1
|
Naskar S, Hohl M, Tassinari M, Low HH. The structure and mechanism of the bacterial type II secretion system. Mol Microbiol 2020; 115:412-424. [PMID: 33283907 DOI: 10.1111/mmi.14664] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Indexed: 12/17/2022]
Abstract
The type II secretion system (T2SS) is a multi-protein complex used by many bacteria to move substrates across their cell membrane. Substrates released into the environment serve as local and long-range effectors that promote nutrient acquisition, biofilm formation, and pathogenicity. In both animals and plants, the T2SS is increasingly recognized as a key driver of virulence. The T2SS spans the bacterial cell envelope and extrudes substrates through an outer membrane secretin channel using a pseudopilus. An inner membrane assembly platform and a cytoplasmic motor controls pseudopilus assembly. This microreview focuses on the structure and mechanism of the T2SS. Advances in cryo-electron microscopy are enabling increasingly elaborate sub-complexes to be resolved. However, key questions remain regarding the mechanism of pseudopilus extension and retraction, and how this is coupled with the choreography of the substrate moving through the secretion system. The T2SS is part of an ancient type IV filament superfamily that may have been present within the last universal common ancestor (LUCA). Overall, mechanistic principles that underlie T2SS function have implication for other closely related systems such as the type IV and tight adherence pilus systems.
Collapse
Affiliation(s)
- Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Michael Hohl
- Department of Infectious Disease, Imperial College, London, UK
| | | | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK
| |
Collapse
|
2
|
Hersemann L, Wibberg D, Blom J, Goesmann A, Widmer F, Vorhölter FJ, Kölliker R. Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC Genomics 2017; 18:35. [PMID: 28056815 PMCID: PMC5217246 DOI: 10.1186/s12864-016-3422-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/14/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Xanthomonas translucens pathovars differ in their individual host ranges among Poaceae. As the causal agent of bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.), X. translucens pv. graminis (Xtg) is one of the most important bacterial pathogens in temperate grassland regions. The genomes of six Xtg strains from Switzerland, Norway, and New Zealand were sequenced in order to gain insight into conserved genomic traits from organisms covering a wide geographical range. Subsequent comparative analysis with previously published genome data of seven non-graminis X. translucens strains including the pathovars arrhenatheri, poae, phlei, cerealis, undulosa, and translucens was conducted to identify candidate genes linked to the host adaptation of Xtg to Italian ryegrass. RESULTS Phylogenetic analysis revealed a tight clustering of Xtg strains, which were found to share a large core genome. Conserved genomic traits included a non-canonical type III secretion system (T3SS) and a type IV pilus (T4P), which both revealed distinct primary structures of the pilins when compared to the non-graminis X. translucens strains. Xtg-specific traits that had no homologues in the other X. translucens strains were further found to comprise several hypothetical proteins, a TonB-dependent receptor, transporters, and effector proteins as well as toxin-antitoxin systems and DNA methyltransferases. While a nearly complete flagellar gene cluster was identified in one of the sequenced Xtg strains, phenotypic analysis pointed to swimming-deficiency as a common trait of the pathovar graminis. CONCLUSION Our study suggests that host adaptation of X. translucens pv. graminis may be conferred by a combination of pathovar-specific effector proteins, regulatory mechanisms, and adapted nutrient acquisition. Sequence deviations of pathogen-associated molecular patterns (PAMPs), as observed for the pilins of the T4P and T3SS, are moreover likely to impede perception by the plant defense machinery and thus facilitate successful host colonization of Italian ryegrass.
