1
|
Li Y, Cai J, Liu Y, Li C, Chen X, Wong WL, Jiang W, Qin Y, Zhang G, Hou N, Yuan W. CcpA-Knockout Staphylococcus aureus Induces Abnormal Metabolic Phenotype via the Activation of Hepatic STAT5/PDK4 Signaling in Diabetic Mice. Pathogens 2023; 12:1300. [PMID: 38003764 PMCID: PMC10674825 DOI: 10.3390/pathogens12111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Catabolite control protein A (CcpA), an important global regulatory protein, is extensively found in S. aureus. Many studies have reported that CcpA plays a pivotal role in regulating the tricarboxylic acid cycle and pathogenicity. Moreover, the CcpA-knockout Staphylococcus aureus (S. aureus) in diabetic mice, compared with the wild-type, showed a reduced colonization rate in the tissues and organs and decreased inflammatory factor expression. However, the effect of CcpA-knockout S. aureus on the host's energy metabolism in a high-glucose environment and its mechanism of action remain unclear. S. aureus, a common and major human pathogen, is increasingly found in patients with obesity and diabetes, as recent clinical data reveal. To address this issue, we generated CcpA-knockout S. aureus strains with different genetic backgrounds to conduct in-depth investigations. In vitro experiments with high-glucose-treated cells and an in vivo model study with type 1 diabetic mice were used to evaluate the unknown effect of CcpA-knockout strains on both the glucose and lipid metabolism phenotypes of the host. We found that the strains caused an abnormal metabolic phenotype in type 1 diabetic mice, particularly in reducing random and fasting blood glucose and increasing triglyceride and fatty acid contents in the serum. In a high-glucose environment, CcpA-knockout S. aureus may activate the hepatic STAT5/PDK4 pathway and affect pyruvate utilization. An abnormal metabolic phenotype was thus observed in diabetic mice. Our findings provide a better understanding of the molecular mechanism of glucose and lipid metabolism disorders in diabetic patients infected with S. aureus.
Collapse
Affiliation(s)
- Yilang Li
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China;
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Jiaxuan Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Yinan Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Conglin Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Xiaoqing Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China;
| | - Wenyue Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China;
| | - Yuan Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Guiping Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Ning Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China;
| |
Collapse
|
2
|
Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C. Antimicrob Agents Chemother 2018; 62:AAC.02197-17. [PMID: 29610201 DOI: 10.1128/aac.02197-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti-Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro-generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >105-fold for FC04-100.
Collapse
|
3
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
4
|
Lang X, Wan Z, Pan Y, Wang X, Wang X, Bu Z, Qian J, Zeng H, Wang X. Investigation into the role of catabolite control protein A in the metabolic regulation of Streptococcus suis serotype 2 using gene expression profile analysis. Exp Ther Med 2015; 10:127-132. [PMID: 26170923 DOI: 10.3892/etm.2015.2470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/20/2015] [Indexed: 01/14/2023] Open
Abstract
Catabolite control protein A (CcpA) serves a key function in the catabolism of Streptococcus suis serotype 2 (S. suis 2) by affecting the biological function and metabolic regulatory mechanisms of this bacterium. The aim of the present study was to identify variations in CcpA expression in S. suis 2 using gene expression profile analysis. Using sequencing and functional analysis, CcpA was demonstrated to play a regulatory role in the expression and regulation of virulence genes, carbon metabolism and immunoregulation in S. suis 2. Gene Ontology and Kyto Encyclopedia of Genes and Genomes analyses indicated that CcpA in S. suis 2 is involved in the regulation of multiple metabolic processes. Furthermore, combined analysis of the transcriptome and metabolite data suggested that metabolites varied due to the modulation of gene expression levels under the influence of CcpA regulation. In addition, metabolic network analysis indicated that CcpA impacted carbon metabolism to a certain extent. Therefore, the present study has provided a more comprehensive analysis of the role of CcpA in the metabolic regulation of S. suis 2, which may facilitate future investigation into this mechanism. Furthermore, the results of the present study provide a foundation for further research into the regulatory function of CcpA and associated metabolic pathways in S. suis 2.
