1
|
Barnett M, Meister L, Rainey PB. Experimental evolution of evolvability. Science 2025; 387:eadr2756. [PMID: 39977489 DOI: 10.1126/science.adr2756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 12/11/2024] [Indexed: 02/22/2025]
Abstract
Evolvability-the capacity to generate adaptive variation-is a trait that can itself evolve through natural selection. However, the idea that mutation can become biased toward adaptive outcomes remains controversial. In this work, we report the evolution of enhanced evolvability through localized hypermutation in experimental populations of bacteria. The evolved mechanism is analogous to the mutation-prone sequences of contingency loci observed in pathogenic bacteria. Central to this outcome was a lineage-level selection process, where success depended on the capacity to evolve between two phenotypic states. Subsequent evolution showed that the hypermutable locus is itself evolvable with respect to alterations in the frequency of environmental change. Lineages with localized hypermutability were more likely to acquire additional adaptive mutations, revealing an unanticipated benefit.
Collapse
Affiliation(s)
- Michael Barnett
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lena Meister
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
2
|
Arroyo-Pérez EE, Hook JC, Alvarado A, Wimmi S, Glatter T, Thormann K, Ringgaard S. A conserved cell-pole determinant organizes proper polar flagellum formation. eLife 2024; 13:RP93004. [PMID: 39636223 PMCID: PMC11620751 DOI: 10.7554/elife.93004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.
Collapse
Affiliation(s)
- Erick E Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - John C Hook
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Alejandra Alvarado
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Bacterial Metabolomics, University of TübingenTübingenGermany
| | - Stephan Wimmi
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Institute for Biological Physics, University of CologneKölnGermany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Kai Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Simon Ringgaard
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| |
Collapse
|
3
|
Pradhan P, Taviti AC, Beuria TK. The bacterial division protein MinDE has an independent function in flagellation. J Biol Chem 2024; 300:107117. [PMID: 38403244 PMCID: PMC10963238 DOI: 10.1016/j.jbc.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024] Open
Abstract
Before preparing for division, bacteria stop their motility. During the exponential growth phase in Escherichia coli, when the rate of bacterial division is highest, the expression of flagellar genes is repressed and bacterial adhesion is enhanced. Hence, it is evident that cell division and motility in bacteria are linked; however, the specific molecular mechanism by which these two processes are linked is not known. While observing E. coli, we found that compared to the WT, the E. coli (Δmin) cells show higher motility and flagellation. We demonstrated that the higher motility was due to the absence of the Min system and can be restored to normal in the presence of Min proteins, where Min system negatively regulates flagella formation. The Min system in E. coli is widely studied for its role in the inhibition of polar Z-ring formation through its pole-to-pole oscillation. However, its role in bacterial motility is not explored. MinD homologs, FlhG and FleN, are known to control flagellar expression through their interaction with FlrA and FleQ, respectively. AtoC, a part of the two-component system AtoSC complex, is homologous to FlrA/FleQ, and the complex is involved in E. coli flagellation via its interaction with the fliA promoter. We have shown that MinD interacts directly with the AtoS of AtoSC complex and controls the fliA expression. Our findings suggest that the Min system acts as a link between cell division and motility in E. coli.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ashoka Chary Taviti
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tushar Kant Beuria
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Oladosu VI, Park S, Sauer K. Flip the switch: the role of FleQ in modulating the transition between the free-living and sessile mode of growth in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0036523. [PMID: 38436566 PMCID: PMC10955856 DOI: 10.1128/jb.00365-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen causing chronic infections that are associated with the sessile/biofilm mode of growth rather than the free-living/planktonic mode of growth. The transcriptional regulator FleQ contributes to both modes of growth by functioning both as an activator and repressor and inversely regulating flagella genes associated with the planktonic mode of growth and genes contributing to the biofilm mode of growth. Here, we review findings that enhance our understanding of the molecular mechanism by which FleQ enables the transition between the two modes of growth. We also explore recent advances in the mechanism of action of FleQ to both activate and repress gene expression from a single promoter. Emphasis will be on the role of sigma factors, cyclic di-GMP, and the transcriptional regulator AmrZ in inversely regulating flagella and biofilm-associated genes and converting FleQ from a repressor to an activator.
Collapse
Affiliation(s)
- Victoria I. Oladosu
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - Soyoung Park
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
5
|
Chakraborty S, Agarwal S, Bakshi A, Dey S, Biswas M, Ghosh B, Dasgupta J. The N-terminal FleQ domain of the Vibrio cholerae flagellar master regulator FlrA plays pivotal structural roles in stabilizing its active state. FEBS Lett 2023; 597:2161-2177. [PMID: 37402215 DOI: 10.1002/1873-3468.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
In Vibrio cholerae, the master regulator FlrA controls transcription of downstream flagellar genes in a σ54 -dependent manner. However, the molecular basis of regulation by VcFlrA, which contains a phosphorylation-deficient N-terminal FleQ domain, has remained elusive. Our studies on VcFlrA, four of its constructs, and a mutant showed that the AAA+ domain of VcFlrA, with or without the linker 'L', remains in ATPase-deficient monomeric states. By contrast, the FleQ domain plays a pivotal role in promoting higher-order functional oligomers, providing the required conformation to 'L' for ATP/cyclic di-GMP (c-di-GMP) binding. The crystal structure of VcFlrA-FleQ at 2.0 Å suggests that distinct structural features of VcFlrA-FleQ presumably assist in inter-domain packing. VcFlrA at a high concentration forms ATPase-efficient oligomers when the intracellular c-di-GMP level is low. Conversely, excess c-di-GMP locks VcFlrA in a non-functional lower oligomeric state, causing repression of flagellar biosynthesis.
Collapse
Affiliation(s)
| | | | - Arindam Bakshi
- Department of Biotechnology, St Xavier's College, Kolkata, India
| | - Sanjay Dey
- Department of Biotechnology, St Xavier's College, Kolkata, India
| | - Maitree Biswas
- Department of Biotechnology, St Xavier's College, Kolkata, India
| | - Biplab Ghosh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Jhimli Dasgupta
- Department of Biotechnology, St Xavier's College, Kolkata, India
| |
Collapse
|
6
|
Blanco-Romero E, Durán D, Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Adaption of Pseudomonas ogarae F113 to the Rhizosphere Environment-The AmrZ-FleQ Hub. Microorganisms 2023; 11:microorganisms11041037. [PMID: 37110460 PMCID: PMC10146422 DOI: 10.3390/microorganisms11041037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Motility and biofilm formation are two crucial traits in the process of rhizosphere colonization by pseudomonads. The regulation of both traits requires a complex signaling network that is coordinated by the AmrZ-FleQ hub. In this review, we describe the role of this hub in the adaption to the rhizosphere. The study of the direct regulon of AmrZ and the phenotypic analyses of an amrZ mutant in Pseudomonas ogarae F113 has shown that this protein plays a crucial role in the regulation of several cellular functions, including motility, biofilm formation, iron homeostasis, and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) turnover, controlling the synthesis of extracellular matrix components. On the other hand, FleQ is the master regulator of flagellar synthesis in P. ogarae F113 and other pseudomonads, but its implication in the regulation of multiple traits related with environmental adaption has been shown. Genomic scale studies (ChIP-Seq and RNA-Seq) have shown that in P. ogarae F113, AmrZ and FleQ are general transcription factors that regulate multiple traits. It has also been shown that there is a common regulon shared by the two transcription factors. Moreover, these studies have shown that AmrZ and FleQ form a regulatory hub that inversely regulate traits such as motility, extracellular matrix component production, and iron homeostasis. The messenger molecule c-di-GMP plays an essential role in this hub since its production is regulated by AmrZ and it is sensed by FleQ and required for its regulatory role. This regulatory hub is functional both in culture and in the rhizosphere, indicating that the AmrZ-FleQ hub is a main player of P. ogarae F113 adaption to the rhizosphere environment.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
7
|
Martínez-Rodríguez L, López-Sánchez A, García-Alcaide A, Govantes F, Gallegos MT. FleQ, FleN and c-di-GMP coordinately regulate cellulose production in Pseudomonas syringae pv. tomato DC3000. Front Mol Biosci 2023; 10:1155579. [PMID: 37051327 PMCID: PMC10083355 DOI: 10.3389/fmolb.2023.1155579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The second messenger cyclic di-GMP (c-di-GMP) controls the transition between motility and sessility in many bacterial species by a variety of mechanisms, including the production of multiple exopolysaccharides. Pseudomonas syringae pv. tomato (Pto) DC3000 is a plant pathogenic bacteria able to synthesize acetylated cellulose under high c-di-GMP levels thanks to the expression of the wssABCDEFGHI operon. Increased cellulose production enhances air-liquid biofilm formation and generates a wrinkled colony phenotype on solid media. We previously showed that under low levels of c-di-GMP, the regulators FleQ and AmrZ bound to adjacent sequences at the wss promoter inhibiting its expression, but only FleQ responded to the presence of c-di-GMP by activating cellulose production. In the present work, we advance in the knowledge of this complex regulation in Pto DC3000 by shedding light over the role of FleN in this process. The distinctive features of this system are that FleN and FleQ are both required for repression and activation of the wss operon under low and high c-di-GMP levels, respectively. We have also identified three putative FleQ binding sites at the wss promoter and show that FleQ/FleN-ATP binds at those sites under low c-di-GMP levels, inducing a distortion of DNA, impairing RNA polymerase binding, and repressing wss transcription. However, binding of c-di-GMP induces a conformational change in the FleQ/FleN-ATP complex, which relieves the DNA distortion, allows promoter access to the RNA polymerase, and leads to activation of wss transcription. On the other hand, AmrZ is always bound at the wss promoter limiting its expression independently of FleQ, FleN and c-di-GMP levels.