Collapse
Affiliation(s)
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Franco Widmer
- Molecular Ecology, Agroscope, 8046, Zurich, Switzerland
| | - Frank-Jörg Vorhölter
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
- MVZ Dr. Eberhard & Partner Dortmund, 44137, Dortmund, Germany
| | | |
Collapse
|
3
|
Function-related positioning of the type II secretion ATPase of Xanthomonas campestris pv. campestris. PLoS One 2013; 8:e59123. [PMID: 23536861 PMCID: PMC3594185 DOI: 10.1371/journal.pone.0059123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/11/2013] [Indexed: 01/20/2023] Open
Abstract
Gram-negative bacteria use the type II secretion (T2S) system to secrete exoproteins for attacking animal or plant cells or to obtain nutrients from the environment. The system is unique in helping folded proteins traverse the outer membrane. The secretion machine comprises multiple proteins spanning the cell envelope and a cytoplasmic ATPase. Activity of the ATPase, when copurified with the cytoplasmic domain of an interactive ATPase partner, is stimulated by an acidic phospholipid, suggesting the membrane-associated ATPase is actively engaged in secretion. How the stimulated ATPase activity is terminated when secretion is complete is unclear. We fused the T2S ATPase of Xanthomonas campestris pv. campestris, the causal agent of black rot in the crucifers, with fluorescent protein and found that the ATPase in secretion-proficient cells was mainly diffused in cytoplasm. Focal spots at the cell periphery were detectable only in a few cells. The discrete foci were augmented in abundance and intensity when the secretion channel was depleted and the exoprotein overproduced. The foci abundance was inversely related to secretion efficiency of the secretion channel. Restored function of the secretion channel paralleled reduced ATPase foci abundance. The ATPase foci colocalized with the secretion channel. The ATPase may be transiently associated with the T2S machine by alternating between a cytoplasmic and a machine-associated state in a secretion-dependent manner. This provides a logical means for terminating the ATPase activity when secretion is completed. Function-related dynamic assembly may be the essence of the T2S machine.
Collapse
|
4
|
Tammam S, Sampaleanu LM, Koo J, Sundaram P, Ayers M, Chong PA, Forman-Kay JD, Burrows LL, Howell PL. Characterization of the PilN, PilO and PilP type IVa pilus subcomplex. Mol Microbiol 2011; 82:1496-514. [PMID: 22053789 DOI: 10.1111/j.1365-2958.2011.07903.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type IVa pili are bacterial nanomachines required for colonization of surfaces, but little is known about the organization of proteins in this system. The Pseudomonas aeruginosa pilMNOPQ operon encodes five key members of the transenvelope complex facilitating pilus function. While PilQ forms the outer membrane secretin pore, the functions of the inner membrane-associated proteins PilM/N/O/P are less well defined. Structural characterization of a stable C-terminal fragment of PilP (PilP(Δ71)) by NMR revealed a modified β-sandwich fold, similar to that of Neisseria meningitidis PilP, although complementation experiments showed that the two proteins are not interchangeable likely due to divergent surface properties. PilP is an inner membrane putative lipoprotein, but mutagenesis of the putative lipobox had no effect on the localization and function of PilP. A larger fragment, PilP(Δ18-6His), co-purified with a PilN(Δ44)/PilO(Δ51) heterodimer as a stable complex that eluted from a size exclusion chromatography column as a single peak with a molecular weight equivalent to two heterotrimers with 1:1:1 stoichiometry. Although PilO forms both homodimers and PilN-PilO heterodimers, PilP(Δ18-6His) did not interact stably with PilO(Δ51) alone. Together these data demonstrate that PilN/PilO/PilP interact directly to form a stable heterotrimeric complex, explaining the dispensability of PilP's lipid anchor for localization and function.
Collapse
Affiliation(s)
- S Tammam
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Parrilli E, Giuliani M, Tutino ML. General Secretory Pathway from marine Antarctic Pseudoalteromonas haloplanktis TAC125. Mar Genomics 2008; 1:123-8. [DOI: 10.1016/j.margen.2009.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
6
|
Teixeira EC, Franco de Oliveira JC, Marques Novo MT, Bertolini MC. The copper resistance operon copAB from Xanthomonas axonopodis pathovar citri: gene inactivation results in copper sensitivity. MICROBIOLOGY-SGM 2008; 154:402-412. [PMID: 18227244 DOI: 10.1099/mic.0.2007/013821-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker and the completion of the Xac genome sequence has opened up the possibility of investigating basic cellular mechanisms at the genomic level. Copper compounds have been extensively used in agriculture to control plant diseases. The copA and copB genes, identified by annotation of the Xac genome, encode homologues of proteins involved in copper resistance. A gene expression assay by Northern blotting revealed that copA and copB are expressed as a unique transcript specifically induced by copper. Synthesis of the gene products was also induced by copper, reaching a maximum level at 4 h after addition of copper to the culture medium. CopA was a cytosolic protein and CopB was detected in the cytoplasmic membrane. The gene encoding CopA was disrupted by the insertion of a transposon, leading to mutant strains that were unable to grow in culture medium containing copper, even at the lowest CuSO(4) concentration tested (0.25 mM), whereas the wild-type strain was able to grow in the presence of 1 mM copper. Cell suspensions of the wild-type and mutant strains in different copper concentrations were inoculated in lemon leaves to analyse their ability to induce citrus canker symptoms. Cells of mutant strains showed higher sensitivity than the wild-type strain in the presence of copper, i.e. they were not able to induce citrus canker symptoms at high copper concentrations and exhibited a more retarded growth in planta.
