1
|
Laviña WA, Sakurai SSM, Pontrelli S, Putri SP, Fukusaki E. Metabolomics Analysis Reveals Global Metabolic Changes in the Evolved E. coli Strain with Improved Growth and 1-Butanol Production in Minimal Medium. Metabolites 2020; 10:metabo10050192. [PMID: 32414016 PMCID: PMC7281505 DOI: 10.3390/metabo10050192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
Production of 1-butanol from microorganisms has garnered significant interest due to its prospect as a drop-in biofuel and precursor for a variety of commercially relevant chemicals. Previously, high 1-butanol titer has been reported in Escherichia coli strain JCL166, which contains a modified clostridial 1-butanol pathway. Although conventional and metabolomics-based strain improvement strategies of E. coli strain JCL166 have been successful in improving production in rich medium, 1-butanol titer was severely limited in minimal medium. To further improve growth and consequently 1-butanol production in minimal medium, adaptive laboratory evolution (ALE) using mutD5 mutator plasmid was done on JCL166. Comparative metabolomics analysis of JCL166 and BP1 revealed global perturbations in the evolved strain BP1 compared to JCL166 (44 out of 64 metabolites), encompassing major metabolic pathways such as glycolysis, nucleotide biosynthesis, and CoA-related processes. Collectively, these metabolic changes in BP1 result in improved growth and, consequently, 1-butanol production in minimal medium. Furthermore, we found that the mutation in ihfB caused by ALE had a significant effect on the metabolome profile of the evolved strain. This study demonstrates how metabolomics was utilized for characterization of ALE-developed strains to understand the overall effect of mutations acquired through evolution.
Collapse
Affiliation(s)
- Walter A. Laviña
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines;
| | - Sana Subhan Memon Sakurai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (S.S.M.S.); (S.P.P.)
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, 8092 Zurich, Switzerland;
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (S.S.M.S.); (S.P.P.)
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (S.S.M.S.); (S.P.P.)
- Correspondence: ; Tel.: +81-6-6879-7416
| |
Collapse
|
2
|
Regulation of Expression of Uropathogenic Escherichia coli Nonfimbrial Adhesin TosA by PapB Homolog TosR in Conjunction with H-NS and Lrp. Infect Immun 2016; 84:811-21. [PMID: 26755158 DOI: 10.1128/iai.01302-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022] Open
Abstract
Urinary tract infections (UTIs) are a major burden to human health. The overwhelming majority of UTIs are caused by uropathogenic Escherichia coli (UPEC) strains. Unlike some pathogens, UPEC strains do not have a fixed core set of virulence and fitness factors but do have a variety of adhesins and regulatory pathways. One such UPEC adhesin is the nonfimbrial adhesin TosA, which mediates adherence to the epithelium of the upper urinary tract. The tos operon is AT rich, resides on pathogenicity island aspV, and is not expressed under laboratory conditions. Because of this, we hypothesized that tosA expression is silenced by H-NS. Lrp, based on its prominent function in the regulation of other adhesins, is also hypothesized to contribute to tos operon regulation. Using a variety of in vitro techniques, we mapped both the tos operon promoter and TosR binding sites. We have now identified TosR as a dual regulator of the tos operon, which could control the tos operon in association with H-NS and Lrp. H-NS is a negative regulator of the tos operon, and Lrp positively regulates the tos operon. Exogenous leucine also inhibits Lrp-mediated tos operon positive regulation. In addition, TosR binds to the pap operon, which encodes another important UPEC adhesin, P fimbria. Induction of TosR synthesis reduces production of P fimbria. These studies advance our knowledge of regulation of adhesin expression associated with uropathogen colonization of a host.
Collapse
|
3
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
4
|
Abstract
This review provides a brief review of the current understanding of the structure-function relationship of the Escherichia coli nucleoid developed after the overview by Pettijohn focusing on the physical properties of nucleoids. Isolation of nucleoids requires suppression of DNA expansion by various procedures. The ability to control the expansion of nucleoids in vitro has led to purification of nucleoids for chemical and physical analyses and for high-resolution imaging. Isolated E. coli genomes display a number of individually intertwined supercoiled loops emanating from a central core. Metabolic processes of the DNA double helix lead to three types of topological constraints that all cells must resolve to survive: linking number, catenates, and knots. The major species of nucleoid core protein share functional properties with eukaryotic histones forming chromatin; even the structures are different from histones. Eukaryotic histones play dynamic roles in the remodeling of eukaryotic chromatin, thereby controlling the access of RNA polymerase and transcription factors to promoters. The E. coli genome is tightly packed into the nucleoid, but, at each cell division, the genome must be faithfully replicated, divided, and segregated. Nucleoid activities such as transcription, replication, recombination, and repair are all affected by the structural properties and the special conformations of nucleoid. While it is apparent that much has been learned about the nucleoid, it is also evident that the fundamental interactions organizing the structure of DNA in the nucleoid still need to be clearly defined.