Collapse
Affiliation(s)
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Andrea García-Alcaide
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Granada, Spain
- *Correspondence: María-Trinidad Gallegos,
| |
Collapse
|
8
|
Lloyd CJ, Klose KE. The Vibrio Polar Flagellum: Structure and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:77-97. [PMID: 36792872 DOI: 10.1007/978-3-031-22997-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Here we discuss the structure and regulation of the Vibrio flagellum and its role in the virulence of pathogenic species. We will cover some of the novel insights into the structure of this nanomachine that have recently been enabled by cryoelectron tomography. We will also highlight the recent genetic studies that have increased our understanding in flagellar synthesis specifically at the bacterial cell pole, temporal regulation of flagellar genes, and how the flagellum enables directional motility through Run-Reverse-Flick cycles.
Collapse
Affiliation(s)
- Cameron J Lloyd
- South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX, USA.,Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, TX, USA
| | - Karl E Klose
- South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX, USA. .,Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Pacheco-Sánchez D, Marín P, Molina-Fuentes Á, Marqués S. Subtle sequence differences between two interacting σ 54 -dependent regulators lead to different activation mechanisms. FEBS J 2022; 289:7582-7604. [PMID: 35816183 PMCID: PMC10084136 DOI: 10.1111/febs.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 07/10/2022] [Indexed: 12/13/2022]
Abstract
In the strictly anaerobic nitrate reducing bacterium Aromatoleum anaerobium, degradation of 1,3-dihydroxybenzene (1,3-DHB, resorcinol) is controlled by two bacterial enhancer-binding proteins (bEBPs), RedR1 and RedR2, which regulate the transcription of three σ54 -dependent promoters controlling expression of the pathway. RedR1 and RedR2 are identical over their length except for their N-terminal tail which differ in sequence and length (six and eight residues, respectively), a single change in their N-terminal domain (NTD), and nine non-identical residues in their C-terminal domain (CTD). Their NTD is composed of a GAF and a PAS domain connected by a linker helix. We show that each regulator is controlled by a different mechanism: whilst RedR1 responds to the classical NTD-mediated negative regulation that is released by the presence of its effector, RedR2 activity is constitutive and controlled through interaction with BtdS, an integral membrane subunit of hydroxyhydroquinone dehydrogenase carrying out the second step in 1,3-DHB degradation. BtdS sequesters the RedR2 regulator to the membrane through its NTD, where a four-Ile track in the PAS domain, interrupted by a Thr in RedR1, and the N-terminal tail are involved. The presence of 1,3-DHB, which is metabolized to hydroxybenzoquinone, releases RedR2 from the membrane. Most bEBPs assemble into homohexamers to activate transcription; we show that hetero-oligomer formation between RedR1 and RedR2 is favoured over homo-oligomers. However, either an NTD-truncated version of RedR1 or a full-length RedR2 are capable of promoter activation on their own, suggesting they should assemble into homohexamers in vivo. We show that promoter DNA behaves as an allosteric effector through binding the CTD to control ΔNTD-RedR1 multimerization and activity. Overall, the regulation of the 1,3-DHB anaerobic degradation pathway can be described as a novel mode of bEBP activation and assembly.
Collapse
Affiliation(s)
- Daniel Pacheco-Sánchez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Patricia Marín
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Águeda Molina-Fuentes
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Silvia Marqués
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
10
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
11
|
Huang QS, Yan ZF, Chen XQ, Du YY, Li J, Liu ZZ, Xia W, Chen S, Wu J. Accelerated biodegradation of polyethylene terephthalate by Thermobifida fusca cutinase mediated by Stenotrophomonas pavanii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152107. [PMID: 34864034 DOI: 10.1016/j.scitotenv.2021.152107] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Polyethylene terephthalate (PET) is a general plastic that produces a significant amount of waste due to its non-biodagradable properties. We obtained four bacteria (Stenotrophomonas pavanii JWG-G1, Comamonas thiooxydans CG-1, Comamonas koreensis CG-2 and Fulvimonas soli GM-1) that utilize PET as a sole carbon source through a novel stepwise screening and verification strategy. PET films pretreated with S. pavanii JWG-G1 exhibited weight loss of 91.4% following subsequent degradation by Thermobifida fusca cutinase (TfC). S. pavanii JWG-G1 was able to colonize the PET surface and maintain high cell viability (over 50%) in biofilm, accelerating PET degradation. Compared with PET films with no pretreatment, pretreatment with S. pavanii JWG-G1 caused the PET surface to be significantly rougher with greater hydrophilicity (contact angle of 86.3 ± 2° vs. 96.6 ± 2°), providing better opportunities for TfC to contact and act on PET. Our study indicates that S. pavanii JWG-G1 could be used as a novel pretreatment for efficiently accelerating PET biodegradation by TfC.
