of cells maintained a low SYBR green I staining intensity and increased resistance to vancomycin and penicillin, a profile typical of dormant cells. This phenotype further associated with a decreased ability of these biofilm-derived cells to induce the production of pro-inflammatory cytokines by bone marrow-derived dendritic cells in vitro. These results demonstrated that cells detached from the biofilm maintain a dormant cell-like phenotype, having a low pro-inflammatory effect and decreased susceptibility to antibiotics, suggesting these cells may contribute to the recalcitrant nature of biofilm infections.
Collapse
Affiliation(s)
- Filipe Cerca
- IBMC - Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 83, Porto, Portugal.,ICBAS-UP - Instituto de Ciências Biomédicas de Abel Salazar - Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Ângela França
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Begoña Pérez-Cabezas
- IBMC - Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 83, Porto, Portugal
| | - Virgínia Carvalhais
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.,ICBAS-UP - Instituto de Ciências Biomédicas de Abel Salazar - Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Adília Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 83, Porto, Portugal.,ICBAS-UP - Instituto de Ciências Biomédicas de Abel Salazar - Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Joana Azeredo
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Gerald Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Nuno Cerca
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuel Vilanova
- IBMC - Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 83, Porto, Portugal.,ICBAS-UP - Instituto de Ciências Biomédicas de Abel Salazar - Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| |
Collapse
|
17
|
Ma B, Charkowski AO, Glasner JD, Perna NT. Identification of host-microbe interaction factors in the genomes of soft rot-associated pathogens Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14 with supervised machine learning. BMC Genomics 2014; 15:508. [PMID: 24952641 PMCID: PMC4079955 DOI: 10.1186/1471-2164-15-508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 06/09/2014] [Indexed: 12/14/2022] Open
Abstract
Background A wealth of genome sequences has provided thousands of genes of unknown function, but identification of functions for the large numbers of hypothetical genes in phytopathogens remains a challenge that impacts all research on plant-microbe interactions. Decades of research on the molecular basis of pathogenesis focused on a limited number of factors associated with long-known host-microbe interaction systems, providing limited direction into this challenge. Computational approaches to identify virulence genes often rely on two strategies: searching for sequence similarity to known host-microbe interaction factors from other organisms, and identifying islands of genes that discriminate between pathogens of one type and closely related non-pathogens or pathogens of a different type. The former is limited to known genes, excluding vast collections of genes of unknown function found in every genome. The latter lacks specificity, since many genes in genomic islands have little to do with host-interaction. Result In this study, we developed a supervised machine learning approach that was designed to recognize patterns from large and disparate data types, in order to identify candidate host-microbe interaction factors. The soft rot Enterobacteriaceae strains Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14 were used for development of this tool, because these pathogens are important on multiple high value crops in agriculture worldwide and more genomic and functional data is available for the Enterobacteriaceae than any other microbial family. Our approach achieved greater than 90% precision and a recall rate over 80% in 10-fold cross validation tests. Conclusion Application of the learning scheme to the complete genome of these two organisms generated a list of roughly 200 candidates, many of which were previously not implicated in plant-microbe interaction and many of which are of completely unknown function. These lists provide new targets for experimental validation and further characterization, and our approach presents a promising pattern-learning scheme that can be generalized to create a resource to study host-microbe interactions in other bacterial phytopathogens. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-508) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Ma
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
18
|
Santos TMA, Lin TY, Rajendran M, Anderson SM, Weibel DB. Polar localization of Escherichia coli chemoreceptors requires an intact Tol-Pal complex. Mol Microbiol 2014; 92:985-1004. [PMID: 24720726 DOI: 10.1111/mmi.12609] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 11/29/2022]
Abstract
Subcellular biomolecular localization is critical for the metabolic and structural properties of the cell. The functional implications of the spatiotemporal distribution of protein complexes during the bacterial cell cycle have long been acknowledged; however, the molecular mechanisms for generating and maintaining their dynamic localization in bacteria are not completely understood. Here we demonstrate that the trans-envelope Tol-Pal complex, a widely conserved component of the cell envelope of Gram-negative bacteria, is required to maintain the polar positioning of chemoreceptor clusters in Escherichia coli. Localization of the chemoreceptors was independent of phospholipid composition of the membrane and the curvature of the cell wall. Instead, our data indicate that chemoreceptors interact with components of the Tol-Pal complex and that this interaction is required to polarly localize chemoreceptor clusters. We found that disruption of the Tol-Pal complex perturbs the polar localization of chemoreceptors, alters cell motility, and affects chemotaxis. We propose that the E. coli Tol-Pal complex restricts mobility of the chemoreceptor clusters at the cell poles and may be involved in regulatory mechanisms that co-ordinate cell division and segregation of the chemosensory machinery.