Collapse
|
5
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
6
|
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. J Biotechnol 2012; 158:231-41. [DOI: 10.1016/j.jbiotec.2011.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/13/2011] [Accepted: 06/01/2011] [Indexed: 11/17/2022]
|
7
|
The TonB3 system in the human pathogen Vibrio vulnificus is under the control of the global regulators Lrp and cyclic AMP receptor protein. J Bacteriol 2012; 194:1897-911. [PMID: 22307757 DOI: 10.1128/jb.06614-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
TonB systems transduce the proton motive force of the cytoplasmic membrane to energize substrate transport through a specific TonB-dependent transporter across the outer membrane. Vibrio vulnificus, an opportunistic marine pathogen that can cause a fatal septicemic disease in humans and eels, possesses three TonB systems. While the TonB1 and TonB2 systems are iron regulated, the TonB3 system is induced when the bacterium grows in human serum. In this work we have determined the essential roles of the leucine-responsive protein (Lrp) and cyclic AMP (cAMP) receptor protein (CRP) in the transcriptional activation of this system. Whereas Lrp shows at least four very distinctive DNA binding regions spread out from position -59 to -509, cAMP-CRP binds exclusively in a region centered at position -122.5 from the start point of the transcription. Our results suggest that both proteins bind simultaneously to the region closer to the RNA polymerase binding site. Importantly, we report that the TonB3 system is induced not only by serum but also during growth in minimal medium with glycerol as the sole carbon source and low concentrations of Casamino Acids. In addition to catabolite repression by glucose, l-leucine acts by inhibiting the binding of Lrp to the promoter region, hence preventing transcription of the TonB3 operon. Thus, this TonB system is under the direct control of two global regulators that can integrate different environmental signals (i.e., glucose starvation and the transition between "feast" and "famine"). These results shed light on new mechanisms of regulation for a TonB system that could be widespread in other organisms.
Collapse
|
8
|
Recognition of DNA by the helix-turn-helix global regulatory protein Lrp is modulated by the amino terminus. J Bacteriol 2011; 193:3794-803. [PMID: 21642464 DOI: 10.1128/jb.00191-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The AsnC/Lrp family of regulatory proteins links bacterial and archaeal transcription patterns to metabolism. In Escherichia coli, Lrp regulates approximately 400 genes, over 200 of them directly. In earlier studies, lrp genes from Vibrio cholerae, Proteus mirabilis, and E. coli were introduced into the same E. coli background and yielded overlapping but significantly different regulons. These differences were seen despite amino acid sequence identities of 92% (Vibrio) and 98% (Proteus) to E. coli Lrp, including complete conservation of the helix-turn-helix motifs. The N-terminal region contains many of the sequence differences among these Lrp orthologs, which led us to investigate its role in Lrp function. Through the generation of hybrid proteins, we found that the N-terminal diversity is responsible for some of the differences between orthologs in terms of DNA binding (as revealed by mobility shift assays) and multimerization (as revealed by gel filtration, dynamic light scattering, and analytical ultracentrifugation). These observations indicate that the N-terminal tail plays a significant role in modulating Lrp function, similar to what is seen for a number of other regulatory proteins.