Collapse
Affiliation(s)
- Xulong Lang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Zhonghai Wan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Ying Pan
- Changchun Stomatological Hospital, Changchun, Jilin 130042, P.R. China
| | - Xiuran Wang
- School of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Xiaoxu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Zhaoyang Bu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Jing Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Huazong Zeng
- Shanghai Sensichip Infotech Co. Ltd., Shanghai 200433, P.R. China
| | - Xinglong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| |
Collapse
|
5
|
Causal role of single nucleotide polymorphisms within the mprF gene of Staphylococcus aureus in daptomycin resistance. Antimicrob Agents Chemother 2013; 57:5658-64. [PMID: 24002096 DOI: 10.1128/aac.01184-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) within the mprF open reading frame (ORF) have been commonly observed in daptomycin-resistant (DAP(r)) Staphylococcus aureus strains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if such mprF SNPs are causal in DAP(r) strains or are merely a biomarker for this phenotype. In this study, we used an isogenic set of S. aureus strains: (i) Newman, (ii) its isogenic ΔmprF mutant, and (iii) several in trans plasmid complementation constructs, expressing either a wild-type or point-mutated form of the mprF ORF cloned from two isogenic DAP-susceptible (DAP(s))-DAP(r) strain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprF strain with singly point-mutated mprF genes (mprFS295L or mprFT345A) revealed that (i) individual and distinct point mutations within the mprF ORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding to S. aureus by a charge repulsion mechanism. Thus, for these two DAP(r) strains, the defined mprF SNPs appear to be causally related to this phenotype.
Collapse
|
6
|
Tsakraklides V, Shaw AJ, Miller BB, Hogsett DA, Herring CD. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:85. [PMID: 23181505 PMCID: PMC3526391 DOI: 10.1186/1754-6834-5-85] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/25/2012] [Indexed: 02/20/2024]
Abstract
BACKGROUND The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol. RESULTS We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization. CONCLUSION Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.
Collapse
Affiliation(s)
| | - A Joe Shaw
- Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
| | - Bethany B Miller
- Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
| | - David A Hogsett
- Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
| | | |
Collapse
|
7
|
Functional analysis of family GH36 α-galactosidases from Ruminococcus gnavus E1: insights into the metabolism of a plant oligosaccharide by a human gut symbiont. Appl Environ Microbiol 2012; 78:7720-32. [PMID: 22923411 DOI: 10.1128/aem.01350-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ruminococcus gnavus belongs to the 57 most common species present in 90% of individuals. Previously, we identified an α-galactosidase (Aga1) belonging to glycoside hydrolase (GH) family 36 from R. gnavus E1 (M. Aguilera, H. Rakotoarivonina, A. Brutus, T. Giardina, G. Simon, and M. Fons, Res. Microbiol. 163:14-21, 2012). Here, we identified a novel GH36-encoding gene from the same strain and termed it aga2. Although aga1 showed a very simple genetic organization, aga2 is part of an operon of unique structure, including genes putatively encoding a regulator, a GH13, two phosphotransferase system (PTS) sequences, and a GH32, probably involved in extracellular and intracellular sucrose assimilation. The 727-amino-acid (aa) deduced Aga2 protein shares approximately 45% identity with Aga1. Both Aga1 and Aga2 expressed in Escherichia coli showed strict specificity for α-linked galactose. Both enzymes were active on natural substrates such as melibiose, raffinose, and stachyose. Aga1 and Aga2 occurred as homotetramers in solution, as shown by analytical ultracentrifugation. Modeling of Aga1 and Aga2 identified key amino acids which may be involved in substrate specificity and stabilization of the α-linked galactoside substrates within the active site. Furthermore, Aga1 and Aga2 were both able to perform transglycosylation reactions with α-(1,6) regioselectivity, leading to the formation of product structures up to [Hex](12) and [Hex](8), respectively. We suggest that Aga1 and Aga2 play essential roles in the metabolism of dietary oligosaccharides and could be used for the design of galacto-oligosaccharide (GOS) prebiotics, known to selectively modulate the beneficial gut microbiota.