Collapse
Affiliation(s)
- Thiago M A Santos
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | | | | | | | | |
Collapse
|
19
|
BopA does not have a major role in the adhesion of Bifidobacterium bifidum to intestinal epithelial cells, extracellular matrix proteins, and mucus. Appl Environ Microbiol 2013; 79:6989-97. [PMID: 24014530 DOI: 10.1128/aem.01993-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ability of bifidobacteria to adhere to the intestine of the human host is considered to be important for efficient colonization and achieving probiotic effects. Bifidobacterium bifidum strains DSM20456 and MIMBb75 adhere well to the human intestinal cell lines Caco-2 and HT-29. The surface lipoprotein BopA was previously described to be involved in mediating adherence of B. bifidum to epithelial cells, but thioacylated, purified BopA inhibited the adhesion of B. bifidum to epithelial cells in competitive adhesion assays only at very high concentrations, indicating an unspecific effect. In this study, the role of BopA in the adhesion of B. bifidum was readdressed. The gene encoding BopA was cloned and expressed without its lipobox and hydrophobic signal peptide in Escherichia coli, and an antiserum against the recombinant BopA was produced. The antiserum was used to demonstrate the abundant localization of BopA on the cell surface of B. bifidum. However, blocking of B. bifidum BopA with specific antiserum did not reduce adhesion of bacteria to epithelial cell lines, arguing that BopA is not an adhesin. Also, adhesion of B. bifidum to human colonic mucin and fibronectin was found to be BopA independent. The recombinant BopA bound only moderately to human epithelial cells and colonic mucus, and it failed to bind to fibronectin. Thus, our results contrast the earlier findings on the major role of BopA in adhesion, indicating that the strong adhesion of B. bifidum to epithelial cell lines is BopA independent.
Collapse
|
20
|
Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane. Proc Natl Acad Sci U S A 2013; 110:11553-8. [PMID: 23798405 DOI: 10.1073/pnas.1304243110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB-ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism.
Collapse
|
21
|
Neumeyer A, Hübschmann T, Müller S, Frunzke J. Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry. Microb Biotechnol 2012; 6:157-67. [PMID: 23279937 PMCID: PMC3917458 DOI: 10.1111/1751-7915.12018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/31/2012] [Accepted: 11/03/2012] [Indexed: 11/29/2022] Open
Abstract
Phenotypic variation of microbial populations is a well-known phenomenon and may have significant impact on the success of industrial bioprocesses. Flow cytometry (FC) and the large repertoire of fluorescent dyes bring the high-throughput analysis of multiple parameters in single bacterial cells into reach. In this study, we evaluated a set of different fluorescent dyes for suitability in FC single cell analysis of the biotechnological platform organism Corynebacterium glutamicum. Already simple scattering properties of C. glutamicum cells in the flow cytometer were shown to provide valuable information on the growth activity of analysed cells. Furthermore, we used DAPI staining for a FC-based determination of the DNA content of C. glutamicum cells grown on standard minimal or complex media. Characteristic DNA patterns were observed mirroring the typical uncoupled DNA synthesis in the logarithmic (log) growth phase and are in agreement with a symmetric type of cell division of C. glutamicum. Application of the fluorescent dyes Syto 9, propidium iodide, and DiOC2(3) allowed the identification of subpopulations with reduced viability and membrane potential within early log and stationary phase populations. The presented data highlight the potential of FC-based analyses for online monitoring of C. glutamicum bioprocesses and provide a first reference for future applications and protocols.
Collapse
Affiliation(s)
- Andrea Neumeyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | |
Collapse
|
22
|
Li G, Young KD. Isolation and identification of new inner membrane-associated proteins that localize to cell poles inEscherichia coli. Mol Microbiol 2012; 84:276-95. [DOI: 10.1111/j.1365-2958.2012.08021.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Briegel A, Beeby M, Thanbichler M, Jensen GJ. Activated chemoreceptor arrays remain intact and hexagonally packed. Mol Microbiol 2011; 82:748-57. [PMID: 21992450 PMCID: PMC3641884 DOI: 10.1111/j.1365-2958.2011.07854.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial chemoreceptors cluster into exquisitively sensitive, tunable, highly ordered, polar arrays. While these arrays serve as paradigms of cell signalling in general, it remains unclear what conformational changes transduce signals from the periplasmic tips, where attractants and repellents bind, to the cytoplasmic signalling domains. Conflicting reports support and contest the hypothesis that activation causes large changes in the packing arrangement of the arrays, up to and including their complete disassembly. Using electron cryotomography, here we show that in Caulobacter crescentus, chemoreceptor arrays in cells grown in different media and immediately after exposure to the attractant galactose all exhibit the same 12 nm hexagonal packing arrangement, array size and other structural parameters. ΔcheB and ΔcheR mutants mimicking attractant- or repellent-bound states prior to adaptation also show the same lattice structure. We conclude that signal transduction and amplification must be accomplished through only small, nanoscale conformational changes.
Collapse
Affiliation(s)
- Ariane Briegel
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
24
|
Spitzer J. From water and ions to crowded biomacromolecules: in vivo structuring of a prokaryotic cell. Microbiol Mol Biol Rev 2011; 75:491-506, second page of table of contents. [PMID: 21885682 PMCID: PMC3165543 DOI: 10.1128/mmbr.00010-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions and processes which structure prokaryotic cytoplasm (water, ions, metabolites, and biomacromolecules) and ensure the fidelity of the cell cycle are reviewed from a physicochemical perspective. Recent spectroscopic and biological evidence shows that water has no active structuring role in the cytoplasm, an unnecessary notion still entertained in the literature; water acts only as a normal solvent and biochemical reactant. Subcellular structuring arises from localizations and interactions of biomacromolecules and from the growth and modifications of their surfaces by catalytic reactions. Biomacromolecular crowding is a fundamental physicochemical characteristic of cells in vivo. Though some biochemical and physiological effects of crowding (excluded volume effect) have been documented, crowding assays with polyglycols, dextrans, etc., do not properly mimic the compositional variety of biomacromolecules in vivo. In vitro crowding assays are now being designed with proteins, which better reflect biomacromolecular environments in vivo, allowing for hydrophobic bonding and screened electrostatic interactions. I elaborate further the concept of complex vectorial biochemistry, where crowded biomacromolecules structure the cytosol into electrolyte pathways and nanopools that electrochemically "wire" the cell. Noncovalent attractions between biomacromolecules transiently supercrowd biomacromolecules into vectorial, semiconducting multiplexes with a high (35 to 95%)-volume fraction of biomacromolecules; consequently, reservoirs of less crowded cytosol appear in order to maintain the experimental average crowding of ∼25% volume fraction. This nonuniform crowding model allows for fast diffusion of biomacromolecules in the uncrowded cytosolic reservoirs, while the supercrowded vectorial multiplexes conserve the remarkable repeatability of the cell cycle by preventing confusing cross talk of concurrent biochemical reactions.