Collapse
|
9
|
Unexpected coregulator range for the global regulator Lrp of Escherichia coli and Proteus mirabilis. J Bacteriol 2010; 193:1054-64. [PMID: 21169483 DOI: 10.1128/jb.01183-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lrp/AsnC family of transcription factors links gene regulation to metabolism in bacteria and archaea. Members of this family, collectively, respond to a wide range of amino acids as coregulators. In Escherichia coli, Lrp regulates over 200 genes directly and is well known to respond to leucine and, to a somewhat lesser extent, alanine. We focused on Lrp from Proteus mirabilis and E. coli, orthologs with 98% identity overall and identical helix-turn-helix motifs, for which a previous study nevertheless found functional differences. Sequence differences between these orthologs, within and adjacent to the amino acid-responsive RAM domain, led us to test for differential sensitivity to coregulatory amino acids. In the course of this investigation, we found, via in vivo reporter fusion assays and in vitro electrophoretic mobility shift experiments, that E. coli Lrp itself responded to a broader range of amino acids than was previously appreciated. In particular, for both the E. coli and P. mirabilis orthologs, Lrp responsiveness to methionine was similar in magnitude to that to leucine. Both Lrp orthologs are also fairly sensitive to Ile, His, and Thr. These observations suggest that Lrp ties gene expression in the Enterobacteriaceae rather extensively to physiological status, as reflected in amino acid pools. These findings also have substantial implications for attempts to model regulatory architecture from transcriptome measurements or to infer such architecture from genome sequences, and they suggest that even well-studied regulators deserve ongoing exploration.
Collapse
|
10
|
Edwards D, de Abreu GCG, Labouriau R. Selecting high-dimensional mixed graphical models using minimal AIC or BIC forests. BMC Bioinformatics 2010; 11:18. [PMID: 20064242 PMCID: PMC2823705 DOI: 10.1186/1471-2105-11-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 01/11/2010] [Indexed: 01/24/2023] Open
Abstract
Background Chow and Liu showed that the maximum likelihood tree for multivariate discrete distributions may be found using a maximum weight spanning tree algorithm, for example Kruskal's algorithm. The efficiency of the algorithm makes it tractable for high-dimensional problems. Results We extend Chow and Liu's approach in two ways: first, to find the forest optimizing a penalized likelihood criterion, for example AIC or BIC, and second, to handle data with both discrete and Gaussian variables. We apply the approach to three datasets: two from gene expression studies and the third from a genetics of gene expression study. The minimal BIC forest supplements a conventional analysis of differential expression by providing a tentative network for the differentially expressed genes. In the genetics of gene expression context the method identifies a network approximating the joint distribution of the DNA markers and the gene expression levels. Conclusions The approach is generally useful as a preliminary step towards understanding the overall dependence structure of high-dimensional discrete and/or continuous data. Trees and forests are unrealistically simple models for biological systems, but can provide useful insights. Uses include the following: identification of distinct connected components, which can be analysed separately (dimension reduction); identification of neighbourhoods for more detailed analyses; as initial models for search algorithms with a larger search space, for example decomposable models or Bayesian networks; and identification of interesting features, such as hub nodes.
Collapse
Affiliation(s)
- David Edwards
- Institute of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Aarhus, Denmark.
| | | | | |
Collapse
|
11
|
Lintner RE, Mishra PK, Srivastava P, Martinez-Vaz BM, Khodursky AB, Blumenthal RM. Limited functional conservation of a global regulator among related bacterial genera: Lrp in Escherichia, Proteus and Vibrio. BMC Microbiol 2008; 8:60. [PMID: 18405378 PMCID: PMC2374795 DOI: 10.1186/1471-2180-8-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 04/11/2008] [Indexed: 02/03/2023] Open
Abstract
Background Bacterial genome sequences are being determined rapidly, but few species are physiologically well characterized. Predicting regulation from genome sequences usually involves extrapolation from better-studied bacteria, using the hypothesis that a conserved regulator, conserved target gene, and predicted regulator-binding site in the target promoter imply conserved regulation between the two species. However many compared organisms are ecologically and physiologically diverse, and the limits of extrapolation have not been well tested. In E. coli K-12 the leucine-responsive regulatory protein (Lrp) affects expression of ~400 genes. Proteus mirabilis and Vibrio cholerae have highly-conserved lrp orthologs (98% and 92% identity to E. coli lrp). The functional equivalence of Lrp from these related species was assessed. Results Heterologous Lrp regulated gltB, livK and lrp transcriptional fusions in an E. coli background in the same general way as the native Lrp, though with significant differences in extent. Microarray analysis of these strains revealed that the heterologous Lrp proteins significantly influence only about half of the genes affected by native Lrp. In P. mirabilis, heterologous Lrp restored swarming, though with some pattern differences. P. mirabilis produced substantially more Lrp than E. coli or V. cholerae under some conditions. Lrp regulation of target gene orthologs differed among the three native hosts. Strikingly, while Lrp negatively regulates its own gene in E. coli, and was shown to do so even more strongly in P. mirabilis, Lrp appears to activate its own gene in V. cholerae. Conclusion The overall similarity of regulatory effects of the Lrp orthologs supports the use of extrapolation between related strains for general purposes. However this study also revealed intrinsic differences even between orthologous regulators sharing >90% overall identity, and 100% identity for the DNA-binding helix-turn-helix motif, as well as differences in the amounts of those regulators. These results suggest that predicting regulation of specific target genes based on genome sequence comparisons alone should be done on a conservative basis.
