1
|
de Faria RC, Vila-Nova LG, Bitar M, Resende BC, Arantes LS, Rebelato AB, Azevedo VAC, Franco GR, Machado CR, Santos LLD, de Oliveira Lopes D. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro. INFECTION GENETICS AND EVOLUTION 2016; 44:318-329. [PMID: 27456281 DOI: 10.1016/j.meegid.2016.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/07/2016] [Accepted: 07/21/2016] [Indexed: 01/30/2023]
Abstract
Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis, a disease that predominantly affects small ruminants, causing significant economic losses worldwide. As a facultative intracellular pathogen, this bacterium is exposed to an environment rich in reactive oxygen species (ROS) within macrophages. To ensure its genetic stability, C. pseudotuberculosis relies on efficient DNA repair pathways for excision of oxidative damage such as 8-oxoguanine, a highly mutagenic lesion. MutY is an adenine glycosylase involved in adenine excision from 8-oxoG:A mismatches avoiding genome mutation incorporation. The purpose of this study was to characterize MutY protein from C. pseudotuberculosis and determine its involvement with DNA repair. In vivo functional complementation assay employing mutY gene deficient Escherichia coli transformed with CpmutY showed a 13.5-fold reduction in the rate of spontaneous mutation, compared to cells transformed with empty vector. Also, under oxidative stress conditions, CpMutY protein favored the growth of mutY deficient E. coli, relative to the same strain in the absence of CpMutY. To demonstrate the involvement of this enzyme in recognition and excision of 8-oxoguanine lesion, an in vitro assay was performed. CpMutY protein was capable of recognizing and excising 8-oxoG:A but not 8-oxoG:C presenting evidences of glycosylase/AP lyase activity in vitro. In silico structural characterization revealed the presence of preserved motifs related to the MutY activity on DNA repair, such as catalytic residues involved in glycosylase/AP lyase activity and structural DNA-binding elements, such as the HhH motif and the [4Fe-4S] cluster. The three-dimensional structure of CpMutY, generated by comparative modeling, exhibits a catalytic domain very similar to that of E. coli MutY. Taken together, these results indicate that the CpmutY encodes a functional protein homologous to MutY from E. coli and is involved in the prevention of mutations and the repair of oxidative DNA lesions.
Collapse
Affiliation(s)
- Rafael Cançado de Faria
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Liliane Gonçalves Vila-Nova
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Mainá Bitar
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Bruno Carvalho Resende
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Larissa Sousa Arantes
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Arnaldo Basso Rebelato
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Vasco Ariston Carvalho Azevedo
- Laboratory of Cell and Molecular Genetics, Department of General Biology, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Glória Regina Franco
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Carlos Renato Machado
- Laboratory of Genetics and Biochemistry, Department of Biochemistry, ICB, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| | - Luciana Lara Dos Santos
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| | - Débora de Oliveira Lopes
- Laboratory of Molecular Biology, Federal University of São João Del-Rei (CCO), Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG 35501-296, Brazil.
| |
Collapse
|
2
|
Timmins J, Moe E. A Decade of Biochemical and Structural Studies of the DNA Repair Machinery of Deinococcus radiodurans: Major Findings, Functional and Mechanistic Insight and Challenges. Comput Struct Biotechnol J 2016; 14:168-176. [PMID: 27924191 PMCID: PMC5128194 DOI: 10.1016/j.csbj.2016.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 10/27/2022] Open
Affiliation(s)
- Joanna Timmins
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Elin Moe
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT the Arctic University of Norway, N-9037 Tromsø, Norway
- Instituto de Tecnologia Quimica e Biologica (ITQB), Universidade Nova de Lisboa, Av da Republica (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
3
|
Function and biochemical characterization of RecJ in Deinococcus radiodurans. DNA Repair (Amst) 2012; 11:349-56. [DOI: 10.1016/j.dnarep.2011.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 12/21/2022]
|
4
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
5
|
Robles AG, Reid K, Roy F, Fletcher HM. Porphyromonas gingivalis mutY is involved in the repair of oxidative stress-induced DNA mispairing. Mol Oral Microbiol 2011; 26:175-86. [PMID: 21545695 DOI: 10.1111/j.2041-1014.2011.00605.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability for DNA mismatch repair, after oxidative stress-induced DNA damage, is critical for the persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket. Our previous report demonstrated that, in contrast to other organisms, the repair of oxidative stress-induced DNA damage involving 8-oxo-7,8-dihydroguanine (8-oxoG) may occur by a yet-to-be described mechanism in P. gingivalis. 8-oxoG does not block DNA replication; rather, it mispairs with adenine, which can be repaired by the MutY glycosylase. To determine the function of the P. gingivalis MutY homologue in DNA repair, it was insertionally inactivated using the ermF-ermAM antibiotic cassette and used to create a mutY-deficient mutant (FLL147) by allelic exchange mutagenesis. FLL147 had an increased rate of spontaneous mutation and was more sensitive to hydrogen peroxide compared with the wild-type W83 strain. DNA oligomers containing a site-specific 8-oxoG:A mispair was repaired similarly in both the P. gingivalis mutY-defective mutant and wild-type strains. The P. gingivalis mutY homologue was shown to complement the mutY mutation in Escherichia coli. In a gel mobility shift assay, the purified recombinant MutY is able to bind an oligo containing an 8-oxoG:A mispair. Taken together, MutY may play the expected role in oxidative stress resistance in P. gingivalis. However, there may exist other redundant mechanism(s) for the removal of 8-oxoG:A mismatch in this organism.