Collapse
Affiliation(s)
- Jan Spitzer
- Mallard Creek Polymers, Inc., 14700 Mallard Creek Road, Charlotte, NC 28262, USA.
| |
Collapse
|
25
|
Sabate R, de Groot NS, Ventura S. Protein folding and aggregation in bacteria. Cell Mol Life Sci 2010; 67:2695-715. [PMID: 20358253 PMCID: PMC11115605 DOI: 10.1007/s00018-010-0344-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/19/2010] [Accepted: 03/05/2010] [Indexed: 01/31/2023]
Abstract
Proteins might experience many conformational changes and interactions during their lifetimes, from their synthesis at ribosomes to their controlled degradation. Because, in most cases, only folded proteins are functional, protein folding in bacteria is tightly controlled genetically, transcriptionally, and at the protein sequence level. In addition, important cellular machinery assists the folding of polypeptides to avoid misfolding and ensure the attainment of functional structures. When these redundant protective strategies are overcome, misfolded polypeptides are recruited into insoluble inclusion bodies. The protein embedded in these intracellular deposits might display different conformations including functional and beta-sheet-rich structures. The latter assemblies are similar to the amyloid fibrils characteristic of several human neurodegenerative diseases. Interestingly, bacteria exploit the same structural principles for functional properties such as adhesion or cytotoxicity. Overall, this review illustrates how prokaryotic organisms might provide the bedrock on which to understand the complexity of protein folding and aggregation in the cell.
Collapse
Affiliation(s)
- Raimon Sabate
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Natalia S. de Groot
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
26
|
Li C, Xu H, Zhang K, Liang FT. Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity. Mol Microbiol 2010; 75:1563-76. [PMID: 20180908 DOI: 10.1111/j.1365-2958.2010.07078.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The flagellar motor switch complex protein FliG plays an essential role in flagella biosynthesis and motility. In most motile bacteria, only one fliG homologue is present in the genome. However, several spirochete species have two putative fliG genes (referred to as fliG1 and fliG2) and their roles in flagella assembly and motility remain unknown. In this report, the Lyme disease spirochete Borrelia burgdorferi was used as a genetic model to investigate the roles of these two fliG homologues. It was found that fliG2 encodes a typical motor switch complex protein that is required for the flagellation and motility of B. burgdorferi. In contrast, the function of fliG1 is quite unique. Disruption of fliG1 did not affect flagellation and the mutant was still motile but failed to translate in highly viscous media. GFP-fusion and motion tracking analyses revealed that FliG1 asymmetrically locates at one end of cells and the loss of fliG1 somehow impacted one bundle of flagella rotation. In addition, animal studies demonstrated that the fliG1- mutant was quickly cleared after inoculation into the murine host, which highlights the importance of the ability to swim in highly viscous media in the infectivity of B. burgdorferi and probably other pathogenic spirochetes.
Collapse
Affiliation(s)
- Chunhao Li
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
Chemoreceptors are key components of the high-performance signal transduction system that controls bacterial chemotaxis. Chemoreceptors are typically localized in a cluster at the cell pole, where interactions among the receptors in the cluster are thought to contribute to the high sensitivity, wide dynamic range, and precise adaptation of the signaling system. Previous structural and genomic studies have produced conflicting models, however, for the arrangement of the chemoreceptors in the clusters. Using whole-cell electron cryo-tomography, here we show that chemoreceptors of different classes and in many different species representing several major bacterial phyla are all arranged into a highly conserved, 12-nm hexagonal array consistent with the proposed "trimer of dimers" organization. The various observed lengths of the receptors confirm current models for the methylation, flexible bundle, signaling, and linker sub-domains in vivo. Our results suggest that the basic mechanism and function of receptor clustering is universal among bacterial species and was thus conserved during evolution.
Collapse
|
28
|
Abstract
Mycoplasmas that are known to exhibit gliding motility possess a differentiated tip structure. This polar organelle mediates cytadherence and gliding motor activity and contains a cytoskeleton-like component that provides structural support. Here, we describe gliding motility and a unique cytoskeleton in Mycoplasma insons, which lacks any obviously differentiated tip structure.
Collapse
|
29
|
Yi J, Schmidt J, Chien A, Montemagno CD. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization. NANOTECHNOLOGY 2009; 20:085101. [PMID: 19417437 DOI: 10.1088/0957-4484/20/8/085101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.