Collapse
Affiliation(s)
- Robert E Lintner
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Center, Toledo, OH 43614-2598, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR. BMC Microbiol 2007; 7:2. [PMID: 17233899 PMCID: PMC1784095 DOI: 10.1186/1471-2180-7-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/18/2007] [Indexed: 11/10/2022] Open
Abstract
Background The glutamate synthase operon (gltBDF) contributes to one of the two main pathways of ammonia assimilation in Escherichia coli. Of the seven most-global regulators, together affecting expression of about half of all E. coli genes, two were previously shown to exert direct, positive control on gltBDF transcription: Lrp and IHF. The involvement of Lrp is unusual in two respects: first, it is insensitive to the usual coregulator leucine, and second, Lrp binds more than 150 bp upstream of the transcription starting point. There was indirect evidence for involvement of a third global regulator, Crp. Given the physiological importance of gltBDF, and the potential opportunity to learn about integration of global regulatory signals, a combination of in vivo and in vitro approaches was used to investigate the involvement of additional regulatory proteins, and to determine their relative binding positions and potential interactions with one another and with RNA polymerase (RNAP). Results Crp and a more local regulator, ArgR, directly control gltBDF transcription, both acting negatively. Crp-cAMP binds a sequence centered at -65.5 relative to the transcript start. Mutation of conserved nucleotides in the Crp binding site abolishes the Crp-dependent repression. ArgR also binds to the gltBDF promoter region, upstream of the Lrp binding sites, and decreases transcription. RNAP only yields a defined DNAse I footprint under two tested conditions: in the presence of both Lrp and IHF, or in the presence of Crp-cAMP. The DNAse I footprint of RNAP in the presence of Lrp and IHF is altered by ArgR. Conclusion The involvement of nearly half of E. coli's most-global regulatory proteins in the control of gltBDF transcription is striking, but seems consistent with the central metabolic role of this operon. Determining the mechanisms of activation and repression for gltBDF was beyond the scope of this study. However the results are consistent with a model in which IHF bends the DNA to allow stabilizing contacts between Lrp and RNAP, ArgR interferes with such contacts, and Crp introduces an interfering bend in the DNA and/or stabilizes RNAP in a poised but inactive state.
Collapse
|
13
|
Pul U, Wurm R, Wagner R. The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol 2006; 366:900-15. [PMID: 17196617 DOI: 10.1016/j.jmb.2006.11.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/10/2006] [Accepted: 11/21/2006] [Indexed: 11/18/2022]
Abstract
LRP has recently been shown to interact with the regulatory regions of bacterial ribosomal RNA promoters. Here we study details of the LRP-rDNA interaction by gel retardation and high-resolution footprinting techniques. We show that a second regulator for rRNA transcription, H-NS, facilitates the formation of a higher-order LRP-nucleoprotein complex, probably acting transiently as a DNA chaperone. The macromolecular crowding substance ectoine stabilizes the formation of this dynamic complex, while the amino acid leucine, as a metabolic effector, has the opposite effect. DNase I and hydroxyl radical footprint experiments with LRP-DNA complexes reveal a periodic change of the target DNA structure, which implies extensive DNA wrapping reaching into the promoter core region. We show furthermore that LRP binding is able to constrain supercoils, providing a link between DNA topology and regulation. The results support the conclusion that the bacterial DNA-binding protein LRP, assisted by H-NS, forms a repressive nucleoprotein structure involved in regulation of rRNA transcription. The formation of this regulatory structure appears to be directly affected by environmental changes.