Collapse
Affiliation(s)
- Qing-Song Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zheng-Fei Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiao-Qian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yan-Yi Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Juan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zhan-Zhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Wei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
12
|
Nie H, Xiao Y, Song M, Wu N, Peng Q, Duan W, Chen W, Huang Q. Wsp system oppositely modulates antibacterial activity and biofilm formation via FleQ-FleN complex in Pseudomonas putida. Environ Microbiol 2022; 24:1543-1559. [PMID: 35178858 DOI: 10.1111/1462-2920.15905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
Abstract
Type VI secretion systems (T6SS) are specific antibacterial weapons employed by diverse bacteria to protect themselves from competitors. Pseudomonas putida KT2440 possesses a functional T6SS (K1-T6SS) and exhibits antibacterial activity towards a broad range of bacteria. Here we found that the Wsp signal transduction system regulated K1-T6SS expression via synthesizing the second messenger cyclic di-GMP (c-di-GMP), thus mediating antibacterial activity in P. putida. High-level c-di-GMP produced by Wsp system repressed the transcription of K1-T6SS genes in structural operon and vgrG1 operon. Transcriptional regulator FleQ and ATPase FleN functioned as repressors in the Wsp system-modulated K1-T6SS transcription. However, FleQ and FleN functioned as activators in biofilm formation, and Wsp system promoted biofilm formation largely in a FleQ/FleN-dependent manner. Furthermore, FleQ-FleN complex bound directly to the promoter of K1-T6SS structural operon in vitro, and c-di-GMP promoted the binding. Besides, P. putida biofilm cells showed higher c-di-GMP levels and lower antibacterial activity than planktonic cells. Overall, our findings reveal a mechanism by which Wsp system oppositely modulates antibacterial activity and biofilm formation via FleQ-FleN, and demonstrate the relationship between plankton/biofilm lifestyles and antibacterial activity in P. putida.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nianqi Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Park S, Sauer K. Controlling Biofilm Development Through Cyclic di-GMP Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:69-94. [PMID: 36258069 PMCID: PMC9891824 DOI: 10.1007/978-3-031-08491-1_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date summary of c-di-GMP pathways connected to biofilm formation by the opportunistic pathogen P. aeruginosa. Emphasis will be on the timing of c-di-GMP production over the course of biofilm formation, to highlight non-uniform and hierarchical increases in c-di-GMP levels, as well as biofilm growth conditions that do not conform with our current model of c-di-GMP.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
14
|
Leal-Morales A, Pulido-Sánchez M, López-Sánchez A, Govantes F. Transcriptional organization and regulation of the Pseudomonas putida flagellar system. Environ Microbiol 2021; 24:137-157. [PMID: 34859548 DOI: 10.1111/1462-2920.15857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023]
Abstract
A single region of the Pseudomonas putida genome, designated the flagellar cluster, includes 59 genes potentially involved in the biogenesis and function of the flagellar system. Here, we combine bioinformatics and in vivo gene expression analyses to clarify the transcriptional organization and regulation of the flagellar genes in the cluster. We have identified 11 flagellar operons and characterized 22 primary and internal promoter regions. Our results indicate that synthesis of the flagellar apparatus and core chemotaxis machinery is regulated by a three-tier cascade in which fleQ is a Class I gene, standing at the top of the transcriptional hierarchy. FleQ- and σ54 -dependent Class II genes encode most components of the flagellar structure, part of the chemotaxis machinery and multiple regulatory elements, including the flagellar σ factor FliA. FliA activation of Class III genes enables synthesis of the filament, one stator complex and completion of the chemotaxis apparatus. Accessory regulatory proteins and an intricate operon architecture add complexity to the regulation by providing feedback and feed-forward loops to the main circuit. Because of the high conservation of the gene arrangement and promoter motifs, we believe that the regulatory circuit presented here may also apply to other environmental pseudomonads.
Collapse
Affiliation(s)
- Antonio Leal-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Marta Pulido-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
15
|
Fule L, Halifa R, Fontana C, Sismeiro O, Legendre R, Varet H, Coppée JY, Murray GL, Adler B, Hendrixson DR, Buschiazzo A, Guo S, Liu J, Picardeau M. Role of the major determinant of polar flagellation FlhG in the endoflagella-containing spirochete Leptospira. Mol Microbiol 2021; 116:1392-1406. [PMID: 34657338 DOI: 10.1111/mmi.14831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 01/31/2023]
Abstract
Spirochetes can be distinguished from other bacteria by their spiral-shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG- mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild-type strains in gel-like environments but not hyperflagellated as reported previously in other bacteria. Cryo-electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG- mutant in comparison to wild-type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG- and wild-type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG- mutant was attenuated for virulence in the hamster model. Cross-species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes.
Collapse
Affiliation(s)
- Lenka Fule
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
- Pasteur International Unit, Integrative Microbiology of Zoonotic Agents, Institut Pasteur de Montevideo, Montevideo, Uruguay/Institut Pasteur, Paris, France
- Université de Paris, Paris, France
| | - Ruben Halifa
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | - Celia Fontana
- Boehringer Ingelheim Santé Animale, Saint Priest, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Gerald L Murray
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ben Adler
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alejandro Buschiazzo
- Pasteur International Unit, Integrative Microbiology of Zoonotic Agents, Institut Pasteur de Montevideo, Montevideo, Uruguay/Institut Pasteur, Paris, France
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Shuaiqi Guo
- Microbial Sciences Institute & Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jun Liu
- Microbial Sciences Institute & Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
- Pasteur International Unit, Integrative Microbiology of Zoonotic Agents, Institut Pasteur de Montevideo, Montevideo, Uruguay/Institut Pasteur, Paris, France
| |
Collapse
|
16
|
Chanchal, Banerjee P, Raghav S, Goswami HN, Jain D. The antiactivator FleN uses an allosteric mechanism to regulate σ 54-dependent expression of flagellar genes in Pseudomonas aeruginosa. SCIENCE ADVANCES 2021; 7:eabj1792. [PMID: 34669473 PMCID: PMC8528422 DOI: 10.1126/sciadv.abj1792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 12/09/2023]
Abstract
Diverse sigma factors associate with the RNA polymerase (RNAP) core enzyme to initiate transcription of specific target genes in bacteria. σ54-Mediated transcription uses AAA+ activators that utilize their ATPase activity for transcription initiation. FleQ is a σ54-dependent master transcriptional regulator of flagellar genes in Pseudomonas aeruginosa. The ATPase activity of FleQ is regulated via a P-loop ATPase, FleN, through protein-protein interaction. We report a high-resolution crystal structure of the AAA+ domain of FleQ in complex with antiactivator FleN. The data reveal that FleN allosterically prevents ATP binding to FleQ. Furthermore, FleN remodels the region of FleQ essential for engagement with σ54 for transcription initiation. Disruption of the conserved protein-protein interface, by mutation, shows motility and transcription defects in vivo and multiflagellate phenotype. Our study provides a detailed mechanism used by monoflagellate bacteria to fine-tune the expression of flagellar genes to form and maintain a single flagellum.
Collapse
Affiliation(s)
- Chanchal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Hemant N. Goswami
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
17
|
OsaR (PA0056) functions as a repressor of the gene fleQ encoding an important motility regulator in Pseudomonas aeruginosa. J Bacteriol 2021; 203:e0014521. [PMID: 34339300 DOI: 10.1128/jb.00145-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FleQ plays a crucial role in motility and biofilm formation by regulating flagellar and exopolysaccharide biosynthesis in Pseudomonas aeruginosa. It has been reported that the expression of FleQ is transcriptionally downregulated by the virulence factor regulator Vfr. Herein we demonstrated that a LysR-type transcriptional regulator, OsaR, is also capable of binding to the promoter region of fleQ and repressing its transcription. Through gel shift and DNase I footprinting assays, the OsaR binding site was identified and characterized as a dual LysR-type transcriptional regulator box (AT-N11-AT-N7-A-N11-T). Mutation of the A-T palindromic base pairs in fleQ promoter not only reduced the binding affinity of OsaR in vitro, but also de-repressed fleQ transcription in vivo. The OsaR binding site was found to cover the Vfr binding site; knockout of osaR or vfr separately exhibited no effect on the transcriptional level of fleQ; however, fleQ expression was repressed by overexpression of osaR or vfr. Furthermore, simultaneously deleting both osaR and vfr resulted in an upregulation of fleQ, but it could be complemented by the expression of either of the two repressors. In summary, our work revealed that OsaR and Vfr function as two transcriptional repressors of fleQ that bind to the same region of fleQ but work separately. IMPORTANCE Pseudomonas aeruginosa is a widespread human pathogen, which accounts for serious infections in the hospital, especially for lung infection in cystic fibrosis and chronic obstructive pulmonary disease patients. P. aeruginosa infection is closely associated with its motility and biofilm formation, which are both under the regulation of the important transcription factor FleQ. However, the upstream regulatory mechanisms of fleQ have not been fully elucidated. Therefore, our research identifying a novel regulator of fleQ as well as new regulatory mechanisms controlling its expression will be significant for better understanding the intricate gene regulatory mechanisms related to P. aeruginosa virulence and infection.