Collapse
Affiliation(s)
- Jinsoo Yi
- Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, 7523 Boelter Hall, Los Angeles, CA 90095-1600, USA
| | | | | | | |
Collapse
|
30
|
Sciara MI, Spagnuolo C, Jares-Erijman E, García Véscovi E. Cytolocalization of the PhoP response regulator in Salmonella enterica: modulation by extracellular Mg2+ and by the SCV environment. Mol Microbiol 2008; 70:479-93. [PMID: 18761685 DOI: 10.1111/j.1365-2958.2008.06427.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The PhoP/PhoQ two-component system plays an essential role regulating numerous virulence phenotypes in Salmonella enterica. Previous work showed that PhoQ, the sensor protein, switches between the kinase- and the phosphatase-dominant state in response to environmental Mg2+ availability. This switch defines the PhoP phosphorylation status and, as a result, the transcriptional activity of this regulator. In this work, using the FlAsH labelling technique, we examine PhoP cytolocalization in response to extracellular Mg2+ limitation in vitro and to the Salmonella-containing vacuole (SCV) environment in macrophage cells. We demonstrate that in these PhoP/PhoQ-inducing environments PhoP displays preferential localization to one cell pole, while being homogeneously distributed in the bacterial cytoplasm in repressing conditions. Polar localization is lost in the absence of PhoQ or when a non-phosphorylatable PhoP(D52A) mutant is expressed. However, when PhoP transcriptional activation is achieved in a Mg2+- and PhoQ-independent manner, PhoP regains asymmetric polar localization. In addition, we show that, in the analysed conditions, PhoQ cellular distribution does not parallel PhoP location pattern. These findings reveal that PhoP cellular location is dynamic and conditioned by its environmentally defined transcriptional status, showing a new insight in the PhoP/PhoQ system mechanism.
Collapse
Affiliation(s)
- Mariela I Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | | |
Collapse
|
31
|
Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP. Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I: The Single Cell. Bull Math Biol 2008; 70:1525-69. [DOI: 10.1007/s11538-008-9321-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 06/13/2007] [Indexed: 10/21/2022]
|
32
|
Göhler A, Xiong G, Paulsen S, Trentmann G, Maser E. Testosterone-inducible regulator is a kinase that drives steroid sensing and metabolism in Comamonas testosteroni. J Biol Chem 2008; 283:17380-90. [PMID: 18424443 DOI: 10.1074/jbc.m710166200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mechanism of gene regulation by steroids in bacteria is still a mystery. We use steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) as a reporter system to study steroid signaling in Comamonas testosteroni. In previous investigations we cloned and characterized the 3alpha-HSD/CR-encoding gene, hsdA. In addition, we identified two negative regulator genes (repA and repB) in the vicinity of hsdA, the protein products which repress hsdA expression on the level of transcription and translation, respectively. Recently, a positive regulator of hsdA expression, TeiR (testosterone-inducible regulator), was found by transposon mutagenesis, but the mode of its action remained obscure. In the present work we produced a TeiR-green fluorescent fusion protein and showed that TeiR is a membrane protein with asymmetrical localization at one of the cell poles of C. testosteroni. Knock-out mutants of the teiR gene revealed that TeiR provides swimming and twitching motility of C. testosteroni to the steroid substrate source. TeiR also mediated an induced expression of 3alpha-HSD/CR which was paralleled by an enhanced catabolism of testosterone. We also found that TeiR responds to a variety of different steroids other than testosterone. Biochemical analysis with several deletion mutants of the teiR gene revealed TeiR to consist of three different functional domains, an N-terminal domain important for membrane association, a central steroid binding site, and a C-terminal part mediating TeiR function. Finally, we could demonstrate that TeiR works as a kinase in the steroid signaling chain in C. testosteroni. Overall, we provide evidence that TeiR mediates steroid sensing and metabolism in C. testosteroni via its steroid binding and kinase activity.
Collapse
Affiliation(s)
- André Göhler
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Strasse 10, 24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
33
|
Briegel A, Ding HJ, Li Z, Werner J, Gitai Z, Dias DP, Jensen RB, Jensen GJ. Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol Microbiol 2008; 69:30-41. [PMID: 18363791 DOI: 10.1111/j.1365-2958.2008.06219.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new method for recording both fluorescence and cryo-EM images of small bacterial cells was developed and used to identify chemoreceptor arrays in cryotomograms of intact Caulobacter crescentus cells. We show that in wild-type cells preserved in a near-native state, the chemoreceptors are hexagonally packed with a lattice spacing of 12 nm, just a few tens of nanometers away from the flagellar motor that they control. The arrays were always found on the convex side of the cell, further demonstrating that Caulobacter cells maintain dorsal/ventral as well as anterior/posterior asymmetry. Placing the known crystal structure of a trimer of receptor dimers at each vertex of the lattice accounts well for the density and agrees with other constraints. Based on this model for the arrangement of receptors, there are between one and two thousand receptors per array.