Collapse
Affiliation(s)
- Umit Pul
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
14
|
Aeling KA, Opel ML, Steffen NR, Tretyachenko-Ladokhina V, Hatfield GW, Lathrop RH, Senear DF. Indirect recognition in sequence-specific DNA binding by Escherichia coli integration host factor: the role of DNA deformation energy. J Biol Chem 2006; 281:39236-48. [PMID: 17035240 DOI: 10.1074/jbc.m606363200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integration host factor (IHF) is a bacterial histone-like protein whose primary biological role is to condense the bacterial nucleoid and to constrain DNA supercoils. It does so by binding in a sequence-independent manner throughout the genome. However, unlike other structurally related bacterial histone-like proteins, IHF has evolved a sequence-dependent, high affinity DNA-binding motif. The high affinity binding sites are important for the regulation of a wide range of cellular processes. A remarkable feature of IHF is that it employs an indirect readout mechanism to bind and wrap DNA at both the nonspecific and high affinity (sequence-dependent) DNA sites. In this study we assessed the contributions of pre-formed and protein-induced DNA conformations to the energetics of IHF binding. Binding energies determined experimentally were compared with energies predicted for the IHF-induced deformation of the DNA helix (DNA deformation energy) in the IHF-DNA complex. Combinatorial sets of de novo DNA sequences were designed to systematically evaluate the influence of sequence-dependent structural characteristics of the conserved IHF recognition elements of the consensus DNA sequence. We show that IHF recognizes pre-formed conformational characteristics of the consensus DNA sequence at high affinity sites, whereas at all other sites relative affinity is determined by the deformational energy required for nearest-neighbor base pairs to adopt the DNA structure of the bound DNA-IHF complex.
Collapse
Affiliation(s)
- Kimberly A Aeling
- Institute for Genomics and Bioinformatics, Department of Microbiology and Molecular Genetics, School of Medicine, University of California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Lee FKM, Morris C, Hackett J. The Salmonella enterica serovar Typhi Vi capsule and self-association pili share controls on expression. FEMS Microbiol Lett 2006; 261:41-6. [PMID: 16842356 DOI: 10.1111/j.1574-6968.2006.00338.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Salmonella enterica serovar Typhi uses type IVB pili to facilitate eukaryotic cell invasion. Here, we compare environmental and genetic controls on pil operon transcription with those regulating viaB genes required for Vi antigen expression. Transcription of pil occurs only in the late logarithmic and stationary phases of bacterial growth while viaB expression occurs in the logarithmic growth phase. Expression of both viaB and pil was, however, optimal at 100 mM NaCl, and mutations in envZ/ompR, rcsB/rcsC, (but not rcsA), tviA, ihfB or fis affected transcription of both viaB and pil DNA. As both Vi antigen and Type IVB pili facilitate serovar Typhi invasion of human monocytes, an overlap of production controls is logical. It appears that Vi antigen synthesis precedes pilus production.
Collapse
Affiliation(s)
- Francesca K M Lee
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
16
|
Pul U, Wurm R, Lux B, Meltzer M, Menzel A, Wagner R. LRP and H-NS - cooperative partners for transcription regulation atEscherichia colirRNA promoters. Mol Microbiol 2005; 58:864-76. [PMID: 16238633 DOI: 10.1111/j.1365-2958.2005.04873.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of ribosomal RNAs in bacteria is tightly coupled to changes in the environment. This rapid adaptation is the result of several intertwined regulatory networks. The two proteins FIS and H-NS have previously been described to act as antagonistic transcription factors for rRNA synthesis. Here we provide evidence for another player, the regulatory protein LRP, which binds with high specificity to all seven Escherichia coli rRNA P1 promoter upstream regions (UAS). Comparison of the binding properties of LRP and H-NS, and characterization of the stabilities of the various complexes formed with the rRNA UAS regions revealed different binding modes. Binding studies with LRP and H-NS in combination demonstrated that the two proteins interacted with obvious synergism. The efficiency of LRP binding to the rRNA regulatory region is modified by the presence of the effector amino acid leucine, as has been shown for several other operons regulated by this transcription factor. The effect of LRP on the binding of RNA polymerase to the rrnB P1 promoter and in vitro transcription experiments indicated that LRP acts as a transcriptional repressor, thus resembling the activity of H-NS described previously. The results show for the first time that LRP binds to the regulatory region of bacterial rRNA promoters, and very likely contributes in combination with H-NS to the control of rRNA synthesis. From the known properties of LRP a mechanism can be inferred that couples rRNA synthesis to changes in nutritional quality.