Collapse
Affiliation(s)
- A G Robles
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | |
Collapse
|
6
|
Characterization of an ATP-regulated DNA-processing enzyme and thermotolerant phosphoesterase in the radioresistant bacterium Deinococcus radiodurans. Biochem J 2010; 431:149-57. [PMID: 20658964 DOI: 10.1042/bj20100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A multiprotein DNA-processing complex identified from Deinococcus radiodurans exhibits uncharacterized ATP-sensitive nuclease functions. DR0505 was one of the 24 polypeptides identified from the complex. It contains two 5' nucleotidase motifs, one is at the C-terminal end of the N-terminal CPDD (calcineurin phosphodiesterase domain), with the second at the C-terminal end of the protein. Recombinant DR0505 showed both phosphomonoesterase and phosphodiesterase activities with chromogenic substrates, showing higher affinity for bis-(p-nitrophenyl) phosphate than for p-nitrophenyl phosphate. The enzyme exhibited pH optima ranging from 8.0 to 9.0 and metal-ion-dependent thermotolerance of esterase functions. Both mono- and di-esterase activities were stable at temperatures up to 50 °C in the presence of Mg2+, whereas monoesterase activity was observed at temperatures up to 80 °C in the presence of Mn2+ and up to 50 °C with Ca2+. The purified enzyme showed 5' nucleotidase activity on a wide range of natural mononucleotides including cyclic mononucleotides and 8-oxo-GMP. DR0505 showed a nearly 7-fold higher activity on ADP than AMP, but this activity was inhibited with ATP. Interestingly, DR0505 also showed single-stranded endonuclease and 3'→5' exonuclease activities on both single-stranded and double-stranded DNA-substrates. Unlike for the exonuclease activity, the single-stranded endonuclease activities observed on stem-loop substrates and at the single strand-double-strand junction in forked-hairpin substrates were not inhibited with ATP. These results suggested that DR0505 is an ATP-regulated DNA-processing enzyme and a thermotolerant esterase in vitro. We therefore suggest possible roles of this enzyme in nucleotide recycling and DNA processing, which is required for efficient double-strand break repair and the high radiation tolerance observed in D. radiodurans.
Collapse
|
7
|
Blasius M, Sommer S, Hübscher U. Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 2008; 43:221-38. [PMID: 18568848 DOI: 10.1080/10409230802122274] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Deinococcus radiodurans, one of the most radioresistant organisms known to date, is able to repair efficiently hundreds of DNA double- and single-strand breaks as well as other types of DNA damages promoted by ionizing or ultraviolet radiation. We review recent discoveries concerning several aspects of radioresistance and survival under high genotoxic stress. We discuss different hypotheses and possibilities that have been suggested to contribute to radioresistance and propose that D. radiodurans combines a variety of physiological tools that are tightly coordinated. A complex network of regulatory proteins may be discovered in the near future that might allow further understanding of radioresistance.
Collapse
Affiliation(s)
- Melanie Blasius
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich-Irchel, Zurich, Switzerland
| | | | | |
Collapse
|
8
|
Eutsey R, Wang G, Maier RJ. Role of a MutY DNA glycosylase in combating oxidative DNA damage in Helicobacter pylori. DNA Repair (Amst) 2006; 6:19-26. [PMID: 16996809 PMCID: PMC1829490 DOI: 10.1016/j.dnarep.2006.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/07/2006] [Accepted: 08/07/2006] [Indexed: 11/23/2022]
Abstract
MutY is an adenine glycosylase that has the ability to efficiently remove adenines from adenine/7,8-dihydro-8-oxoguanine (8-oxo-G) or adenine/guanine mismatches, and plays an important role in oxidative DNA damage repair. The human gastric pathogen Helicobacter pylori has a homolog of the MutY enzyme. To investigate the physiological roles of MutY in H. pylori, we constructed and characterized a mutY mutant. H. pylori mutY mutants incubated at 5% O2 have a 325-fold higher spontaneous mutation rate than its parent. The mutation rate is further increased by exposing the mutant to atmospheric levels of oxygen, an effect that is not seen in an E. coli mutY mutant. Most of the mutations that occurred in H. pylori mutY mutants, as examined by rpoB sequence changes that confer rifampicin resistance, are GC to TA transversions. The H. pylori enzyme has the ability to complement an E. coli mutY mutant, restoring its mutation frequency to the wild-type level. Pure H. pylori MutY has the ability to remove adenines from A/8-oxo-G mismatches, but strikingly no ability to cleave A/G mismatches. This is surprising because E. coli MutY can more rapidly turnover A/G than A/8-oxo-G. Thus, H. pylori MutY is an adenine glycosylase involved in the repair of oxidative DNA damage with a specificity for detecting 8-oxo-G. In addition, H. pylori mutY mutants are only 30% as efficient as wild-type in colonizing the stomach of mice, indicating that H. pylori MutY plays a significant role in oxidative DNA damage repair in vivo.