Collapse
Affiliation(s)
- Ariane Briegel
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Den Blaauwen T, de Pedro MA, Nguyen-Distèche M, Ayala JA. Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 2008; 32:321-44. [DOI: 10.1111/j.1574-6976.2007.00090.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Fujinami S, Sato T, Trimmer JS, Spiller BW, Clapham DE, Krulwich TA, Kawagishi I, Ito M. The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. MICROBIOLOGY-SGM 2008; 153:4027-4038. [PMID: 18048917 DOI: 10.1099/mic.0.2007/012070-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Na(V)BP, found in alkaliphilic Bacillus pseudofirmus OF4, is a member of the bacterial voltage-gated Na(+) channel superfamily. The alkaliphile requires Na(V)BP for normal chemotaxis responses and for optimal pH homeostasis during a shift to alkaline conditions at suboptimally low Na(+) concentrations. We hypothesized that interaction of Na(V)BP with one or more other proteins in vivo, specifically methyl-accepting chemotaxis proteins (MCPs), is involved in activation of the channel under the pH conditions that exist in the extremophile and could underpin its role in chemotaxis; MCPs transduce chemotactic signals and generally localize to cell poles of rod-shaped cells. Here, immunofluorescence microscopy and fluorescent protein fusion studies showed that an alkaliphile protein (designated McpX) that cross-reacts with antibodies raised against Bacillus subtilis McpB co-localizes with Na(V)BP at the cell poles of B. pseudofirmus OF4. In a mutant in which Na(V)BP-encoding ncbA is deleted, the content of McpX was close to the wild-type level but McpX was significantly delocalized. A mutant of B. pseudofirmus OF4 was constructed in which cheAW expression was disrupted to assess whether this mutation impaired polar localization of McpX, as expected from studies in Escherichia coli and Salmonella, and, if so, whether Na(V)BP would be similarly affected. Polar localization of both McpX and Na(V)BP was decreased in the cheAW mutant. The results suggest interactions between McpX and Na(V)BP that affect their co-localization. The inverse chemotaxis phenotype of ncbA mutants may result in part from MCP delocalization.
Collapse
Affiliation(s)
- Shun Fujinami
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan
| | - Takako Sato
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka 237-0061, Japan
| | - James S Trimmer
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Benjamin W Spiller
- Howard Hughes Medical Institute, Department of Cardiovascular Research, Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiovascular Research, Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Terry A Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, NY 10029, USA
| | - Ikuro Kawagishi
- Department of Frontier Bioscience, Faculty of Engineering, Hosei University 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan
| |
Collapse
|
36
|
Abstract
The reconstitution of membrane-associated protein complexes poses significant experimental challenges. The core signaling complex in the bacterial chemotaxis system is an illustrative example: The soluble cytoplasmic signaling proteins CheW and CheA bind to heterogeneous clusters of transmembrane receptor proteins, resulting in an assembly that exhibits cooperative kinase regulation. An understanding of the basis for the cooperativity inherent in the receptor/CheW/CheA interaction, as well as other membrane phenomena, can benefit from functional studies under defined conditions. To meet this need, a simple method was developed to assemble functional complexes on lipid membranes. The method employs a receptor cytoplasmic domain fragment (CF) with a histidine tag and liposomes that contain a Ni(2+) -chelating lipid. Assemblies of CF, CheW, and CheA form spontaneously in the presence of these liposomes, which exhibit the salient biochemical functions of kinase stimulation, cooperative regulation, and CheR-mediated receptor methylation. Although ligand binding phenomena cannot be studied directly with this approach, other factors that influence kinase stimulation and receptor methylation can be explored systematically, including receptor density and competition among stimulating and inhibiting receptor domains. The template-directed assembly of proteins leads to relatively well-defined samples that are amenable to analysis by a number of methods, including light scattering, electron microscopy, and fluorescence resonance energy transfer. The approach promises to be applicable to many systems involving membrane-associated proteins.
Collapse
|
37
|
Watt RM, Wang J, Leong M, Kung HF, Cheah KS, Liu D, Danchin A, Huang JD. Visualizing the proteome of Escherichia coli: an efficient and versatile method for labeling chromosomal coding DNA sequences (CDSs) with fluorescent protein genes. Nucleic Acids Res 2007; 35:e37. [PMID: 17272300 PMCID: PMC1874593 DOI: 10.1093/nar/gkl1158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To investigate the feasibility of conducting a genomic-scale protein labeling and localization study in Escherichia coli, a representative subset of 23 coding DNA sequences (CDSs) was selected for chromosomal tagging with one or more fluorescent protein genes (EGFP, EYFP, mRFP1, DsRed2). We used λ-Red recombination to precisely and efficiently position PCR-generated DNA targeting cassettes containing a fluorescent protein gene and an antibiotic resistance marker, at the C-termini of the CDSs of interest, creating in-frame fusions under the control of their native promoters. We incorporated cre/loxP and flpe/frt technology to enable multiple rounds of chromosomal tagging events to be performed sequentially with minimal disruption to the target locus, thus allowing sets of proteins to be co-localized within the cell. The visualization of labeled proteins in live E. coli cells using fluorescence microscopy revealed a striking variety of distributions including: membrane and nucleoid association, polar foci and diffuse cytoplasmic localization. Fifty of the fifty-two independent targeting experiments performed were successful, and 21 of the 23 selected CDSs could be fluorescently visualized. Our results show that E. coli has an organized and dynamic proteome, and demonstrate that this approach is applicable for tagging and (co-) localizing CDSs on a genome-wide scale.