Collapse
|
8
|
Rosenstein R, Götz F. What Distinguishes Highly Pathogenic Staphylococci from Medium- and Non-pathogenic? Curr Top Microbiol Immunol 2012; 358:33-89. [DOI: 10.1007/82_2012_286] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Paul VD, Sundarrajan S, Rajagopalan SS, Hariharan S, Kempashanaiah N, Padmanabhan S, Sriram B, Ramachandran J. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiol 2011; 11:195. [PMID: 21880144 PMCID: PMC3224134 DOI: 10.1186/1471-2180-11-195] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/31/2011] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. RESULTS We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat) gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80). Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. CONCLUSIONS A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host. The recombinant phage effectively rescued mice from fatal S. aureus infection. To our knowledge this is the first report of a lysis-deficient staphylococcal phage.
Collapse
Affiliation(s)
- Vivek Daniel Paul
- Gangagen Biotechnologies Pvt Ltd, No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore-560 022, India
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Sudarson Sundarrajan
- Gangagen Biotechnologies Pvt Ltd, No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore-560 022, India
| | - Sanjeev Saravanan Rajagopalan
- Gangagen Biotechnologies Pvt Ltd, No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore-560 022, India
| | - Sukumar Hariharan
- Gangagen Biotechnologies Pvt Ltd, No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore-560 022, India
| | - Nanjundappa Kempashanaiah
- Gangagen Biotechnologies Pvt Ltd, No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore-560 022, India
- Department of Animal Husbandry, Veterinary Dispensary, Yediyur, Kunigal Taluk, Tumkur- 572142, India
| | - Sriram Padmanabhan
- Gangagen Biotechnologies Pvt Ltd, No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore-560 022, India
- Lupin Limited, Biotechnology R & D, Gat #1156, Ghotawade Village, Mulshi Taluka, Pune-411042, India
| | - Bharathi Sriram
- Gangagen Biotechnologies Pvt Ltd, No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore-560 022, India
| | - Janakiraman Ramachandran
- Gangagen Biotechnologies Pvt Ltd, No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore-560 022, India
| |
Collapse
|
10
|
At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 2009; 73:233-48. [PMID: 19487727 DOI: 10.1128/mmbr.00005-09] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria live in environments that are subject to rapid changes in the availability of the nutrients that are necessary to provide energy and biosynthetic intermediates for the synthesis of macromolecules. Consequently, bacterial survival depends on the ability of bacteria to regulate the expression of genes coding for enzymes required for growth in the altered environment. In pathogenic bacteria, adaptation to an altered environment often includes activating the transcription of virulence genes; hence, many virulence genes are regulated by environmental and nutritional signals. Consistent with this observation, the regulation of most, if not all, virulence determinants in staphylococci is mediated by environmental and nutritional signals. Some of these external signals can be directly transduced into a regulatory response by two-component regulators such as SrrAB; however, other external signals require transduction into intracellular signals. Many of the external environmental and nutritional signals that regulate virulence determinant expression can also alter bacterial metabolic status (e.g., iron limitation). Altering the metabolic status results in the transduction of external signals into intracellular metabolic signals that can be "sensed" by regulatory proteins (e.g., CodY, Rex, and GlnR). This review uses information derived primarily using Bacillus subtilis and Escherichia coli to articulate how gram-positive pathogens, with emphasis on Staphylococcus aureus and Staphylococcus epidermidis, regulate virulence determinant expression in response to a changing environment.
Collapse
|
11
|
Seidl K, Müller S, François P, Kriebitzsch C, Schrenzel J, Engelmann S, Bischoff M, Berger-Bächi B. Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol 2009; 9:95. [PMID: 19450265 PMCID: PMC2697999 DOI: 10.1186/1471-2180-9-95] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 05/18/2009] [Indexed: 01/24/2023] Open
Abstract
Background The catabolite control protein A (CcpA) is a member of the LacI/GalR family of transcriptional regulators controlling carbon-metabolism pathways in low-GC Gram-positive bacteria. It functions as a catabolite repressor or activator, allowing the bacteria to utilize the preferred carbon source over secondary carbon sources. This study is the first CcpA-dependent transcriptome and proteome analysis in Staphylococcus aureus, focussing on short-time effects of glucose under stable pH conditions. Results The addition of glucose to exponentially growing S. aureus increased the expression of genes and enzymes of the glycolytic pathway, while genes and proteins of the tricarboxylic acid (TCA) cycle, required for the complete oxidation of glucose, were repressed via CcpA. Phosphotransacetylase and acetate kinase, converting acetyl-CoA to acetate with a concomitant substrate-level phosphorylation, were neither regulated by glucose nor by CcpA. CcpA directly repressed genes involved in utilization of amino acids as secondary carbon sources. Interestingly, the expression of a larger number of genes was found to be affected by ccpA inactivation in the absence of glucose than after glucose addition, suggesting that glucose-independent effects due to CcpA may have a particular impact in S. aureus. In the presence of glucose, CcpA was found to regulate the expression of genes involved in metabolism, but also that of genes coding for virulence determinants. Conclusion This study describes the CcpA regulon of exponentially growing S. aureus cells. As in other bacteria, CcpA of S. aureus seems to control a large regulon that comprises metabolic genes as well as virulence determinants that are affected in their expression by CcpA in a glucose-dependent as well as -independent manner.