Collapse
Affiliation(s)
- Umit Pul
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Sprusansky O, Stirrett K, Skinner D, Denoya C, Westpheling J. The bkdR gene of Streptomyces coelicolor is required for morphogenesis and antibiotic production and encodes a transcriptional regulator of a branched-chain amino acid dehydrogenase complex. J Bacteriol 2005; 187:664-71. [PMID: 15629937 PMCID: PMC543559 DOI: 10.1128/jb.187.2.664-671.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2004] [Accepted: 10/13/2004] [Indexed: 11/20/2022] Open
Abstract
Products from the degradation of the branched-chain amino acids valine, leucine, and isoleucine contribute to the production of a number of important cellular metabolites, including branched-chain fatty acids, ATP and other energy production, cell-cell signaling for morphological development, and the synthesis of precursors for polyketide antibiotics. The first nonreversible reactions in the degradation of all three amino acids are catalyzed by the same branched-chain alpha-keto acid dehydrogenase (BCDH) complex. Actinomycetes are apparently unique among bacteria in that they contain two separate gene clusters, each of which encodes a BCDH enzyme complex. Here, we show that one of these clusters in Streptomyces coelicolor is regulated, at least in part, at the level of transcription by the product of the bkdR gene. The predicted product of this gene is a protein with similarity to a family of proteins that respond to leucine and serve to activate transcription of amino acid utilization operons. Unlike most other members of this class, however, the S. coelicolor bkdR gene product serves to repress transcription, suggesting that the branched-chain amino acids act as inducers rather than coactivators of transcription. BkdR likely responds to the presence of branched-chain amino acids. Its role in transcriptional regulation may be rationalized by the fact that transition from vegetative growth to aerial mycelium production, the first stage of morphological development in these complex bacteria, is coincident with extensive cellular lysis generating abundant amounts of protein that likely serve as the predominant source of carbon and nitrogen for metabolism. We suggest that bkdR plays a key role in the ability of Streptomyces species to sense nutrient availability and redirect metabolism for the utilization of branched-chain amino acids for energy, carbon, and perhaps even morphogen synthesis. A null mutant of bkdR is itself defective in morphogenesis and antibiotic production, suggesting that the role of the bkdR gene product may be more global than specific nutrient utilization.
Collapse
|
18
|
Reitzer L. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. EcoSal Plus 2004; 1. [PMID: 26443364 DOI: 10.1128/ecosalplus.3.6.1.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 06/05/2023]
Abstract
Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C3 and C4 intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of E. coli, K. aerogenes, and S. enterica serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, L-alanine, and D-alanine have multiple transport systems.
Collapse
|
19
|
Abstract
Genome analysis has revealed that members of the Lrp family of transcriptional regulators are widely distributed among prokaryotes, both bacteria and archaea. The archetype Leucine-responsive Regulatory Protein from Escherichia coli is a global regulator involved in modulating a variety of metabolic functions, including the catabolism and anabolism of amino acids as well as pili synthesis. Most Lrp homologues, however, appear to act as specific regulators of amino acid metabolism-related genes. Like most prokaryotic transcriptional regulators, Lrp-like regulators consist of a DNA-binding domain and a ligand-binding domain. The crystal structure of the Pyrococcus furiosus LrpA revealed an N-terminal domain with a common helix-turn-helix fold, and a C-terminal domain with a typical alphabeta-sandwich fold. The latter regulatory domain constitutes a novel ligand-binding site and has been designated RAM. Database analysis reveals that the RAM domain is present in many prokaryotic genomes, potentially encoding (1) Lrp-homologues, when fused to a DNA-binding domain (2) enzymes, when fused as a potential regulatory domain to a catalytic domain, and (3) stand-alone RAM modules with unknown function. The architecture of Lrp regulators with two distinct domains that harbour the regulatory (effector-binding) site and the active (DNA-binding) site, and their separation by a flexible hinge region, suggests a general allosteric switch of Lrp-like regulators.