Collapse
Affiliation(s)
- Rory M. Watt
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jing Wang
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Meikid Leong
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Hsiang-fu Kung
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kathryn S.E. Cheah
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Depei Liu
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Antoine Danchin
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jian-Dong Huang
- Open Laboratory of Chemical Biology, The Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China, Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China, The Center for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, P.R. China, Unité GGB, CNRS URA 2171, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France and HKU-Pasteur Research Centre, Dexter HC Man Building, 8, Sassoon Road, Pokfulam, Hong Kong SAR, China
- *To whom correspondence should be addressed. (+852) 2819 2810(+852) 2855 1254
| |
Collapse
|
38
|
Kusumoto A, Kamisaka K, Yakushi T, Terashima H, Shinohara A, Homma M. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. J Biochem 2007; 139:113-21. [PMID: 16428326 DOI: 10.1093/jb/mvj010] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The number and location of bacterial flagella vary with the species. The Vibrio alginolyticus cell has a single polar flagellum, which is driven by sodium ions. We selected mutants on the basis of reduced swarming ability on soft agar plates. Among them, we found two mutants with multiple polar flagella, and named them KK148 and NMB155. In Pseudomonas species, it is known that FlhF and FleN, which are FtsY and MinD homologs, respectively, are involved in regulation of flagellar placement and number, respectively. We cloned homologous genes of V. alginolyticus, flhF and flhG. KK148 cells had a nonsense mutation in flhG; cells expressing transgenic flhG recovered the swarming ability and had a reduced number of polar flagella. NMB155 cells did not have a mutation in either flhF or flhG. In wild-type cells, expression of flhF increased the number of polar flagella; in contrast, expression of flhG reduced both the number of polar flagella and the swarming ability. These results suggest that FlhG negatively regulates the number of polar flagella in V. alginolyticus. KK148 cells expressing both flhF and flhG exhibited fewer polar flagella and better swarming ability than KK148 cells expressing flhG alone, suggesting that FlhG acts with FlhF.
Collapse
Affiliation(s)
- Akiko Kusumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602
| | | | | | | | | | | |
Collapse
|
39
|
Shi L, Günther S, Hübschmann T, Wick LY, Harms H, Müller S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 2007; 71:592-8. [PMID: 17421025 DOI: 10.1002/cyto.a.20402] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Viability measurements of individual bacteria are applied in various scopes of research and industry using approaches where propidium iodide (PI) serves as dead cell indicator. The reliability of PI uptake as a cell viability indicator for dead (PI permeable) and viable (PI impermeable) bacteria was tested using two soil bacteria, the gram(-) Sphingomonas sp. LB126 and the gram(+) Mycobacterium frederiksbergense LB501T. METHODS Bacterial proliferation activities observed viaDAPI and Hoechst 33342 staining were linked to the energy charge and the proportion of dead cells as obtained by diOC(6) (3)-staining and PI-uptake, respectively. Calibration and verification experiments were performed using batch cultures grown on different substrates. RESULTS PI uptake depended on the physiological state of the bacterial cells. Unexpectedly, up to 40% of both strains were stained by PI during early exponential growth on glucose when compared to 2-5% of cells in the early stationary phase of growth. CONCLUSIONS The results question the utility of PI as a universal indicator for the viability of (environmental) bacteria. It rather appears that in addition to nonviable cells, PI also stains growing cells of Sphingomonas sp. and M. frederiksbergense during a short period of their life cycle.
Collapse
Affiliation(s)
- Lei Shi
- Department of Environmental Microbiology, UFZ, Helmholtz Centre for Environmental Research, Leipzig-Halle, 04318 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The recent development of specific probes for lipid molecules has led to the discovery of lipid domains in bacterial membranes, that is, of membrane areas differing in lipid composition. A view of the membrane as a patchwork is replacing the assumption of lipid homogeneity inherent in the fluid mosaic model of Singer and Nicolson (Science 1972, 175: 720-731). If thus membranes have complex lipid structure, questions arise about how it is generated and maintained, and what its function might be. How do lipid domains relate to the functionally distinct regions in bacterial cells as they are identified by protein localization techniques? This review assesses the current knowledge on the existence of cardiolipin (CL) and phosphatidylethanolamine (PE) domains in bacterial cell membranes and on the specific cellular localization of certain membrane proteins, which include phospholipid synthases, and discusses possible mechanisms, both chemical and physiological, for the formation of the lipid domains. We propose that bacterial membranes contain a mosaic of microdomains of CL and PE, which are to a significant extent self-assembled according to their respective intrinsic chemical characteristics. We extend the discussion to the possible relevance of the domains to specific cellular processes, including cell division and sporulation.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Technology, Saitama University, 255 Shimo-ohkubo, Saitama 338-8570, Japan.
| | | | | | | |
Collapse
|
41
|
Perez E, Stock AM. Characterization of the Thermotoga maritima chemotaxis methylation system that lacks pentapeptide-dependent methyltransferase CheR:MCP tethering. Mol Microbiol 2006; 63:363-78. [PMID: 17163981 PMCID: PMC3645907 DOI: 10.1111/j.1365-2958.2006.05518.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sensory adaptation in bacterial chemotaxis is mediated by covalent modifications of specific glutamate and glutamine residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli and Salmonella enterica, efficient methylation of MCPs depends on the localization of methyltransferase CheR to MCP clusters through an interaction between the CheR beta-subdomain and a pentapeptide sequence (NWETF or NWESF) at the C-terminus of the MCP. In vitro methylation analyses utilizing S. enterica and Thermotoga maritima CheR proteins and MCPs indicate that MCP methylation in T. maritima occurs independently of a pentapeptide-binding motif. Kinetic and binding measurements demonstrate that despite efficient methylation, the interaction between T. maritima CheR and T. maritima MCPs is of relatively low affinity. Comparative protein sequence analyses of CheR beta-subdomains from organisms having MCPs that contain and/or lack pentapeptide-binding motifs identified key similarities and differences in residue conservation, suggesting the existence of two distinct classes of CheR proteins: pentapeptide-dependent and pentapeptide-independent methyltransferases. Analysis of MCP C-terminal ends showed that only approximately 10% of MCPs contain a putative C-terminal binding motif, the majority of which are restricted to the different proteobacteria classes (alpha, beta, gamma, delta). These findings suggest that tethering of CheR to MCPs is a relatively recent event in evolution and that the pentapeptide-independent methylation system is more common than the well-characterized pentapeptide-dependent methylation system.