Collapse
Affiliation(s)
- Kati Seidl
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jankovic I, Brückner R. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization. J Mol Microbiol Biotechnol 2007; 12:114-20. [PMID: 17183218 DOI: 10.1159/000096466] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sucrose utilization in Staphylococcus xylosus is dependent on two genes, scrA and scrB; encoding a PTS permease and a sucrose phosphate hydrolase, respectively. The genes are encoded on separate loci and are transcribed from two promoters, P(scrA) and P(scrB), both of which are controlled by the repressor ScrR by binding to the operator sequences O(A) and O(B). In the scrA promoter region, a catabolite-responsive element (cre), operator for the global catabolite control protein CcpA, is also present, but its contribution to scrA regulation has not been determined. Using an integrative promoter probe plasmid, the activities of the promoters P(scrA) and P(scrB) were determined under different growth conditions. Both promoters are induced by sucrose and induction is prevented when glucose is also present. Without a functional CcpA, glucose-mediated prevention of induction is lost, clearly demonstrating that CcpA ensures hierarchical sugar utilization with glucose as preferred substrate. Measurements of promoter activities in the absence of a functional ScrR repressor indicated that CcpA also acts upon the operators O(A) and O(B), albeit not as efficiently as on the genuine cre in P(srcA). Besides determining the choice of the carbon source, CcpA has a second effect on sucrose gene expression. When sucrose is the sole carbon source, sucrose catabolism activates carbon catabolite repression and CcpA prevents full induction of the sucrose utilization genes by partially repressing the scrA promoter. Thus, CcpA-dependent regulation serves as a built-in autoregulatory device to restrict sucrose uptake.
Collapse
Affiliation(s)
- Ivana Jankovic
- Mikrobielle Genetik, Universitat Tubingen, Tubingen, Germany
| | | |
Collapse
|
13
|
Halfmann A, Hakenbeck R, Brückner R. A new integrative reporter plasmid for Streptococcus pneumoniae. FEMS Microbiol Lett 2007; 268:217-24. [PMID: 17328748 DOI: 10.1111/j.1574-6968.2006.00584.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A new promoter probe system for Streptococcus pneumoniae has been developed that allows stable genomic integration of promoters cloned in front of a promoterless hybrid beta-galactosidase gene consisting of translation initiation signals of the protease gene htrA of S. pneumoniae fused to a truncated Escherichia colibeta-galactosidase gene lacZ. Chromosomal insertions of promoter-lacZ fusions are directed to the endogenous beta-galactosidase gene bgaA, thereby abolishing background beta-galactosidase activity. The new system was tested by measuring beta-galactosidase activity directed by the two promoters of the early competence genes comA and comC. The new integrative plasmid offers several advantages compared with existing systems and is especially suited for stable integration of small promoter fragments to conduct mutagenesis or deletion studies.