Collapse
|
18
|
Xiao Y, Nie L, Chen H, He M, Liang Q, Nie H, Chen W, Huang Q. The two-component system TarR-TarS is regulated by c-di-GMP/FleQ and FliA and modulates antibiotic susceptibility in Pseudomonas putida. Environ Microbiol 2021; 23:5239-5257. [PMID: 33938113 DOI: 10.1111/1462-2920.15555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Two-component systems (TCSs) are predominant means by which bacteria sense and respond to environment signals. Genome of Pseudomonas putida contains dozens of putative TCS-encoding genes, but phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterized function and transcriptional regulation of a conserved P. putida TCS, named TarR-TarS. TarS (PP_0769) encodes a potential histidine kinase, and tarR (PP_0768) encodes a potential response regulator. Protein-protein interaction assay and phosphorylation assay confirmed that TarR-TarS was a functional TCS. Growth assay under antibiotics revealed that TarR-TarS positively regulated bacterial resistance to multiple antibiotics. Pull-down assay revealed that TarR directly interacted with PP_0800 (a hypothetical protein) and GroEL (the chaperonin). GroEL played a positive role in antibiotic resistance, while PP_0800 seemed to have no effect on antibiotic resistance. The regulator FleQ indirectly activated tarR-tarS transcription. However, the second messenger c-di-GMP antagonized FleQ activation to inhibit tarR-tarS transcription. The sigma factor FliA directly activated tarR-tarS transcription via a consensus motif. These findings reveal function and transcriptional regulation of TarR-TarS, and enrich knowledge regarding the relationship between c-di-GMP and antibiotic susceptibility in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haozhe Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyuan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Bouteiller M, Dupont C, Bourigault Y, Latour X, Barbey C, Konto-Ghiorghi Y, Merieau A. Pseudomonas Flagella: Generalities and Specificities. Int J Mol Sci 2021; 22:ijms22073337. [PMID: 33805191 PMCID: PMC8036289 DOI: 10.3390/ijms22073337] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Flagella-driven motility is an important trait for bacterial colonization and virulence. Flagella rotate and propel bacteria in liquid or semi-liquid media to ensure such bacterial fitness. Bacterial flagella are composed of three parts: a membrane complex, a flexible-hook, and a flagellin filament. The most widely studied models in terms of the flagellar apparatus are E. coli and Salmonella. However, there are many differences between these enteric bacteria and the bacteria of the Pseudomonas genus. Enteric bacteria possess peritrichous flagella, in contrast to Pseudomonads, which possess polar flagella. In addition, flagellar gene expression in Pseudomonas is under a four-tiered regulatory circuit, whereas enteric bacteria express flagellar genes in a three-step manner. Here, we use knowledge of E. coli and Salmonella flagella to describe the general properties of flagella and then focus on the specificities of Pseudomonas flagella. After a description of flagellar structure, which is highly conserved among Gram-negative bacteria, we focus on the steps of flagellar assembly that differ between enteric and polar-flagellated bacteria. In addition, we summarize generalities concerning the fuel used for the production and rotation of the flagellar macromolecular complex. The last part summarizes known regulatory pathways and potential links with the type-six secretion system (T6SS).
Collapse
Affiliation(s)
- Mathilde Bouteiller
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yvann Bourigault
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Corinne Barbey
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
- Correspondence:
| |
Collapse
|
20
|
Arroyo-Pérez EE, Ringgaard S. Interdependent Polar Localization of FlhF and FlhG and Their Importance for Flagellum Formation of Vibrio parahaemolyticus. Front Microbiol 2021; 12:655239. [PMID: 33815347 PMCID: PMC8009987 DOI: 10.3389/fmicb.2021.655239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Failure of the cell to properly regulate the number and intracellular positioning of their flagella, has detrimental effects on the cells’ swimming ability. The flagellation pattern of numerous bacteria is regulated by the NTPases FlhF and FlhG. In general, FlhG controls the number of flagella produced, whereas FlhF coordinates the position of the flagella. In the human pathogen Vibrio parahaemolyticus, its single flagellum is positioned and formed at the old cell pole. Here, we describe the spatiotemporal localization of FlhF and FlhG in V. parahaemolyticus and their effect on swimming motility. Absence of either FlhF or FlhG caused a significant defect in swimming ability, resulting in absence of flagella in a ΔflhF mutant and an aberrant flagellated phenotype in ΔflhG. Both proteins localized to the cell pole in a cell cycle-dependent manner, but displayed different patterns of localization throughout the cell cycle. FlhF transitioned from a uni- to bi-polar localization, as observed in other polarly flagellated bacteria. Localization of FlhG was strictly dependent on the cell pole-determinant HubP, while polar localization of FlhF was HubP independent. Furthermore, localization of FlhF and FlhG was interdependent and required for each other’s proper intracellular localization and recruitment to the cell pole. In the absence of HubP or FlhF, FlhG forms non-polar foci in the cytoplasm of the cell, suggesting the possibility of a secondary localization site within the cell besides its recruitment to the cell poles.
Collapse
Affiliation(s)
- Erick Eligio Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon Ringgaard
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
21
|
An ATP-dependent partner switch links flagellar C-ring assembly with gene expression. Proc Natl Acad Sci U S A 2020; 117:20826-20835. [PMID: 32788349 DOI: 10.1073/pnas.2006470117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial flagella differ in their number and spatial arrangement. In many species, the MinD-type ATPase FlhG (also YlxH/FleN) is central to the numerical control of bacterial flagella, and its deletion in polarly flagellated bacteria typically leads to hyperflagellation. The molecular mechanism underlying this numerical control, however, remains enigmatic. Using the model species Shewanella putrefaciens, we show that FlhG links assembly of the flagellar C ring with the action of the master transcriptional regulator FlrA (named FleQ in other species). While FlrA and the flagellar C-ring protein FliM have an overlapping binding site on FlhG, their binding depends on the ATP-dependent dimerization state of FlhG. FliM interacts with FlhG independent of nucleotide binding, while FlrA exclusively interacts with the ATP-dependent FlhG dimer and stimulates FlhG ATPase activity. Our in vivo analysis of FlhG partner switching between FliM and FlrA reveals its mechanism in the numerical restriction of flagella, in which the transcriptional activity of FlrA is down-regulated through a negative feedback loop. Our study demonstrates another level of regulatory complexity underlying the spationumerical regulation of flagellar biogenesis and implies that flagellar assembly transcriptionally regulates the production of more initial building blocks.
Collapse
|
22
|
Terashima H, Hirano K, Inoue Y, Tokano T, Kawamoto A, Kato T, Yamaguchi E, Namba K, Uchihashi T, Kojima S, Homma M. Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in Vibrio species. J Bacteriol 2020; 202:JB.00236-20. [PMID: 32482724 PMCID: PMC8404704 DOI: 10.1128/jb.00236-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
The bacterial flagellum is an organelle responsible for motility and has a rotary motor comprising the rotor and the stator. Flagellar biogenesis is initiated by the assembly of the MS-ring, a supramolecular complex embedded in the cytoplasmic membrane. The MS-ring consists of a few dozen copies of the transmembrane FliF protein, and is an essential core structure which is a part of the rotor. The number and location of the flagella are controlled by the FlhF and FlhG proteins in some species. However, there is no clarity on the factors initiating MS-ring assembly, and contribution of FlhF/FlhG to this process. Here, we show that FlhF and a C-ring component FliG facilitate Vibrio MS-ring formation. When Vibrio FliF alone was expressed in Escherichia coli cells, MS-ring formation rarely occurred, indicating the requirement of other factors for MS-ring assembly. Consequently, we investigated if FlhF aided FliF in MS-ring assembly. We found that FlhF allowed GFP-fused FliF to localize at the cell pole in a Vibrio cell, suggesting that it increases local concentration of FliF at the pole. When FliF was co-expressed with FlhF in E. coli cells, the MS-ring was effectively formed, indicating that FlhF somehow contributes to MS-ring formation. The isolated MS-ring structure was similar to the MS-ring formed by Salmonella FliF. Interestingly, FliG facilitates MS-ring formation, suggesting that FliF and FliG assist in each other's assembly into the MS-ring and C-ring. This study aids in understanding the mechanism behind MS-ring assembly using appropriate spatial/temporal regulations.Importance Flagellar formation is initiated by the assembly of the FliF protein into the MS-ring complex, embedded in the cytoplasmic membrane. The appropriate spatial/temporal control of MS-ring formation is important for the morphogenesis of the bacterial flagellum. Here, we focus on the assembly mechanism of Vibrio FliF into the MS-ring. FlhF, a positive regulator of the number and location of flagella, recruits the FliF molecules at the cell pole and facilitates MS-ring formation. FliG also facilitates MS-ring formation. Our study showed that these factors control flagellar biogenesis in Vibrio, by initiating the MS-ring assembly. Furthermore, it also implies that flagellar biogenesis is a sophisticated system linked with the expression of certain genes, protein localization and a supramolecular complex assembly.