Collapse
Affiliation(s)
- Arie B Brinkman
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6307 CT Wageningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Prüss BM, Campbell JW, Van Dyk TK, Zhu C, Kogan Y, Matsumura P. FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 2003; 185:534-43. [PMID: 12511500 PMCID: PMC145316 DOI: 10.1128/jb.185.2.534-543.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation by two transcriptional activators of flagellar expression (FlhD and FlhC) and the chemotaxis methyl-accepting protein Aer was studied with glass slide DNA microarrays. An flhD::Kan insertion and an aer deletion were independently introduced into two Escherichia coli K-12 strains, and the effects upon gene regulation were investigated. Altogether, the flhD::Kan insertion altered the expression of 29 operons of known function. Among them was Aer, which in turn regulated a subset of these operons, namely, the ones involved in anaerobic respiration and the Entner-Doudoroff pathway. In addition, FlhD/FlhC repressed enzymes involved in aerobic respiration and regulated many other metabolic enzymes and transporters in an Aer-independent manner. Expression of 12 genes of uncharacterized function was also affected. FlhD increased gltBD, gcvTHP, and ompT expression. The regulation of half of these genes was subsequently confirmed with reporter gene fusions, enzyme assays, and real-time PCR. Growth phenotypes of flhD and flhC mutants were determined with Phenotype MicroArrays and correlated with gene expression.
Collapse
Affiliation(s)
- Birgit M Prüss
- Department of Microbiology and Immunology, University of Illinois at Chicago, 60612-7344, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Santos PM, Leoni L, Di Bartolo I, Zennaro E. Integration host factor is essential for the optimal expression of the styABCD operon in Pseudomonas fluorescens ST. Res Microbiol 2002; 153:527-36. [PMID: 12437214 DOI: 10.1016/s0923-2508(02)01358-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The StyS/StyR two-component regulatory system of Pseudomonas fluorescens ST controls the expression of the styABCD operon coding for the styrene degradation upper pathway. In a previous work we showed that the promoter of the catabolic operon (PstyA) is induced by styrene and repressed to differing extents by organic acids or carbohydrates. In order to study the mechanisms controlling the expression of this operon, we performed a functional analysis on 5' deletions of PstyA by the use of a promoter-probe system. These studies demonstrated that a palindromic region (sty box), located from nucleotides -52 to -37 with respect to the transcriptional start point is essential for PstyA activity. Moreover, additional regulatory regions involved in the modulation of PstyA activity were found along the promoter sequence. In particular, deletion of a putative StyR binding site, homologous to the 3' half of the sty box and located upstream of this box, resulted in 65% reduction of the induction level of the reporter gene. Additionally, we performed bandshift assays with a DNA probe corresponding to PstyA and protein crude extracts from P. fluorescens ST, using specific DNA fragments as competitors. In these experiments we demonstrated that IHF binds an AT-rich region located upstream of the sty box. On the basis of this finding, coupled with the results obtained with PstyA functional analysis, we suggest that the role of the IHF-mediated DNA bend is to bring closer, in an overlapping position, the upstream StyR putative binding site and the downstream sty box, and that the formed complex enhances transcription.
Collapse
|
22
|
Jafri S, Chen S, Calvo JM. ilvIH operon expression in Escherichia coli requires Lrp binding to two distinct regions of DNA. J Bacteriol 2002; 184:5293-300. [PMID: 12218014 PMCID: PMC135361 DOI: 10.1128/jb.184.19.5293-5300.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leucine-responsive regulatory protein Lrp regulates the expression of a number of operons in Escherichia coli, including the ilvIH operon. Earlier in vitro experiments showed purified Lrp binding to two regions of DNA proximal to the ilvIH promoter, an upstream region (-260 to -190) and a downstream region (-150 to -40). The effect of mutations in these regions on ilvIH promoter expression in vivo led to the proposal that activation of transcription required Lrp binding to downstream sites 3, 4, 5, and 6. Binding of Lrp to upstream sites 1 and 2 seemed to enhance promoter expression but was not absolutely required (Q. Wang and J. M. Calvo, J. Mol. Biol. 229:306-318, 1993). Here we present data that require a reevaluation of the above conclusion. Constructs having either a deletion of DNA or a 100-bp substitution of DNA upstream of position -160 showed no ilvIH promoter activity in vivo. These results unambiguously establish that DNA at or upstream of position -160 is required for ilvIH promoter expression. Together with previous results, we conclude that Lrp bound at downstream sites is necessary but not sufficient for promoter activation. In addition, insertion of 4, 6, 8, or 10 bp between the upstream and downstream regions also resulted in a very strong reduction of in vivo promoter expression, even though the binding of Lrp in vitro was not greatly affected by these mutations. Closer inspection showed that the affinity of Lrp for the upstream region of all of these constructs was about the same but that Lrp bound to the downstream region of the wild-type construct with a higher degree of cooperativity than in the case of the others. These mutations may have reduced promoter activity in vivo by eliminating a binding site for some transcription factor other than Lrp. Alternatively, the small-addition mutations may have affected the geometry of these complexes, preventing either an interaction between Lrps bound at upstream and downstream sites (which might be necessary for promoter expression) or preventing the positioning of Lrp bound at upstream sites for productive interaction with the promoter.