Collapse
Affiliation(s)
- Alexander Halfmann
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | |
Collapse
|
14
|
Yang SJ, Dunman PM, Projan SJ, Bayles KW. Characterization of the Staphylococcus aureus CidR regulon: elucidation of a novel role for acetoin metabolism in cell death and lysis. Mol Microbiol 2006; 60:458-68. [PMID: 16573694 DOI: 10.1111/j.1365-2958.2006.05105.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Staphylococcus aureus cid and lrg operons encode a novel regulatory system that affects murein hydrolase activity, stationary-phase survival and antibiotic tolerance. Expression of the lrgAB operon is positively regulated by a two-component regulatory system encoded by the lytSR operon located immediately upstream to lrgAB. By comparison, the cidABC operon lies downstream from the cidR gene, encoding a protein homologous to the LysR-type family of transcriptional regulators. Transcription analysis of a cidR mutant revealed that CidR enhances cidABC expression in the presence of acetic acid generated by the metabolism of excess glucose. Microarray studies identified additional CidR-regulated operons including the IrgAB and alsSD encoding proteins involved in acetoin production. Surprisingly, Northern blot analyses revealed that cidABC and lrgAB transcription was uninducible in an alsSD mutant grown in the presence of excess glucose, suggesting that the CidR-mediated upregulation of cidABC and lrgAB transcription is dependent on the presence of intact alsSD genes. Zymographic and quantitative analyses of murein hydrolase activity also revealed that disruption of the alsSD genes results in significantly decreased extracellular murein hydrolase activity compared with that of the parental strain, UAMS-1. Furthermore, the alsSD mutant displayed decreased stationary-phase survival relative to UAMS-1, both in the presence and absence of glucose. The results of this study define the CidR regulon and demonstrate that the generation of acetoin is linked to the control of cell death and lysis in S. aureus.
Collapse
Affiliation(s)
- Soo-Jin Yang
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
15
|
Yang SJ, Rice KC, Brown RJ, Patton TG, Liou LE, Park YH, Bayles KW. A LysR-type regulator, CidR, is required for induction of the Staphylococcus aureus cidABC operon. J Bacteriol 2005; 187:5893-900. [PMID: 16109930 PMCID: PMC1196168 DOI: 10.1128/jb.187.17.5893-5900.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus cidABC and lrgAB operons have been shown to regulate murein hydrolase activity and affect antibiotic tolerance. The cid operon enhances murein hydrolase activity and antibiotic sensitivity, whereas the lrg operon inhibits these processes. Based on these findings and the structural similarities of the cidA and lrgA gene products to the bacteriophage holin family of proteins, we have proposed that the cid and lrg operons encode holin- and antiholin-like proteins, respectively, that function to control the murein hydrolase activity produced by the bacteria. Analysis of cid operon transcription revealed the presence of two transcripts, one spanning all three cid genes and whose expression is induced by growth in the presence of acetic acid and the other spanning cidB and cidC only that is produced in a sigma B-dependent manner. The cidABC operon lies immediately downstream from the cidR gene, encoding a potential LysR-type transcriptional regulator. In this study, we demonstrate that cidR is involved in the regulation of cidABC expression. Northern blot analyses revealed that the cidR gene product positively regulates cidABC expression by increasing transcription in the presence of acetic acid produced as a result of the metabolism of glucose. As expected for an operon that encodes a positive effector of murein hydrolase activity, the upregulation of cidABC expression resulted in increased murein hydrolase activity produced by these cells. Furthermore, it was demonstrated that antibiotic tolerance and stationary-phase survival of S. aureus are affected by the cidR gene. Taken together, these results demonstrate that the cidR gene product functions as a transcriptional activator of cidABC transcription in response to acetic acid accumulation in the growth medium.