Collapse
Affiliation(s)
- Eduardo Perez
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Howard Hughes Medical Institute, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Corresponding Author: Mailing address: CABM, 679 Hoes Lane, Piscataway, NJ 08854-5627. Phone: (732) 235-4844. Fax: (732) 235-5289.
| |
Collapse
|
42
|
Abstract
Why do bacteria have shape? Is morphology valuable or just a trivial secondary characteristic? Why should bacteria have one shape instead of another? Three broad considerations suggest that bacterial shapes are not accidental but are biologically important: cells adopt uniform morphologies from among a wide variety of possibilities, some cells modify their shape as conditions demand, and morphology can be tracked through evolutionary lineages. All of these imply that shape is a selectable feature that aids survival. The aim of this review is to spell out the physical, environmental, and biological forces that favor different bacterial morphologies and which, therefore, contribute to natural selection. Specifically, cell shape is driven by eight general considerations: nutrient access, cell division and segregation, attachment to surfaces, passive dispersal, active motility, polar differentiation, the need to escape predators, and the advantages of cellular differentiation. Bacteria respond to these forces by performing a type of calculus, integrating over a number of environmental and behavioral factors to produce a size and shape that are optimal for the circumstances in which they live. Just as we are beginning to answer how bacteria create their shapes, it seems reasonable and essential that we expand our efforts to understand why they do so.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
43
|
Shiomi D, Yoshimoto M, Homma M, Kawagishi I. Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol Microbiol 2006; 60:894-906. [PMID: 16677301 PMCID: PMC1513513 DOI: 10.1111/j.1365-2958.2006.05145.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In Escherichia coli, chemoreceptor clustering at a cell pole seems critical for signal amplification and adaptation. However, little is known about the mechanism of localization itself. Here we examined whether the aspartate chemoreceptor (Tar) is inserted directly into the polar membrane by using its fusion to green fluorescent protein (GFP). After induction of Tar–GFP, fluorescent spots first appeared in lateral membrane regions, and later cell poles became predominantly fluorescent. Unexpectedly, Tar–GFP showed a helical arrangement in lateral regions, which was more apparent when a Tar–GFP derivative with two cysteine residues in the periplasmic domain was cross-linked to form higher oligomers. Moreover, similar distribution was observed even when the cytoplasmic domain of the double cysteine Tar–GFP mutant was replaced by that of the kinase EnvZ, which does not localize to a pole. Observation of GFP–SecE and a translocation-defective MalE–GFP mutant, as well as indirect immunofluorescence microscopy on SecG, suggested that the general protein translocation machinery (Sec) itself is arranged into a helical array, with which Tar is transiently associated. The Sec coil appeared distinct from the MreB coil, an actin-like cytoskeleton. These findings will shed new light on the mechanisms underlying spatial organization of membrane proteins in E. coli.
Collapse
Affiliation(s)
- Daisuke Shiomi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityChikusa-ku, Nagoya 464-8602, Japan
| | - Masayuki Yoshimoto
- Division of Biological Science, Graduate School of Science, Nagoya UniversityChikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya UniversityChikusa-ku, Nagoya 464-8602, Japan
| | - Ikuro Kawagishi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityChikusa-ku, Nagoya 464-8602, Japan
- Institute for Advanced Research, Nagoya UniversityChikusa-ku, Nagoya 464-8602, Japan
- For correspondence. E-mail ; Tel. (+81) 52 789 2993; Fax (+81) 52 789 3001
| |
Collapse
|
44
|
Asinas AE, Weis RM. Competitive and cooperative interactions in receptor signaling complexes. J Biol Chem 2006; 281:30512-23. [PMID: 16920717 DOI: 10.1074/jbc.m606267200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacterial chemotaxis, clustered transmembrane receptors and the adaptor protein CheW regulate the kinase CheA. Receptors outnumber CheA, yet it is poorly understood how interactions among receptors contribute to regulation. To address this problem, receptor clusters were simulated using liposomes decorated with the cytoplasmic domains of receptors, which supported CheA binding and stimulation. Competitive and cooperative interactions were revealed through the use of known receptor signaling mutants, which were used in mixtures with the wild type domain. Competitive effects among the receptor domains sorted cleanly into two categories defined by either stronger or weaker interactions with CheA. Cooperative effects were also evident in CheA binding and activity. In the transition from the stimulating to the inhibiting states, both the cooperativity of the transition and the persistence of stimulation by the wild type domain increased with receptor modification, as in the intact receptor. We conclude that competitive and cooperative receptor interactions both contribute to CheA regulation and that liposome-mediated assembly is effective in addressing these general membrane phenomena.
Collapse
Affiliation(s)
- Abdalin E Asinas
- Department of Chemistry, the University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
45
|
Abstract
Bacterial chemotaxis systems have cooperatively interacting clusters of transmembrane receptors and signaling proteins to detect, amplify, integrate and adapt to environmental signals. A recent study provides experimental data to construct a new model of the signaling complex.