Collapse
Affiliation(s)
- Rory Eutsey
- University of Georgia, Athens, Georgia 30602, United States
| | | | | |
Collapse
|
9
|
Davidsen T, Bjørås M, Seeberg EC, Tønjum T. Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J Bacteriol 2005; 187:2801-9. [PMID: 15805527 PMCID: PMC1070393 DOI: 10.1128/jb.187.8.2801-2809.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome alterations due to horizontal gene transfer and stress constantly generate strain on the gene pool of Neisseria meningitidis, the causative agent of meningococcal (MC) disease. The DNA glycosylase MutY of the base excision repair pathway is involved in the protection against oxidative stress. MC MutY expressed in Escherichia coli exhibited base excision activity towards DNA substrates containing A:7,8-dihydro-8-oxo-2'-deoxyguanosine and A:C mismatches. Expression in E. coli fully suppressed the elevated spontaneous mutation rate found in the E. coli mutY mutant. An assessment of MutY activity in lysates of neisserial wild-type and mutY mutant strains showed that both MC and gonococcal (GC) MutY is expressed and active in vivo. Strikingly, MC and GC mutY mutants exhibited 60- to 140-fold and 20-fold increases in mutation rates, respectively, compared to the wild-type strains. Moreover, the differences in transitions and transversions in rpoB conferring rifampin resistance observed with the wild type and mutants demonstrated that the neisserial MutY enzyme works in preventing GC-->AT transversions. These findings are important in the context of models linking mutator phenotypes of disease isolates to microbial fitness.
Collapse
Affiliation(s)
- T Davidsen
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | | | | | | |
Collapse
|
10
|
Kivisaar M. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 2004; 5:814-27. [PMID: 14510835 DOI: 10.1046/j.1462-2920.2003.00488.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.
Collapse
Affiliation(s)
- Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia.
| |
Collapse
|
11
|
Birdsell JA. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 2002; 19:1181-97. [PMID: 12082137 DOI: 10.1093/oxfordjournals.molbev.a004176] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study presents compelling evidence that recombination significantly increases the silent GC content of a genome in a selectively neutral manner, resulting in a highly significant positive correlation between recombination and "GC3s" in the yeast Saccharomyces cerevisiae. Neither selection nor mutation can explain this relationship. A highly significant GC-biased mismatch repair system is documented for the first time in any member of the Kingdom Fungi. Much of the variation in the GC3s within yeast appears to result from GC-biased gene conversion. Evidence suggests that GC-biased mismatch repair exists in numerous organisms spanning six kingdoms. This transkingdom GC mismatch repair bias may have evolved in response to a ubiquitous AT mutational bias. A significant positive correlation between recombination and GC content is found in many of these same organisms, suggesting that the processes influencing the evolution of the yeast genome may be a general phenomenon. Nonrecombining regions of the genome and nonrecombining genomes would not be subject to this type of molecular drive. It is suggested that the low GC content characteristic of many nonrecombining genomes may be the result of three processes (1) a prevailing AT mutational bias, (2) random fixation of the most common types of mutation, and (3) the absence of the GC-biased gene conversion which, in recombining organisms, permits the reversal of the most common types of mutation. A model is proposed to explain the observation that introns, intergenic regions, and pseudogenes typically have lower GC content than the silent sites of corresponding open reading frames. This model is based on the observation that the greater the heterology between two sequences, the less likely it is that recombination will occur between them. According to this "Constraint" hypothesis, the formation and propagation of heteroduplex DNA is expected to occur, on average, more frequently within conserved coding and regulatory regions of the genome. In organisms possessing GC-biased mismatch repair, this would enhance the GC content of these regions through biased gene conversion. These findings have a number of important implications for the way we view genome evolution and suggest a new model for the evolution of sex.
Collapse
Affiliation(s)
- John A Birdsell
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85121, USA.
| |
Collapse
|