Collapse
Affiliation(s)
- Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuna Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takaya Tokano
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Erika Yamaguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- RIKEN Spring-8 Center and Center for Biosystems Dynamic Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Uchihashi
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
23
|
Regulation of the Single Polar Flagellar Biogenesis. Biomolecules 2020; 10:biom10040533. [PMID: 32244780 PMCID: PMC7226244 DOI: 10.3390/biom10040533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Some bacterial species, such as the marine bacterium Vibrio alginolyticus, have a single polar flagellum that allows it to swim in liquid environments. Two regulators, FlhF and FlhG, function antagonistically to generate only one flagellum at the cell pole. FlhF, a signal recognition particle (SRP)-type guanosine triphosphate (GTP)ase, works as a positive regulator for flagellar biogenesis and determines the location of flagellar assembly at the pole, whereas FlhG, a MinD-type ATPase, works as a negative regulator that inhibits flagellar formation. FlhF intrinsically localizes at the cell pole, and guanosine triphosphate (GTP) binding to FlhF is critical for its polar localization and flagellation. FlhG also localizes at the cell pole via the polar landmark protein HubP to directly inhibit FlhF function at the cell pole, and this localization depends on ATP binding to FlhG. However, the detailed regulatory mechanisms involved, played by FlhF and FlhG as the major factors, remain largely unknown. This article reviews recent studies that highlight the post-translational regulation mechanism that allows the synthesis of only a single flagellum at the cell pole.
Collapse
|
24
|
A Polar Flagellar Transcriptional Program Mediated by Diverse Two-Component Signal Transduction Systems and Basal Flagellar Proteins Is Broadly Conserved in Polar Flagellates. mBio 2020; 11:mBio.03107-19. [PMID: 32127455 PMCID: PMC7064773 DOI: 10.1128/mbio.03107-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Relative to peritrichous bacteria, polar flagellates possess regulatory systems that order flagellar gene transcription differently and produce flagella in specific numbers only at poles. How transcriptional and flagellar biogenesis regulatory systems are interlinked to promote the correct synthesis of polar flagella in diverse species has largely been unexplored. We found evidence for many Gram-negative polar flagellates encoding two-component signal transduction systems with activity linked to the formation of flagellar type III secretion systems to enable production of flagellar rod and hook proteins at a discrete, subsequent stage during flagellar assembly. This polar flagellar transcriptional program assists, in some manner, the FlhF/FlhG flagellar biogenesis regulatory system, which forms specific flagellation patterns in polar flagellates in maintaining flagellation and motility when activity of FlhF or FlhG might be altered. Our work provides insight into the multiple regulatory processes required for polar flagellation. Bacterial flagella are rotating nanomachines required for motility. Flagellar gene expression and protein secretion are coordinated for efficient flagellar biogenesis. Polar flagellates, unlike peritrichous bacteria, commonly order flagellar rod and hook gene transcription as a separate step after production of the MS ring, C ring, and flagellar type III secretion system (fT3SS) core proteins that form a competent fT3SS. Conserved regulatory mechanisms in diverse polar flagellates to create this polar flagellar transcriptional program have not been thoroughly assimilated. Using in silico and genetic analyses and our previous findings in Campylobacter jejuni as a foundation, we observed a large subset of Gram-negative bacteria with the FlhF/FlhG regulatory system for polar flagellation to possess flagellum-associated two-component signal transduction systems (TCSs). We present data supporting a general theme in polar flagellates whereby MS ring, rotor, and fT3SS proteins contribute to a regulatory checkpoint during polar flagellar biogenesis. We demonstrate that Vibrio cholerae and Pseudomonas aeruginosa require the formation of this regulatory checkpoint for the TCSs to directly activate subsequent rod and hook gene transcription, which are hallmarks of the polar flagellar transcriptional program. By reprogramming transcription in V. cholerae to more closely follow the peritrichous flagellar transcriptional program, we discovered a link between the polar flagellar transcription program and the activity of FlhF/FlhG flagellar biogenesis regulators in which the transcriptional program allows polar flagellates to continue to produce flagella for motility when FlhF or FlhG activity may be altered. Our findings integrate flagellar transcriptional and biogenesis regulatory processes involved in polar flagellation in many species.
Collapse
|
25
|
Henderson LD, Matthews-Palmer TRS, Gulbronson CJ, Ribardo DA, Beeby M, Hendrixson DR. Diversification of Campylobacter jejuni Flagellar C-Ring Composition Impacts Its Structure and Function in Motility, Flagellar Assembly, and Cellular Processes. mBio 2020; 11:e02286-19. [PMID: 31911488 PMCID: PMC6946799 DOI: 10.1128/mbio.02286-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial flagella are reversible rotary motors that rotate external filaments for bacterial propulsion. Some flagellar motors have diversified by recruiting additional components that influence torque and rotation, but little is known about the possible diversification and evolution of core motor components. The mechanistic core of flagella is the cytoplasmic C ring, which functions as a rotor, directional switch, and assembly platform for the flagellar type III secretion system (fT3SS) ATPase. The C ring is composed of a ring of FliG proteins and a helical ring of surface presentation of antigen (SPOA) domains from the switch proteins FliM and one of two usually mutually exclusive paralogs, FliN or FliY. We investigated the composition, architecture, and function of the C ring of Campylobacter jejuni, which encodes FliG, FliM, and both FliY and FliN by a variety of interrogative approaches. We discovered a diversified C. jejuni C ring containing FliG, FliM, and both FliY, which functions as a classical FliN-like protein for flagellar assembly, and FliN, which has neofunctionalized into a structural role. Specific protein interactions drive the formation of a more complex heterooligomeric C. jejuni C-ring structure. We discovered that this complex C ring has additional cellular functions in polarly localizing FlhG for numerical regulation of flagellar biogenesis and spatial regulation of division. Furthermore, mutation of the C. jejuni C ring revealed a T3SS that was less dependent on its ATPase complex for assembly than were other systems. Our results highlight considerable evolved flagellar diversity that impacts motor output, biogenesis, and cellular processes in different species.IMPORTANCE The conserved core of bacterial flagellar motors reflects a shared evolutionary history that preserves the mechanisms essential for flagellar assembly, rotation, and directional switching. In this work, we describe an expanded and diversified set of core components in the Campylobacter jejuni flagellar C ring, the mechanistic core of the motor. Our work provides insight into how usually conserved core components may have diversified by gene duplication, enabling a division of labor of the ancestral protein between the two new proteins, acquisition of new roles in flagellar assembly and motility, and expansion of the function of the flagellum beyond motility, including spatial regulation of cell division and numerical control of flagellar biogenesis in C. jejuni Our results highlight that relatively small changes, such as gene duplications, can have substantial ramifications on the cellular roles of a molecular machine.