Collapse
Affiliation(s)
- Elaine Cristina Teixeira
- Instituto de Química, UNESP, Departamento de Bioquímica e Tecnologia Química, 14800-900 Araraquara, SP, Brazil
| | | | - Maria Teresa Marques Novo
- Universidade Federal de São Carlos, UFSCar, Departamento de Genética e Evolução, 13565-905 São Carlos, SP, Brazil
| | - Maria Célia Bertolini
- Instituto de Química, UNESP, Departamento de Bioquímica e Tecnologia Química, 14800-900 Araraquara, SP, Brazil
| |
Collapse
|
7
|
Regulation of the Type II Secretion Structural Gene xpsE in Xanthomonas campestris Pathovar campestris by the Global Transcription Regulator Clp. Curr Microbiol 2008; 56:122-7. [DOI: 10.1007/s00284-007-9081-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
|
8
|
Shiue SJ, Kao KM, Leu WM, Chen LY, Chan NL, Hu NT. XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL. EMBO J 2006; 25:1426-35. [PMID: 16525507 PMCID: PMC1440322 DOI: 10.1038/sj.emboj.7601036] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 02/14/2006] [Indexed: 11/09/2022] Open
Abstract
GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane-associated by interacting with the N-terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of Xanthomonas campestris XpsE (a GspE homolog) as well as its association with the N-terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE-XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis.
Collapse
Affiliation(s)
- Sheng-Jie Shiue
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ko-Min Kao
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Wei-Ming Leu
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ling-Yun Chen
- Institute of Biochemistry, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Nei-Li Chan
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Nien-Tai Hu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Institute of Biochemistry, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan, Republic of China. Tel.: +886 4 2285 3486 ext. 228; Fax: +886 4 2285 3487; E-mail:
| |
Collapse
|
9
|
Chin KH, Chou CC, Lee CC, Shr HL, Lyu PC, Wang AHJ, Chou SH. Preparation, crystallization and preliminary X-ray analysis of XC2382, an ApaG protein of unknown structure from Xanthomonas campestris. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:700-2. [PMID: 16511133 PMCID: PMC1952450 DOI: 10.1107/s1744309105018956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 06/14/2005] [Indexed: 11/10/2022]
Abstract
Xanthomonas campestris pv. campestris is the causative agent of black rot, one of the major worldwide diseases of cruciferous crops. Its genome encodes approximately 4500 proteins, roughly one third of which have unknown function. XC2382 is one such protein, with a MW of 14.2 kDa. Based on a bioinformatics study, it was annotated as an ApaG gene product that serves multiple functions. The ApaG protein has been overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to a resolution of at least 2.30 A. They are tetragonal and belong to space group P4(1/3), with unit-cell parameters a = b = 57.6, c = 122.9 A. There are two, three or four molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Chia-Cheng Chou
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Hui-Lin Shr
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ping-Chiang Lyu
- Department of Life Science, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
10
|
Coltri PP, Rosato YB. Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa. Antonie Van Leeuwenhoek 2005; 87:253-7. [PMID: 15803391 DOI: 10.1007/s10482-004-4620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 10/12/2004] [Indexed: 10/25/2022]
Abstract
Xylella fastidiosa is a xylem-limited phytopathogen responsible for diseases in several plants such as citrus and coffee. Analysis of the bacterial genome revealed some putative pathogenicity-related genes that could help to elucidate the molecular mechanisms of plant-pathogen interactions. In the present work, the transcription of three genes of the bacterium, grown in defined and rich media and also in media containing host plant extracts (sweet orange, 'ponkan' and coffee) was analyzed by RT-PCR. The pilS gene, which encodes a sensor histidine kinase responsible for the biosynthesis of fimbriae, was transcribed when the bacterium was grown in more complex media such as PW and in medium containing plant extracts. The xps genes (xpsL and xpsE) which are related to the type II secretion system were also detected when the bacterium was grown in rich media and media with 'ponkan' and coffee extracts. It was thus observed that pilS and xpsEL genes of X. fastidiosa can be modulated by environmental factors and their expression is dependent on the nutritional status of the growth medium.
