1
|
Xing SC, Chen JY, Lv N, Mi JD, Chen WL, Liang JB, Liao XD. Biosorption of lead (Pb 2+) by the vegetative and decay cells and spores of Bacillus coagulans R11 isolated from lead mine soil. CHEMOSPHERE 2018; 211:804-816. [PMID: 30099165 DOI: 10.1016/j.chemosphere.2018.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/20/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
The lead (Pb2+) bioaccumulation capacities and mechanisms of three different physiological structures (vegetative cells, decay cells and spores) of B. coagulans R11 isolated from a lead mine were examined in this study. The results showed that the total Pb2+ removal capacity of vegetative cells (17.53 mg/g) was at its optimal and higher than those of the spores and decay cells at the initial lead concentration of 50 mg/L. However, when the initial lead concentration surpassed 50 mg/L, Pb2+ removal capacity of decay cells was more efficient. Zeta potential, Fourier transform infrared (FTIR) and functional group modification analyses demonstrated that the electrostatic attraction and chelating activity of the functional groups were the primary pathways involved in the extracellular accumulation of Pb2+ by the vegetative cells and spores. However, the primary Pb2+ binding pathway in the decay cells was hypothesized to be due to physical adsorption, which easily led to Pb2+ desorption. Based on these results, we conclude that the vegetative cell is the ideal lead sorbent. Therefore, it is important to inhibit the transformation of the vegetative cells into decay cells and spores, which can be achieved by culturing the bacteria under anaerobic conditions to prevent spore formation. Heat stimulation can effectively enhance spore germination to generate vegetative cells.
Collapse
Affiliation(s)
- Si-Cheng Xing
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ning Lv
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Dui Mi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Li Chen
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Juan Boo Liang
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Ye B, Zhou C, Zhao L, Cheng S, Cheng D, Yan X. Unmarked genetic manipulation in Bacillus subtilis by natural co-transformation. J Biotechnol 2018; 284:57-62. [PMID: 30092237 DOI: 10.1016/j.jbiotec.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 01/14/2023]
Abstract
Bacillus subtilis is well known as both a model organism and as a microbial cell factory. Simple and scarless gene modification is a desirable tool for basic research and industrial applications of B. subtilis. It has been demonstrated that naturally competent strains of B. subtilis can uptake multiple different DNA molecules, a phenomenon called co-transformation. Here, we describe a co-transformation-based method for generating unmarked mutants of B. subtilis. The PCR product containing the desired mutant allele is introduced into B. subtilis through co-transformation of the plasmid pUS20, which harbours a spectinomycin-resistant marker (Spcr). The target mutation is acquired by screening transformants for integration of pUS20 by resistance to spectinomycin. Due to its unstable replication in B. subtilis, pUS20 is easily cured from transformants in the absence of spectinomycin. This method allows for point mutation delivery at frequencies of approximately 30%. Deletions and insertions of long DNA fragments can also be carried out efficiently using this method. Moreover, this method is also successful in Bacillus velezensis, indicating that it may be extended to other Bacillus species that can form natural competence.