Collapse
Affiliation(s)
- Louie D Henderson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Connor J Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Xiao Y, Liu H, He M, Nie L, Nie H, Chen W, Huang Q. A crosstalk between c-di-GMP and cAMP in regulating transcription of GcsA, a diguanylate cyclase involved in swimming motility in Pseudomonas putida. Environ Microbiol 2019; 22:142-157. [PMID: 31631503 DOI: 10.1111/1462-2920.14832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). Pseudomonas putida has dozens of DGC/PDE-encoding genes in its genome, but the phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterize function and transcriptional regulation of a P. putida c-di-GMP-metabolizing enzyme, GcsA. GcsA consists of two per-ARNT-sim (PAS) domains, followed by a canonical conserved central sequence pattern (GGDEF) domain and a truncated EAL domain. In vitro analysis confirmed the DGC activity of GcsA. The phenotypic observation revealed that GcsA inhibited swimming motility in an FlgZ-dependent manner. In terms of transcriptional regulation, gcsA was found to be cooperatively regulated by c-di-GMP and cAMP via their effectors, FleQ and Crp respectively. The transcription of gcsA was promoted by c-di-GMP and inhibited by cAMP. In vitro binding analysis revealed that FleQ indirectly regulated the transcription of gcsA, while Crp directly regulated the transcription of gcsA by binding to its promoter. Besides, an inverse relationship between the cellular c-di-GMP and cAMP levels in P. putida was confirmed. These findings provide basic knowledge regarding the function and transcriptional regulation of GcsA and demonstrate a crosstalk between c-di-GMP and cAMP in the regulation of the expression of GcsA in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
27
|
Zhu S, Schniederberend M, Zhitnitsky D, Jain R, Galán JE, Kazmierczak BI, Liu J. In Situ Structures of Polar and Lateral Flagella Revealed by Cryo-Electron Tomography. J Bacteriol 2019; 201:e00117-19. [PMID: 31010901 PMCID: PMC6560136 DOI: 10.1128/jb.00117-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a sophisticated self-assembling nanomachine responsible for motility in many bacterial pathogens, including Pseudomonas aeruginosa, Vibrio spp., and Salmonella enterica The bacterial flagellum has been studied extensively in the model systems Escherichia coli and Salmonella enterica serovar Typhimurium, yet the range of variation in flagellar structure and assembly remains incompletely understood. Here, we used cryo-electron tomography and subtomogram averaging to determine in situ structures of polar flagella in P. aeruginosa and peritrichous flagella in S Typhimurium, revealing notable differences between these two flagellar systems. Furthermore, we observed flagellar outer membrane complexes as well as many incomplete flagellar subassemblies, which provide additional insight into mechanisms underlying flagellar assembly and loss in both P. aeruginosa and S Typhimurium.IMPORTANCE The bacterial flagellum has evolved as one of the most sophisticated self-assembled molecular machines, which confers locomotion and is often associated with virulence of bacterial pathogens. Variation in species-specific features of the flagellum, as well as in flagellar number and placement, results in structurally distinct flagella that appear to be adapted to the specific environments that bacteria encounter. Here, we used cutting-edge imaging techniques to determine high-resolution in situ structures of polar flagella in Pseudomonas aeruginosa and peritrichous flagella in Salmonella enterica serovar Typhimurium, demonstrating substantial variation between flagella in these organisms. Importantly, we observed novel flagellar subassemblies and provided additional insight into the structural basis of flagellar assembly and loss in both P. aeruginosa and S Typhimurium.
Collapse
Affiliation(s)
- Shiwei Zhu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Maren Schniederberend
- Department of Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel Zhitnitsky
- Department of Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruchi Jain
- Department of Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Barbara I Kazmierczak
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| |
Collapse
|
28
|
Bense S, Bruchmann S, Steffen A, Stradal TEB, Häussler S, Düvel J. Spatiotemporal control of FlgZ activity impacts Pseudomonas aeruginosa flagellar motility. Mol Microbiol 2019; 111:1544-1557. [PMID: 30864240 DOI: 10.1111/mmi.14236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 12/25/2022]
Abstract
The c-di-GMP-binding effector protein FlgZ has been demonstrated to control motility in the opportunistic pathogen Pseudomonas aeruginosa and it was suggested that c-di-GMP-bound FlgZ impedes motility via its interaction with the MotCD stator. To further understand how motility is downregulated in P. aeruginosa and to elucidate the general control mechanisms operating during bacterial growth, we examined the spatiotemporal activity of FlgZ. We re-annotated the P. aeruginosaflgZ open reading frame and demonstrated that FlgZ-mediated downregulation of motility is fine-tuned via three independent mechanisms. First, we found that flgZ gene is transcribed independently from flgMN in stationary growth phase to increase FlgZ protein levels in the cell. Second, FlgZ localizes to the cell pole upon c-di-GMP binding and third, we describe that FimV, a cell pole anchor protein, is involved in increasing the polar localized c-di-GMP bound FlgZ to inhibit both, swimming and swarming motility. Our results shed light on the complex dynamics and spatiotemporal control of c-di-GMP-dependent bacterial motility phenotypes and on how the polar anchor protein FimV, the motor brake FlgZ and the stator proteins function to repress flagella-driven swimming and swarming motility.
Collapse
Affiliation(s)
- Sarina Bense
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - Sebastian Bruchmann
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - Juliane Düvel
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, 38124, Germany
| |
Collapse
|
29
|
Navarrete B, Leal-Morales A, Serrano-Ron L, Sarrió M, Jiménez-Fernández A, Jiménez-Díaz L, López-Sánchez A, Govantes F. Transcriptional organization, regulation and functional analysis of flhF and fleN in Pseudomonas putida. PLoS One 2019; 14:e0214166. [PMID: 30889223 PMCID: PMC6424431 DOI: 10.1371/journal.pone.0214166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
The Pseudomonas putida flhA-flhF-fleN-fliA cluster encodes a component of the flagellar export gate and three regulatory elements potentially involved in flagellar biogenesis and other functions. Here we show that these four genes form an operon, whose transcription is driven from the upstream PflhA promoter. A second promoter, PflhF, provides additional transcription of the three distal genes. PflhA and PflhF are σN-dependent, activated by the flagellar regulator FleQ, and negatively regulated by FleN. Motility, surface adhesion and colonization defects of a transposon insertion mutant in flhF revealed transcriptional polarity on fleN and fliA, as the former was required for strong surface adhesion and biofilm formation, and the latter was required for flagellar synthesis. On the other hand, FlhF and FleN were necessary to attain proper flagellar location and number for a fully functional flagellar complement. FleN, along with FleQ and the second messenger c-di-GMP differentially regulated transcription of lapA and the bcs operon, encoding a large adhesion protein and cellulose synthase. FleQ positively regulated the PlapA promoter and activation was antagonized by FleN and c-di-GMP. PbcsD was negatively regulated by FleQ and FleN, and repression was antagonized by c-di-GMP. FleN promoted FleQ binding to both PlapA and PbcsD in vitro, while c-di-GMP antagonized interaction with PbcsD and stimulated interaction with PlapA. A single FleQ binding site in PlapA was critical to activation in vivo. Our results suggest that FleQ, FleN and c-di-GMP cooperate to coordinate the regulation of flagellar motility and biofilm development.
Collapse
Affiliation(s)
- Blanca Navarrete
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Leal-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Laura Serrano-Ron
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Marina Sarrió
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Alicia Jiménez-Fernández
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Lorena Jiménez-Díaz
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
- * E-mail:
| |
Collapse
|
30
|
Blanco-Romero E, Redondo-Nieto M, Martínez-Granero F, Garrido-Sanz D, Ramos-González MI, Martín M, Rivilla R. Genome-wide analysis of the FleQ direct regulon in Pseudomonas fluorescens F113 and Pseudomonas putida KT2440. Sci Rep 2018; 8:13145. [PMID: 30177764 PMCID: PMC6120874 DOI: 10.1038/s41598-018-31371-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial motility plays a crucial role in competitiveness and colonization in the rhizosphere. In this work, Chromatin ImmunoPrecipitation Sequencing (ChIP-seq) analysis has been used to identify genes putatively regulated by the transcriptional regulatory protein FleQ in Pseudomonas fluorescens F113 and Pseudomonas putida KT2440. This protein was previously identified as a master regulator of flagella and biofilm formation in both strains. This work has demonstrated that FleQ from both bacteria are conserved and functionally equivalent for motility regulation. Furthermore, the ChIP-seq analysis has shown that FleQ is a global regulator with the identification of 121 and 103 FleQ putative binding sites in P. fluorescens F113 and P. putida KT2440 respectively. Putative genes regulated by FleQ included, as expected, flagellar and motility-related genes and others involved in adhesion and exopolysaccharide production. Surprisingly, the ChIP-seq analysis also identified iron homeostasis-related genes for which positive regulation was shown by RT-qPCR. The results also showed that FleQ from P. fluorescens F113 shares an important part of its direct regulon with AmrZ, a global regulator also implicated in environmental adaption. Although AmrZ also regulates motility and iron uptake, the overlap occurred mostly with the iron-related genes, since both regulators control a different set of motility-related genes.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Francisco Martínez-Granero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Maria Isabel Ramos-González
- Departamento de Protección Ambiental. Grupo de Microbiología Ambiental y Biodegradación, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008, Granada, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain.