Collapse
Affiliation(s)
- Patricia P Coltri
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, P.O. Box 6010, CEP 13087-930, Barão Geraldo, Campinas, SP, Brazil.
| | | |
Collapse
|
11
|
Lee MS, Chen LY, Leu WM, Shiau RJ, Hu NT. Associations of the major pseudopilin XpsG with XpsN (GspC) and secretin XpsD of Xanthomonas campestris pv. campestris type II secretion apparatus revealed by cross-linking analysis. J Biol Chem 2004; 280:4585-91. [PMID: 15590656 DOI: 10.1074/jbc.m409362200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The major pseudopilin XpsG is an essential component of type II secretion apparatus of Xanthomonas campestris pv. campestris. Along with other ancillary pseudopilins, it forms a pilus-like structure spanning between cytoplasmic and outer membranes. Associations of pseudopilins with non-pseudopilin members of type II secretion apparatus were not well documented, probably due to their dynamic or unstable nature. In this study, by treating intact cells with a cleavable cross-linker dithiobis(succinimidylpropionate) (DSP), followed by metal chelating chromatography and immunoblotting on secretion-positive strains of X. campestris pv. campestris, we discovered associations of XpsGh with XpsN (GspC), as well as XpsD. These associations were detectable in a strain missing all components, but XpsO, of the type II secretion apparatus. However, chromosomal non-polar mutation in each gene exerted different effects upon the association between the other two. The XpsGh/XpsD association is undetectable in xpsN mutant; however, it was restored to a limited extent by overproducing XpsD protein. The XpsGh/XpsN association is unaltered by a lack of XpsD protein or an elevation of its abundance. Co-immune precipitation between XpsN and XpsD, while being independent of XpsG, was nonetheless enhanced by raising XpsG protein level. These observations agree with the proposition that the type II secretion apparatus in a cell may exist as an integrated multiprotein complex with all components working in concert. Moreover, in functional machinery, the association of the major pseudopilin XpsG with secretin XpsD appears strongly dependent on the existence of XpsN, the GspC protein.
Collapse
Affiliation(s)
- Meng-Shiunn Lee
- Institute of Biotechnology and Institute of Biochemistry, National Chung Hsing University, Institute of Biochemistry, Chung Shan Medical University, 250 Kuo Kuang Road, Taichung 402, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
12
|
Filloux A. The underlying mechanisms of type II protein secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:163-79. [DOI: 10.1016/j.bbamcr.2004.05.003] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
|
13
|
Crowther LJ, Anantha RP, Donnenberg MS. The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol Microbiol 2004; 52:67-79. [PMID: 15049811 DOI: 10.1111/j.1365-2958.2003.03963.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type IV pili (Tfps) are filamentous surface appendages expressed by Gram-negative microorganisms and play numerous roles in bacterial cell biology. Tfp biogenesis machineries are highly conserved and resemble protein secretion and DNA uptake systems. Although components of Tfp biogenesis systems have been identified, it is not known how they interact to form these machineries. Using the bundle-forming pilus (BFP) of enteropathogenic Escherichia coli as a model Tfp system, we provide evidence of a cytoplasmic membrane subassembly of the Tfp assembly machine composed of putative cytoplasmic nucleotide-binding and cytoplasmic membrane proteins. A combination of genetic, biochemical and biophysical approaches revealed interactions among putative cytoplasmic nucleotide-binding proteins BfpD and BfpF and cytoplasmic membrane proteins BfpC and BfpE of the BFP biogenesis machine. The polytopic membrane protein BfpE appears to be a central component of this subassembly as it interacts with BfpC, BfpD and BfpF. We report that BFP biogenesis probably requires interactions among BfpC, BfpD and BfpE, whereas BFP retraction requires interaction of the PilT-like putative ATPase BfpF with a conserved domain of BfpE. BfpE is the first protein that is not a member of the PilT family to be implicated in Tfp retraction. Furthermore, we found that the putative ATPases BfpD and BfpF play antagonistic roles in BFP biogenesis and retraction, respectively, by interacting with distinct domains of the BFP biogenesis machine.