Collapse
Affiliation(s)
- Bin Ye
- Jiangsu Provincial Key Lab for Solid Organic Wastes Utilization, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chaoyang Zhou
- Jiangsu Provincial Key Lab for Solid Organic Wastes Utilization, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Leizhen Zhao
- Jiangsu Provincial Key Lab for Solid Organic Wastes Utilization, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shan Cheng
- Jiangsu Provincial Key Lab for Solid Organic Wastes Utilization, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Dan Cheng
- Jiangsu Provincial Key Lab for Solid Organic Wastes Utilization, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Yan
- Jiangsu Provincial Key Lab for Solid Organic Wastes Utilization, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
3
|
Bressuire-Isoard C, Broussolle V, Carlin F. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiol Rev 2018; 42:614-626. [DOI: 10.1093/femsre/fuy021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christelle Bressuire-Isoard
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Véronique Broussolle
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Frédéric Carlin
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| |
Collapse
|
4
|
den Besten HM, Wells-Bennik MH, Zwietering MH. Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality. Annu Rev Food Sci Technol 2018; 9:383-410. [DOI: 10.1146/annurev-food-030117-012808] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heidy M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| | - Marjon H.J. Wells-Bennik
- NIZO Food Research B.V., 6718 ZB, Ede, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| | - Marcel H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| |
Collapse
|
5
|
Wells-Bennik MH, Eijlander RT, den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP, Abee T. Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annu Rev Food Sci Technol 2016; 7:457-82. [DOI: 10.1146/annurev-food-041715-033144] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marjon H.J. Wells-Bennik
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Robyn T. Eijlander
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Heidy M.W. den Besten
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Erwin M. Berendsen
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Alicja K. Warda
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Antonina O. Krawczyk
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel H. Zwietering
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Oscar P. Kuipers
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
6
|
Checinska A, Paszczynski A, Burbank M. Bacillusand Other Spore-Forming Genera: Variations in Responses and Mechanisms for Survival. Annu Rev Food Sci Technol 2015; 6:351-69. [DOI: 10.1146/annurev-food-030713-092332] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aleksandra Checinska
- School of Food Science, University of Idaho, Moscow, Idaho 83844-1052 and Washington State University, Pullman, Washington 99164-6376; ,
- Present address: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109;
| | - Andrzej Paszczynski
- School of Food Science, University of Idaho, Moscow, Idaho 83844-1052 and Washington State University, Pullman, Washington 99164-6376; ,
| | - Malcolm Burbank
- School of Food Science, University of Idaho, Moscow, Idaho 83844-1052 and Washington State University, Pullman, Washington 99164-6376; ,
- Present address: BioCement Technologies Inc., Seattle, Washington 98101
| |
Collapse
|
7
|
The wet-heat resistance of Bacillus weihenstephanensis KBAB4 spores produced in a two-step sporulation process depends on sporulation temperature but not on previous cell history. Int J Food Microbiol 2011; 146:57-62. [DOI: 10.1016/j.ijfoodmicro.2011.01.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 01/04/2011] [Accepted: 01/29/2011] [Indexed: 11/21/2022]
|
8
|
Prasad GK, Ramacharyulu PVRK, Merwyn S, Agarwal GS, Srivastava AR, Singh B, Rai GP, Vijayaraghavan R. Photocatalytic inactivation of spores of Bacillus anthracis using titania nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:977-982. [PMID: 21035260 DOI: 10.1016/j.jhazmat.2010.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/03/2010] [Accepted: 10/01/2010] [Indexed: 05/30/2023]
Abstract
Studies on photocatalytic inactivation of spores of Bacillus anthracis have been carried out using nanosized titania materials and UVA light or sun light. Results demonstrated pseudo first order behaviour of spore inactivation kinetics. The value of kinetic rate constant increased from 0.4h(-1) to 1.4h(-1) indicating photocatalysis facilitated by addition of nanosized titania. Nanosized titania exhibited superior inactivation kinetics on par with large sized titania. The value of kinetic rate constant increased from 0.02 h(-1) to 0.26 h(-1) on reduction of size from 1000 nm to 16 nm depicting the enhanced rate of inactivation of Bacillus anthracis Sterne spores on the decrease of particle size.