Collapse
Affiliation(s)
- Soo-Jin Yang
- Department of Pathology and Microbiology, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Barrière C, Brückner R, Centeno D, Talon RÃ. Characterisation of thekatAgene encoding a catalase and evidence for at least a second catalase activity inStaphylococcus xylosus, bacteria used in food fermentation. FEMS Microbiol Lett 2002. [DOI: 10.1111/j.1574-6968.2002.tb11447.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Brückner R, Titgemeyer F. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 2002; 209:141-8. [PMID: 12007797 DOI: 10.1111/j.1574-6968.2002.tb11123.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Carbon catabolite repression (CCR) in bacteria is generally regarded as a regulatory mechanism to ensure sequential utilization of carbohydrates. Selection of the carbon sources is mainly made at the level of carbohydrate-specific induction. Since virtually all carbohydrate catabolic genes or operons are regulated by specific control proteins and require inducers for high level expression, direct control of the activity of regulators or control of inducer formation is an efficient measure to keep them silent. By these mechanisms, bacteria are able to establish a hierarchy of sugar utilization. In addition to the control of induction processes by CCR, bacteria have developed global transcriptional regulation circuits, in which pleiotropic regulators are activated. These global control proteins, the catabolite gene activator protein (CAP), also known as cAMP receptor protein, in Escherichia coli or the catabolite control protein (CcpA) in Gram-positive bacteria with low GC content, act upon a large number of catabolic genes/operons. Since practically any carbon source is able to trigger global transcriptional control, expression of sugar utilization genes is restricted even in the sole presence of their cognate substrates. Consequently, CAP- or CcpA-dependent catabolite repression serves as an autoregulatory device to keep sugar utilization at a certain level rather than to establish preferential utilization of certain carbon sources. Together with other autoregulatory mechanisms that are not acting at the gene expression level, CCR helps bacteria to adjust sugar utilization to their metabolic capacities. Therefore, catabolic/metabolic balance would perhaps better describe the physiological role of this regulatory network than the term catabolite repression.
Collapse
Affiliation(s)
- Reinhold Brückner
- Mikrobiologie, Universität Kaiserslautern, Paul-Ehrlich-Strasse 23, Germany.
| | | |
Collapse
|
18
|
The Glucomannokinase of the Gram-Negative Ruminal Bacterium, Prevotella bryantii B14, and its Sequence Conservation with Regulatory Glucokinases of Gram-Positive Bacteria. Anaerobe 2002. [DOI: 10.1006/anae.2002.0420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Lapierre L, Mollet B, Germond JE. Regulation and adaptive evolution of lactose operon expression in Lactobacillus delbrueckii. J Bacteriol 2002; 184:928-35. [PMID: 11807052 PMCID: PMC134810 DOI: 10.1128/jb.184.4.928-935.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the beta-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (beta-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus.
Collapse
Affiliation(s)
- Luciane Lapierre
- Nestlé Research Center, Nestlé, Ltd., CH-1000 Lausanne 26, Switzerland
| | | | | |
Collapse
|
20
|
Barrière C, Brückner R, Talon R. Characterization of the single superoxide dismutase of Staphylococcus xylosus. Appl Environ Microbiol 2001; 67:4096-104. [PMID: 11526011 PMCID: PMC93135 DOI: 10.1128/aem.67.9.4096-4104.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus xylosus is a facultative anaerobic bacterium used as a starter culture for fermented meat products. In an attempt to analyze the antioxidant capacities of this organism, the superoxide dismutase (SOD) was characterized. S. xylosus contains a single cytoplasmic SOD, which was not inhibited by H2O2. The SOD activity in crude extracts was completely lost upon metal depletion, but it could be recovered by manganese and very weakly by iron. It is therefore suggested that the S. xylosus SOD is a manganese-preferring enzyme. The corresponding gene, sod, was isolated from a genomic library of S. xylosus DNA and complemented the growth defect of an Escherichia coli SOD-deficient mutant. As deduced from the nucleotide sequence, sod encodes a protein of 199 amino acids with a molecular mass of 22.5 kDa. Two transcriptional start sites 25 and 120 bp upstream of the sod start codon were identified. A terminator-like structure downstream of the gene suggested a monocistronic sod mRNA. Regulation of sod expression was studied using fusions of the sod promoters to a genomic promoterless beta-galactosidase gene. The sod expression was not affected by manganese and increased slightly with paraquat. It was induced during stationary phase in a complex medium but not in a chemically defined medium. To investigate the physiological role of SOD, a mutant devoid of SOD activity was constructed. Growth experiments showed that sod is not essential for aerobic growth in complex medium. However, in chemically defined medium without leucine, isoleucine, and valine, the sod mutant hardly grew, in contrast to the wild-type strain. In addition, the mutant was sensitive to hyperbaric oxygen and to paraquat. Therefore, sod plays an important role in the protection of S. xylosus from oxidative stress.
Collapse
Affiliation(s)
- C Barrière
- SRV Microbiologie, INRA, Centre de Clermont-Theix, F-63122 Saint-Genès Champanelle, France
| | | | | |
Collapse
|