| |
Collapse
|
31
|
Kondo S, Imura Y, Mizuno A, Homma M, Kojima S. Biochemical analysis of GTPase FlhF which controls the number and position of flagellar formation in marine Vibrio. Sci Rep 2018; 8:12115. [PMID: 30108243 PMCID: PMC6092412 DOI: 10.1038/s41598-018-30531-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
FlhF controls the number and position of the polar flagellar formation of Vibrio species. FlhF, is a paralog of FtsY, a GTPase acting in the Sec membrane transport system of bacteria, and localizes at the cell pole. Mutations in the conserved GTPase motif of FlhF lost polar localization capability and flagellar formation. Vibrio FlhF has not, until now, been purified as soluble protein. Here, we report that addition of MgCl2 and GTP or GDP at the step of cell lysis greatly improved the solubility of FlhF, allowing us to purify it in homogeneity. Purified FlhF showed GTPase activity only in the presence of FlhG. Of twelve FlhF GTPase motif mutants showing reduced function, eleven were recovered as precipitate after the cell disruption. The E440K substitution could be purified and showed no GTPase activity even in the presence of FlhG. Interestingly an FlhF substitution in the putative catalytic residue for GTP hydrolysis, R334A, allowed normal flagellar formation although GTPase activity of FlhF was completely abolished. Furthermore, size exclusion chromatography of purified FlhF revealed that it forms dimers in the presence of GTP but exists as monomer in the presence of GDP. We speculate that the GTP binding allows FlhF to dimerize and localize at the pole where it initiates flagellar formation, and the GDP-bound form diffuses as monomer.
Collapse
Affiliation(s)
- Shota Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshino Imura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Akira Mizuno
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
32
|
Partially Reciprocal Replacement of FlrA and FlrC in Regulation of Shewanella oneidensis Flagellar Biosynthesis. J Bacteriol 2018; 200:JB.00796-17. [PMID: 29358496 DOI: 10.1128/jb.00796-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
In some bacteria with a polar flagellum, an established regulatory hierarchy controlling stepwise assembly of the organelle consists of four regulators: FlrA, σ54, FlrBC, and σ28 Because all of these regulators mediate the expression of multiple targets, they are essential to the assembly of a functional flagellum and therefore to motility. However, this is not the case for the gammaproteobacterium Shewanella oneidensis: cells lacking FlrB, FlrC, or both remain flagellated and motile. In this study, we unravel the underlying mechanism, showing that FlrA and FlrC are partially substitutable for each other in regulating flagellar assembly. While both regulators are bacterial enhancer binding proteins (bEBPs) for σ54, FlrA differs from FlrC in its independence of σ54 for its own transcription and its inability to activate the flagellin gene flaA These differences largely account for the distinct phenotypes resulting from the loss or overproduction of FlrA and FlrC.IMPORTANCE The assembly of a polar flagellum in bacteria has been characterized as relying on four regulators, FlrA, σ54, FlrBC, and σ28, in a hierarchical manner. They all are essential to the process and therefore to motility, except in S. oneidensis, in which FlrB, FlrC, or both together are not essential. Here we show that FlrA and FlrC, as bEBPs, are partially reciprocal in functionality in this species. As a consequence, the presence of one allows flagellar assembly and motility in the other's absence. Despite this, there are significant differences in the physiological roles played by these two regulators: FlrA is the master regulator of flagellar assembly, whereas FlrC fine-tunes motility. These intriguing observations open up a new avenue to further exploration of the regulation of flagellar assembly.
Collapse
|
33
|
Nie H, Xiao Y, Liu H, He J, Chen W, Huang Q. FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:571-580. [PMID: 28517238 DOI: 10.1111/1758-2229.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
FleN generally functions as an antagonist of FleQ in regulating flagellar genes and biofilm matrix related genes in Pseudomonas aeruginosa. Here, we found that in Pseudomonas putida KT2440, FleN and FleQ play a synergistic role in regulating two biofilm matrix coding operons, lapA and bcs. FleN deletion decreased the transcription of lapA and increased the transcription of bcs operon, and the same trend was observed in fleQ deletion mutant before. In vitro experiments showed that FleN promoted the binding of FleQ to the lapA/bcs promoter DNA especially in the presence of ATP. Both phenotype observation and transcription analysis showed that, similar to fleQ deletion, fleN deletion significantly weaken the effect of high c-di-GMP level on biofilm formation, surface winkle phenotype and expression of lapA and bcs operons. Mutagenesis of the putative ATP binding motif in FleNK21Q revealed that FleN ATPase activity played an essential role in the regulation of flagellar number and swimming motility but was not critical for biofilm formation. Our results revealed that FleN was not an antagonist of FleQ but a synergistic factor of FleQ in regulating the two biofilm matrix coding operons in P. putida KT2440.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinzhi He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
34
|
Molecular architecture of the sheathed polar flagellum in Vibrio alginolyticus. Proc Natl Acad Sci U S A 2017; 114:10966-10971. [PMID: 28973904 DOI: 10.1073/pnas.1712489114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vibrio species are Gram-negative rod-shaped bacteria that are ubiquitous and often highly motile in aqueous environments. Vibrio swimming motility is driven by a polar flagellum covered with a membranous sheath, but this sheathed flagellum is not well understood at the molecular level because of limited structural information. Here, we use Vibrio alginolyticus as a model system to study the sheathed flagellum in intact cells by combining cryoelectron tomography (cryo-ET) and subtomogram analysis with a genetic approach. We reveal striking differences between sheathed and unsheathed flagella in V. alginolyticus cells, including a novel ring-like structure at the bottom of the hook that is associated with major remodeling of the outer membrane and sheath formation. Using mutants defective in flagellar motor components, we defined a Vibrio-specific feature (also known as the T ring) as a distinctive periplasmic structure with 13-fold symmetry. The unique architecture of the T ring provides a static platform to recruit the PomA/B complexes, which are required to generate higher torques for rotation of the sheathed flagellum and fast motility of Vibrio cells. Furthermore, the Vibrio flagellar motor exhibits an intrinsic length variation between the inner and the outer membrane bound complexes, suggesting the outer membrane bound complex can shift slightly along the axial rod during flagellar rotation. Together, our detailed analyses of the polar flagella in intact cells provide insights into unique aspects of the sheathed flagellum and the distinct motility of Vibrio species.
Collapse
|
35
|
Sadiq FA, Flint S, Li Y, Liu T, Lei Y, Sakandar HA, He G. New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review. BIOFOULING 2017; 33:306-326. [PMID: 28347177 DOI: 10.1080/08927014.2017.1304541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
A biofilm is a complex assemblage of microbial communities adhered to a biotic or an abiotic surface which is embedded within a self-produced matrix of extracellular polymeric substances. Many transcriptional regulators play a role in triggering a motile-sessile switch and in consequently producing the biofilm matrix. This review is aimed at highlighting the role of two nucleotide signaling molecules (c-di-GMP and c-di-AMP), toxin antitoxin modules and a novel transcriptional regulator BolA in biofilm formation in various bacteria. In addition, it highlights the common themes that have appeared in recent research regarding the key regulatory components and signal transduction pathways that help Bacillus subtilis and Pseudomonas aeruginosa to acquire the biofilm mode of life.