Collapse
Affiliation(s)
- Lynette J Crowther
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
14
|
Douet V, Loiseau L, Barras F, Py B. Systematic analysis, by the yeast two-hybrid, of protein interaction between components of the type II secretory machinery of Erwinia chrysanthemi. Res Microbiol 2004; 155:71-5. [PMID: 14990257 DOI: 10.1016/j.resmic.2003.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 10/02/2003] [Indexed: 10/26/2022]
Abstract
Type II systems allow for the secretion of numerous enzymes and toxins in several Gram-negative pathogens. In Erwinia chrysanthemi, 14 Out proteins are necessary for building the type II apparatus. We performed a systematic two-hybrid analysis to test interactions between the periplasmic regions of the Out proteins. Results obtained using this approach suggested that OutJ (a pseudopilin) was able to interact with (i) OutD, the outer membrane secretin, (ii) OutI, mainly located in the periplasm, and (iii) OutL, an inner membrane protein. Taken together, these results suggest that OutJ is involved in multiple partnerships. Implications of these partnerships in the overall architecture of the type II secretion machinery are discussed.
Collapse
Affiliation(s)
- Vanessa Douet
- Laboratoire de Chimie Bactérienne, CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
15
|
Lee HM, Chen JR, Lee HL, Leu WM, Chen LY, Hu NT. Functional dissection of the XpsN (GspC) protein of the Xanthomonas campestris pv. campestris type II secretion machinery. J Bacteriol 2004; 186:2946-55. [PMID: 15126454 PMCID: PMC400604 DOI: 10.1128/jb.186.10.2946-2955.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type II secretion machinery is composed of 12 to 15 proteins for translocating extracellular proteins across the outer membrane. XpsL, XpsM, and XpsN are components of such machinery in the plant pathogen Xanthomonas campestris pv. campestris. All are bitopic cytoplasmic-membrane proteins, each with a large C-terminal periplasmic domain. They have been demonstrated to form a dissociable ternary complex. By analyzing the C-terminally truncated XpsN and PhoA fusions, we discovered that truncation of the C-terminal 103 residues produced a functional protein, albeit present below detectable levels. Furthermore, just the first 46 residues, encompassing the membrane-spanning sequence (residues 10 to 32), are sufficient to keep XpsL and XpsM at normal abundance. XpsN46(His6), synthesized in Escherichia coli, is able to associate in a membrane-mixing experiment with the XpsL-XpsM complex preassembled in X. campestris pv. campestris. The XpsN N-terminal 46 residues are apparently sufficient not only for maintaining XpsL and XpsM at normal levels but also for their stable association. The membrane-spanning sequence of XpsN was not replaceable by that of TetA. However, coimmunoprecipitation with XpsL and XpsM was observed for XpsN97::PhoA, but not XpsN46::PhoA. Only XpsN97::PhoA is dominant negative. Single alanine substitutions for three charged residues within the region between residues 47 and 97 made the protein nonfunctional. In addition, the R78A mutant XpsN protein was pulled down by XpsL-XpsM(His6) immobilized on an Ni-nitrilotriacetic acid column to a lesser extent than the wild-type XpsN. Therefore, in addition to the N-terminal 46 residues, the region between residues 47 and 97 of XpsN probably also plays an important role in interaction with XpsL-XpsM.