Collapse
|
46
|
Abstract
We have used a fusion of GFP to the response regulator OmpR to image the spatial distribution of OmpR in live cells of Escherichia coli. We observed foci of increased OmpR-GFP fluorescence that appear to be due to interactions with the histidine kinase EnvZ. We also observed colocalization of OmpR-GFP with clusters of plasmids carrying OmpR binding sites, which enabled us to develop a simple method for imaging the binding of OmpR to DNA in live cells. We used the peak fluorescence intensity within cells to quantify the extent of OmpR-GFP localization either due to interactions with EnvZ or due to binding DNA. With these assays we compared the effects of osmolarity and procaine, both of which are believed to modulate EnvZ activity. Our results suggest that, at least under our growth conditions, procaine activates EnvZ-OmpR signalling whereas osmolarity has, at best, a weak effect on the EnvZ-OmpR system.
Collapse
Affiliation(s)
- Eric Batchelor
- Department of Physics, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
47
|
Park SY, Borbat PP, Gonzalez-Bonet G, Bhatnagar J, Pollard AM, Freed JH, Bilwes AM, Crane BR. Reconstruction of the chemotaxis receptor–kinase assembly. Nat Struct Mol Biol 2006; 13:400-7. [PMID: 16622408 DOI: 10.1038/nsmb1085] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 03/13/2006] [Indexed: 11/09/2022]
Abstract
In bacterial chemotaxis, an assembly of transmembrane receptors, the CheA histidine kinase and the adaptor protein CheW processes environmental stimuli to regulate motility. The structure of a Thermotoga maritima receptor cytoplasmic domain defines CheA interaction regions and metal ion-coordinating charge centers that undergo chemical modification to tune receptor response. Dimeric CheA-CheW, defined by crystallography and pulsed ESR, positions two CheWs to form a cleft that is lined with residues important for receptor interactions and sized to clamp one receptor dimer. CheW residues involved in kinase activation map to interfaces that orient the CheW clamps. CheA regulatory domains associate in crystals through conserved hydrophobic surfaces. Such CheA self-contacts align the CheW receptor clamps for binding receptor tips. Linking layers of ternary complexes with close-packed receptors generates a lattice with reasonable component ratios, cooperative interactions among receptors and accessible sites for modification enzymes.
Collapse
Affiliation(s)
- Sang-Youn Park
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rafelski SM, Theriot JA. Mechanism of polarization of Listeria monocytogenes surface protein ActA. Mol Microbiol 2006; 59:1262-79. [PMID: 16430699 PMCID: PMC1413586 DOI: 10.1111/j.1365-2958.2006.05025.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2005] [Indexed: 11/26/2022]
Abstract
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActA-RFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth.
Collapse
Affiliation(s)
- Susanne M Rafelski
- Departments of Biochemistry and Stanford University Medical Center279 W. Campus Dr, Stanford, CA 94305-5307, USA
| | - Julie A Theriot
- Microbiology and Immunology, Stanford University Medical Center279 W. Campus Dr, Stanford, CA 94305-5307, USA.
| |
Collapse
|
49
|
Shiomi D, Banno S, Homma M, Kawagishi I. Stabilization of polar localization of a chemoreceptor via its covalent modifications and its communication with a different chemoreceptor. J Bacteriol 2005; 187:7647-54. [PMID: 16267289 PMCID: PMC1280290 DOI: 10.1128/jb.187.22.7647-7654.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the chemotaxis of Escherichia coli, polar clustering of the chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW is thought to be involved in signal amplification and adaptation. However, the mechanism that leads to the polar localization of the receptor is still largely unknown. In this study, we examined the effect of receptor covalent modification on the polar localization of the aspartate chemoreceptor Tar fused to green fluorescent protein (GFP). Amidation (and presumably methylation) of Tar-GFP enhanced its own polar localization, although the effect was small. The slight but significant effect of amidation on receptor localization was reinforced by the fact that localization of a noncatalytic mutant version of GFP-CheR that targets to the C-terminal pentapeptide sequence of Tar was similarly facilitated by receptor amidation. Polar localization of the demethylated version of Tar-GFP was also enhanced by increasing levels of the serine chemoreceptor Tsr. The effect of covalent modification on receptor localization by itself may be too small to account for chemotactic adaptation, but receptor modification is suggested to contribute to the molecular assembly of the chemoreceptor/histidine kinase array at a cell pole, presumably by stabilizing the receptor dimer-to-dimer interaction.
Collapse
Affiliation(s)
- Daisuke Shiomi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Japan
| | | | | | | |
Collapse
|
50
|
Bardy SL, Maddock JR. Polar localization of a soluble methyl-accepting protein of Pseudomonas aeruginosa. J Bacteriol 2005; 187:7840-4. [PMID: 16267307 PMCID: PMC1280319 DOI: 10.1128/jb.187.22.7840-7844.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A soluble methyl-accepting chemotaxis protein (MCP) of Pseudomonas aeruginosa, McpS, showed polar localization by immunofluorescence microscopy. Overexpression of McpS resulted in a dominant-negative effect on chemotaxis and caused a loss of polar clustering of the general MCP population. The polar localization of a soluble MCP defines a third, and unexpected, paradigm for cellular MCP localization.
Collapse
Affiliation(s)
- Sonia L Bardy
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|