Collapse
Affiliation(s)
- Samina Jafri
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
23
|
Kormanec J, Sevcikova B. Stress-response sigma factor sigma(H) directs expression of the gltB gene encoding glutamate synthase in Streptomyces coelicolor A3(2). BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:149-54. [PMID: 12151108 DOI: 10.1016/s0167-4781(02)00409-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using the previously established Escherichia coli two-plasmid system, we identified a promoter recognized by the Streptomyces coelicolor stress-response sigma factor sigma(H). The promoter directed expression of the gltB gene, encoding a protein with considerable homology with large subunit of glutamate synthases. S1-nuclease mapping using RNA prepared from S. coelicolor identified an identical transcription start point corresponding to the promoter. The level of the transcript from this promoter was substantially reduced in a S. coelicolor sigH mutant. In addition to this sigH-dependent gltBp2 promoter, expression of the S. coelicolor gltB gene was directed by two other promoters, gltBp1 and gltBp3, independent upon sigH. S. coelicolor core RNA polymerase, after complementation with sigma(H), was able to recognize the gltBp2 promoter in vitro. These results suggested that the S. coelicolor gltB gene is under the control of stress-response sigma(H).
Collapse
Affiliation(s)
- Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 842 51 Bratislava, Slovak Republic.
| | | |
Collapse
|
24
|
Brinkman AB, Bell SD, Lebbink RJ, de Vos WM, van der Oost J. The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J Biol Chem 2002; 277:29537-49. [PMID: 12042311 DOI: 10.1074/jbc.m203528200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the archaeal transcription apparatus resembles the eukaryal RNA polymerase II system, many bacterial-like regulators can be found in archaea. Particularly, all archaeal genomes sequenced to date contain genes encoding homologues of Lrp (leucine-responsive regulatory protein). Whereas Lrp-like proteins in bacteria are involved in regulation of amino acid metabolism, their physiological role in archaea is unknown. Although several archaeal Lrp-like proteins have been characterized recently, no target genes apart from their own coding genes have been discovered yet, and no ligands for these regulators have been identified so far. In this study, we show that the Lrp-like protein LysM from Sulfolobus solfataricus is involved in the regulation of lysine and possibly also arginine biosynthesis, encoded by the lys gene cluster. Exogenous lysine is the regulatory signal for lys gene expression and specifically serves as a ligand for LysM by altering its DNA binding affinity. LysM binds directly upstream of the TFB-responsive element of the intrinsically weak lysW promoter, and DNA binding is favored in the absence of lysine, when lysWXJK transcription is maximal. The combined in vivo and in vitro data are most compatible with a model in which the bacterial-like LysM activates the eukarya-like transcriptional machinery. As with transcriptional activation by Escherichia coli Lrp, activation by LysM is apparently dependent on a co-activator, which remains to be identified.
Collapse
Affiliation(s)
- Arie B Brinkman
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Dahlke I, Thomm M. A Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment. Nucleic Acids Res 2002; 30:701-10. [PMID: 11809882 PMCID: PMC100285 DOI: 10.1093/nar/30.3.701] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genomes of Archaea harbor homologs of the global bacterial regulator leucine-responsive regulatory protein (Lrp). Archaeal Lrp homologs are helix-turn-helix DNA-binding proteins that specifically repress the transcription of their own genes in vitro. Here, we analyze the interaction of Pyrococcus LrpA with components of the archaeal transcriptional machinery at the lrpA promoter. DNA-protein complexes can be isolated by electrophoretic mobility shift assays that contain both LrpA and the two archaeal transcription factors TBP and TFB. Phenanthroline-copper footprinting experiments showed that the DNA-binding sites of LrpA and TBP/TFB do not overlap. These results and the finding that association of RNA polymerase with the TBP-TFB promoter complex was inhibited in the presence of LrpA indicate that Pyrococcus LrpA interferes with RNA polymerase recruitment. A DNA motif required for the LrpA-DNA interaction was inferred from dimethylsulfate methylation interference experiments.
Collapse
Affiliation(s)
- Isabell Dahlke
- Institut für Allgemeine Mikrobiologie, Universität Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | |
Collapse
|