Collapse
Affiliation(s)
- G K Prasad
- Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Effect of the osmotic conditions during sporulation on the subsequent resistance of bacterial spores. Appl Microbiol Biotechnol 2008; 80:107-14. [DOI: 10.1007/s00253-008-1519-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/14/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
|
10
|
Abstract
A number of mechanisms are responsible for the resistance of spores of Bacillus species to heat, radiation and chemicals and for spore killing by these agents. Spore resistance to wet heat is determined largely by the water content of spore core, which is much lower than that in the growing cell protoplast. A lower core water content generally gives more wet heat-resistant spores. The level and type of spore core mineral ions and the intrinsic stability of total spore proteins also play a role in spore wet heat resistance, and the saturation of spore DNA with alpha/beta-type small, acid-soluble spore proteins (SASP) protects DNA against wet heat damage. However, how wet heat kills spores is not clear, although it is not through DNA damage. The alpha/beta-type SASP are also important in spore resistance to dry heat, as is DNA repair in spore outgrowth, as Bacillus subtilis spores are killed by dry heat via DNA damage. Both UV and gamma-radiation also kill spores via DNA damage. The mechanism of spore resistance to gamma-radiation is not well understood, although the alpha/beta-type SASP are not involved. In contrast, spore UV resistance is due largely to an alteration in spore DNA photochemistry caused by the binding of alpha/beta-type SASP to the DNA, and to a lesser extent to the photosensitizing action of the spore core's large pool of dipicolinic acid. UV irradiation of spores at 254 nm does not generate the cyclobutane dimers (CPDs) and (6-4)-photoproducts (64PPs) formed between adjacent pyrimidines in growing cells, but rather a thymidyl-thymidine adduct termed spore photoproduct (SP). While SP is formed in spores with approximately the same quantum efficiency as that for generation of CPDs and 64PPs in growing cells, SP is repaired rapidly and efficiently in spore outgrowth by a number of repair systems, at least one of which is specific for SP. Some chemicals (e.g. nitrous acid, formaldehyde) again kill spores by DNA damage, while others, in particular oxidizing agents, appear to damage the spore's inner membrane so that this membrane ruptures upon spore germination and outgrowth. There are also other agents such as glutaraldehyde for which the mechanism of spore killing is unclear. Factors important in spore chemical resistance vary with the chemical, but include: (i) the spore coat proteins that likely react with and detoxify chemical agents; (ii) the relative impermeability of the spore's inner membrane that restricts access of exogenous chemicals to the spore core; (iii) the protection of spore DNA by its saturation with alpha/beta-type SASP; and (iv) DNA repair for agents that kill spores via DNA damage. Given the importance of the killing of spores of Bacillus species in the food and medical products industry, a deeper understanding of the mechanisms of spore resistance and killing may lead to improved methods for spore destruction.
Collapse
Affiliation(s)
- P Setlow
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, 06030-3305, USA.
| |
Collapse
|
11
|
The effect of metal ions commonly present in food on gene expression of sporulating Bacillus subtilis cells in relation to spore wet heat resistance. INNOV FOOD SCI EMERG 2004. [DOI: 10.1016/j.ifset.2004.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Tovar-Rojo F, Cabrera-Martinez RM, Setlow B, Setlow P. Studies on the mechanism of the osmoresistance of spores of Bacillus subtilis. J Appl Microbiol 2003; 95:167-79. [PMID: 12807468 DOI: 10.1046/j.1365-2672.2003.01958.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To determine the reason that spores of Bacillus species, in particular Bacillus subtilis, are able to form colonies with high efficiency on media with very high salt concentrations. METHODS AND RESULTS Spores of various Bacillus species have a significantly higher plating efficiency on media with high salt concentration (termed osmoresistance) than do log or stationary phase cells. This spore osmoresistance is higher on richer media. Bacillus subtilis spores lacking various small, acid-soluble spore proteins (SASP) were generally significantly less osmoresistant than were wild-type spores, as shown previously (Ruzal et al. 1994). Other results included: (a) spore osmoresistance varied significantly between species; (b) the osmoresistance of spores lacking SASP was not restored well by amino acid osmolytes added to plating media, but was completely restored by glucose; (c) the osmoresistance of spores lacking SASP was restored upon brief germination in the absence of salt in a process that did not require protein synthesis; (d) significant amounts of amino acids generated by SASP degradation were retained within spores upon germination in a medium with high but not low salt; (e) slowing but not abolishing SASP degradation by loss of the SASP-specific germination protease (GPR) did not affect spore osmoresistance; (f) sporulation at higher temperatures produced less osmoresistant spores; and (g) spore osmoresistance was not decreased markedly by the absence of the stress sigma factor for RNA polymerase, sigmaB. CONCLUSIONS Spore osmoresistance appears as a result of three major factors: (1) specific characteristics of spores and cells of individual species; (2) the precise sporulation conditions that produce the spores; and (3) sufficient energy generation by the germinating and outgrowing spore to allow the spore to adapt to conditions of high osmotic strength; the substrates for this energy generation can come from either the endogenous generation of amino acids by SASP degradation or from the spore's environment, in the form of a readily taken up and metabolized energy source such as glucose. SIGNFICANCE AND IMPACT OF STUDY: These results provide information on the mechanisms of spore osmoresistance, a spore property that can be of major applied significance given the use of high osmotic strength with or without high salt as a means of food preservation.