Collapse
Affiliation(s)
- Hsien-Min Lee
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Peabody CR, Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP, Saier MH. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology (Reading) 2003; 149:3051-3072. [PMID: 14600218 DOI: 10.1099/mic.0.26364-0] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologues of the protein constituents of theKlebsiella pneumoniae(Klebsiella oxytoca) type II secreton (T2S), thePseudomonas aeruginosatype IV pilus/fimbrium biogenesis machinery (T4P) and theMethanococcus voltaeflagellum biogenesis machinery (Fla) have been identified. Known constituents of these systems include (1) a major prepilin (preflagellin), (2) several minor prepilins (preflagellins), (3) a prepilin (preflagellin) peptidase/methylase, (4) an ATPase, (5) a multispanning transmembrane (TM) protein, (6) an outer-membrane secretin (lacking in Fla) and (7) several functionally uncharacterized envelope proteins. Sequence and phylogenetic analyses led to the conclusion that, although many of the protein constituents are probably homologous, extensive sequence divergence during evolution clouds this homology so that a common ancestry can be established for all three types of systems for only two constituents, the ATPase and the TM protein. Sequence divergence of the individual T2S constituents has occurred at characteristic rates, apparently without shuffling of constituents between systems. The same is probably also true for the T4P and Fla systems. The family of ATPases is much larger than the family of TM proteins, and many ATPase homologues function in capacities unrelated to those considered here. Many phylogenetic clusters of the ATPases probably exhibit uniform function. Some of these have a corresponding TM protein homologue although others probably function without one. It is further shown that proteins that compose the different phylogenetic clusters in both the ATPase and the TM protein families exhibit unique structural characteristics that are of probable functional significance. The TM proteins are shown to have arisen by at least two dissimilar intragenic duplication events, one in the bacterial kingdom and one in the archaeal kingdom. The archaeal TM proteins are twice as large as the bacterial TM proteins, suggesting an oligomeric structure for the latter.
Collapse
Affiliation(s)
- Christopher R Peabody
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Yong Joon Chung
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Ming-Ren Yen
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Dominique Vidal-Ingigliardi
- Unité de Génétique Moléculaire, CNRS URA 2172, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | - Anthony P Pugsley
- Unité de Génétique Moléculaire, CNRS URA 2172, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | - Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
17
|
Tsai RT, Leu WM, Chen LY, Hu NT. A reversibly dissociable ternary complex formed by XpsL, XpsM and XpsN of the Xanthomonas campestris pv. campestris type II secretion apparatus. Biochem J 2002; 367:865-71. [PMID: 12123417 PMCID: PMC1222915 DOI: 10.1042/bj20020909] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Revised: 07/16/2002] [Accepted: 07/18/2002] [Indexed: 11/17/2022]
Abstract
The cytoplasmic membrane proteins XpsL, XpsM and XpsN are components required for type II secretion in Xanthomonas campestris pv. campestris. We performed metal-chelating chromatography to partially purify the His(6)-tagged XpsM (XpsMh)-containing complex. Immunoblot analysis revealed that both XpsL and XpsN co-eluted with XpsMh. The co-fractionated XpsL and XpsN proteins co-immune precipitated with each other, suggesting the existence of an XpsL-XpsM-XpsN complex. Ternary complex formation does not require other Xps protein components of the type II secretion apparatus. Further purification upon size-exclusion chromatography revealed that XpsN is prone to dissociate from the complex. Reassociation of XpsN with the XpsL-XpsMh complex immobilized on a nickel column is more effective than with XpsMh alone. Membrane-mixing experiments suggested that the XpsL-XpsMh complex and XpsN probably dissociate and reassociate in the membrane vesicles. Comparison of the half-lives of the XpsL-XpsMh-XpsN and XpsL-XpsMh complexes revealed that XpsL dissociates from the latter at a faster rate than from the former. Dissociation and reassociation between XpsL and XpsM were also demonstrated with membrane-mixing experiments. A dynamic model is proposed for the XpsL-XpsM-XpsN complex.
Collapse
Affiliation(s)
- Rong-Tzong Tsai
- Institute of Biotechnology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, Taiwan 402, Republic of China
| | | | | | | |
Collapse
|