Collapse
Affiliation(s)
- F Tovar-Rojo
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
13
|
Lee JK, Movahedi S, Harding SE, Waites WM. The effect of acid shock on sporulating Bacillus subtilis cells. J Appl Microbiol 2003; 94:184-90. [PMID: 12534809 DOI: 10.1046/j.1365-2672.2003.01816.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To study the effect of acid shock in sporulation on the production of acid-shock proteins, and on the heat resistance and germination characteristics of the spores formed subsequently. METHODS AND RESULTS Bacillus subtilis wild-type (SASP-alpha+beta+) and mutant (SASP-alpha-beta-) cells in 2 x SG medium at 30 degrees C were acid-shocked with HCl (pH 4, 4.3, 5 and 6 against a control pH of 6.2) for 30 min, 1 h into sporulation. The D85-value of B. subtilis wild-type (but not mutant) spores formed from sporulating cells acid-shocked at pH 5 increased from 46.5 min to 78.8 min, and there was also an increase in the resistance of wild-type acid-shocked spores at both 90 degrees C and 95 degrees C. ALA- or AGFK-initiated germination of pH 5-shocked spores was the same as that of non-acid-shocked spores. Two-dimensional gel electrophoresis showed only one novel acid-shock protein, identified as a vegetative catalase 1 (KatA), which appeared 30 min after acid shock but was lost later in sporulation. CONCLUSIONS Acid shock at pH 5 increased the heat resistance of spores subsequently formed in B. subtilis wild type. The catalase, KatA, was induced by acid shock early in sporulation, but since it was degraded later in sporulation, it appears to act to increase heat resistance by altering spore structure. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first proteomic study of acid shock in sporulating B. subtilis cells. The increasing spore heat resistance produced by acid shock may have significance for the heat resistance of spores formed in the food industry.
Collapse
Affiliation(s)
- J K Lee
- School of Biosciences, University of Nottingham, Loughborough, UK
| | | | | | | |
Collapse
|
14
|
Movahedi S, Waites W. Cold shock response in sporulating Bacillus subtilis and its effect on spore heat resistance. J Bacteriol 2002; 184:5275-81. [PMID: 12218012 PMCID: PMC135340 DOI: 10.1128/jb.184.19.5275-5281.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Accepted: 06/26/2002] [Indexed: 11/20/2022] Open
Abstract
Cold shock and ethanol and puromycin stress responses in sporulating Bacillus subtilis cells have been investigated. We show that a total of 13 proteins are strongly induced after a short cold shock treatment of sporulating cells. The cold shock pretreatment affected the heat resistance of the spores formed subsequently, with spores heat killed at 85 or 90 degrees C being more heat resistant than the control spores while they were more heat sensitive than controls that were heat treated at 95 or 100 degrees C. However, B. subtilis spores with mutations in the main cold shock proteins, CspB, -C, and -D, did not display decreased heat resistance compared to controls, indicating that these proteins are not directly responsible for the increased heat resistance of the spores. The disappearance of the stress proteins later in sporulation suggests that they cannot be involved in repairing heat damage during spore germination and outgrowth but must alter spore structure in a way which increases or decreases heat resistance. Since heat, ethanol, and puromycin stress produce similar proteins and similar changes in spore heat resistance while cold shock is different in both respects, these alterations appear to be very specific.
Collapse
Affiliation(s)
- Sara Movahedi
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | | |
Collapse
|
15
|
Brul S, Klis F, Oomes S, Montijn R, Schuren F, Coote P, Hellingwerf K. Detailed process design based on genomics of survivors of food preservation processes. Trends Food Sci Technol 2002. [DOI: 10.1016/s0924-2244(02)00161-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Melly E, Genest PC, Gilmore ME, Little S, Popham DL, Driks A, Setlow P. Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J Appl Microbiol 2002; 92:1105-15. [PMID: 12010551 DOI: 10.1046/j.1365-2672.2002.01644.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To determine the effect of sporulation temperature on Bacillus subtilis spore resistance and spore composition. METHODS AND RESULTS Bacillus subtilis spores prepared at temperatures from 22 to 48 degrees C had identical amounts of dipicolinic acid and small, acid-soluble proteins but the core water content was lower in spores prepared at higher temperatures. As expected from this latter finding, spores prepared at higher temperatures were more resistant to wet heat than were spores prepared at lower temperatures. Spores prepared at higher temperatures were also more resistant to hydrogen peroxide, Betadine, formaldehyde, glutaraldehyde and a superoxidized water, Sterilox. However, spores prepared at high and low temperatures exhibited nearly identical resistance to u.v. radiation and dry heat. The cortex peptidoglycan in spores prepared at different temperatures showed very little difference in structure with only a small, albeit significant, increase in the percentage of muramic acid with a crosslink in spores prepared at higher temperatures. In contrast, there were readily detectable differences in the levels of coat proteins in spores prepared at different temperatures and the levels of at least one coat protein, CotA, fell significantly as the sporulation temperature increased. However, this latter change was not due to a reduction in cotA gene expression at higher temperatures. CONCLUSIONS The temperature of sporulation affects a number of spore properties, including resistance to many different stress factors, and also results in significant alterations in the spore coat and cortex composition. SIGNIFICANCE AND IMPACT OF THE STUDY The precise conditions for the formation of B. subtilis spores have a large effect on many spore properties.
Collapse
Affiliation(s)
- E Melly
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Horsburgh MJ, Thackray PD, Moir A. Transcriptional responses during outgrowth of Bacillus subtilis endospores. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2933-41. [PMID: 11700344 DOI: 10.1099/00221287-147-11-2933] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis 168 genome contains an array of alternative sigma factors, many of which play important roles in reprogramming expression during stress and sporulation. The role of the different sigma factors during outgrowth, when the germinated endospore is converted back to a vegetative cell, is less well characterized. The activity of the alternative sigma factors sigmaB, sigmaD and sigmaH during endospore outgrowth was analysed by Northern blotting and lacZ reporter assays. While sigmaD and sigmaH were transcriptionally active during outgrowth, sigmaB-dependent transcription was not observed until after the first cell division, when growth slowed. Using an IPTG-controllable copy of sigA, an optimal level of expression was required to maintain growth rate at the end of outgrowth. The genes encoding the putative extracytoplasmic function (ECF) sigma factors sigmaI, sigmaV, sigmaW, sigmaZ and YlaC were insertionally inactivated using pMUTIN4. These strains, together with sigM and sigX mutants, were tested to determine their role and measure their expression during endospore outgrowth. Transcripts or beta-galactosidase activity were observed for each of the ECF sigma factors early after germination. With the exception of MJH003 (sigM), which showed an exacerbated salt stress defect, inactivation of the ECF sigma factor genes did not affect outgrowth in the conditions tested.
Collapse
Affiliation(s)
- M J Horsburgh
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|