Collapse
Affiliation(s)
- Faizan A Sadiq
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Steve Flint
- b School of Food and Nutrition , Massey University , Palmerston North , New Zealand
| | - Yun Li
- c School of Life Sciences and Food Technology , Hanshan Normal University , Chaozhou , PR China
| | - TongJie Liu
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Yuan Lei
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | | | - GuoQing He
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| |
Collapse
|
36
|
FlrA Represses Transcription of the Biofilm-Associated bpfA Operon in Shewanella putrefaciens. Appl Environ Microbiol 2017; 83:AEM.02410-16. [PMID: 27986717 DOI: 10.1128/aem.02410-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/11/2016] [Indexed: 12/30/2022] Open
Abstract
Manipulation of biofilm formation in Shewanella is beneficial for application to industrial and environmental biotechnology. BpfA is an adhesin largely responsible for biofilm formation in many Shewanella species. However, the mechanism underlying BpfA production and the resulting biofilm remains vaguely understood. We previously described the finding that BpfA expression is enhanced by DosD, an oxygen-stimulated diguanylate cyclase, under aerobic growth. In the present work, we identify FlrA as a critical transcription regulator of the bpfA operon in Shewanella putrefaciens CN32 by transposon mutagenesis. FlrA acted as a repressor of the operon promoter by binding to two boxes overlapping the -10 and -35 sites recognized by σ70 DosD regulation of the expression of the bpfA operon was mediated by FlrA, and cyclic diguanylic acid (c-di-GMP) abolished FlrA binding to the operon promoter. We also demonstrate that FlhG, an accessory protein for flagellum synthesis, antagonized FlrA repression of the expression of the bpfA operon. Collectively, this work demonstrates that FlrA acts as a central mediator in the signaling pathway from c-di-GMP to BpfA-associated biofilm formation in S. putrefaciens CN32. IMPORTANCE Motility and biofilm are mutually exclusive lifestyles, shifts between which are under the strict regulation of bacteria attempting to adapt to the fluctuation of diverse environmental conditions. The FlrA protein in many bacteria is known to control motility as a master regulator of flagellum synthesis. This work elucidates its effect on biofilm formation by controlling the expression of the adhesin BpfA in S. putrefaciens CN32 in response to c-di-GMP. Therefore, FlrA plays a dual role in controlling motility and biofilm formation in S. putrefaciens CN32. The cooccurrence of flrA, bpfA, and the FlrA box in the promoter region of the bpfA operon in diverse Shewanella strains suggests that bpfA is a common mechanism that controls biofilm formation in this bacterial species.
Collapse
|
37
|
Chanchal, Banerjee P, Jain D. ATP-Induced Structural Remodeling in the Antiactivator FleN Enables Formation of the Functional Dimeric Form. Structure 2017; 25:243-252. [PMID: 28065505 DOI: 10.1016/j.str.2016.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/09/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
FleN, a P loop ATPase is vital for maintaining a monotrichous phenotype in Pseudomonas aeruginosa. FleN exhibits antagonistic activity against FleQ, the master transcriptional regulator of flagellar genes. Crystal structures of FleN in the apo form (1.66 Å) and in complex with β,γ-imidoadenosine 5'-triphosphate (1.55 Å) reveal that it undergoes drastic conformational changes on ATP binding to attain a structure capable of dimerization. Mutations of the residues that stabilize the binding of ATP were defective in their ability to dimerize and do not inhibit ATP hydrolysis by FleQ. Conversely, the catalytic mutant of FleN, was an efficient inhibitor. These observations posit that the dimer is the functional form of FleN and it is nucleotide binding and not hydrolysis by FleN that is necessary to exert an antagonistic effect against FleQ. Our study shows that ATP-induced dimerization may be a strategy to achieve reversible inhibition of FleQ to fine-tune the function of this activator to an optimal level.
Collapse
Affiliation(s)
- Chanchal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India; Manipal University, Manipal, Karnataka, 576104, India
| | - Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.
| |
Collapse
|
38
|
Xiao Y, Nie H, Liu H, Chen W, Huang Q. Expression of the diguanylate cyclase GcbA is regulated by FleQ in response to cyclic di-GMP in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:993-1002. [PMID: 27701843 DOI: 10.1111/1758-2229.12478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Cyclic di-GMP (c-di-GMP), a ubiquitous bacterial second messenger that regulates diverse cellular processes, is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). GcbA is a well conserved DGC among Pseudomonas species, and has been reported to influence biofilm formation and flagellar motility in Pseudomonas fluorescens and Pseudomonas aeruginosa. Here we confirm the function of GcbA in Pseudomonas putida and reveal that expression of GcbA is regulated by FleQ in response to c-di-GMP. GcbA deletion impaired initial biofilm formation and enhanced swimming motility, but showed no influence on biofilm maturation in Pseudomonas putida. Deletion of the c-di-GMP effector FleQ led to a significant decrease in transcription of gcbA. Moreover, reducing c-di-GMP levels promoted gcbA transcription in a FleQ dependent way, while enhancing c-di-GMP levels abolished the promotion. In in vitro experiments we found that FleQ bound to gcbA promoter DNA and the binding was inhibited by c-di-GMP. Besides, FleN, an anti-activator of FleQ, and the sigma factor RpoN also participated in transcription of gcbA. Our finding expands the complexity of FleQ-dependent regulation and reveals a self-regulation function of c-di-GMP by regulating GcbA expression via FleQ.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
39
|
Jiménez-Fernández A, López-Sánchez A, Jiménez-Díaz L, Navarrete B, Calero P, Platero AI, Govantes F. Complex Interplay between FleQ, Cyclic Diguanylate and Multiple σ Factors Coordinately Regulates Flagellar Motility and Biofilm Development in Pseudomonas putida. PLoS One 2016; 11:e0163142. [PMID: 27636892 PMCID: PMC5026340 DOI: 10.1371/journal.pone.0163142] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/02/2016] [Indexed: 01/01/2023] Open
Abstract
Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the involvement of the transcriptional regulator FleQ and the second messenger cyclic diguanylate in the coordinate regulation of multiple functions related to motility and surface colonization in Pseudomonas putida. Disruption of fleQ caused strong defects in flagellar motility, biofilm formation and surface attachment, and the ability of this mutation to suppress multiple biofilm-related phenotypes associated to cyclic diguanylate overproduction suggests that FleQ mediates cyclic diguanylate signaling critical to biofilm growth. We have constructed a library containing 94 promoters potentially involved in motility and biofilm development fused to gfp and lacZ, screened this library for FleQ and cyclic diguanylate regulation, and assessed the involvement of alternative σ factors σN and FliA in the transcription of FleQ-regulated promoters. Our results suggest a dual mode of action for FleQ. Low cyclic diguanylate levels favor FleQ interaction with σN-dependent promoters to activate the flagellar cascade, encompassing the flagellar cluster and additional genes involved in cyclic diguanylate metabolism, signal transduction and gene regulation. On the other hand, characterization of the FleQ-regulated σN- and FliA-independent PlapA and PbcsD promoters revealed two disparate regulatory mechanisms leading to a similar outcome: the synthesis of biofilm matrix components in response to increased cyclic diguanylate levels.
Collapse
Affiliation(s)
- Alicia Jiménez-Fernández
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Lorena Jiménez-Díaz
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Blanca Navarrete
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Patricia Calero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Ana Isabel Platero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
- * E-mail:
| |
Collapse
|
40
|
The Conserved Tetratricopeptide Repeat-Containing C-Terminal Domain of Pseudomonas aeruginosa FimV Is Required for Its Cyclic AMP-Dependent and -Independent Functions. J Bacteriol 2016; 198:2263-74. [PMID: 27297880 DOI: 10.1128/jb.00322-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/06/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED FimV is a Pseudomonas aeruginosa inner membrane protein that regulates intracellular cyclic AMP (cAMP) levels-and thus type IV pilus (T4P)-mediated twitching motility and type II secretion (T2S)-by activating the adenylate cyclase CyaB. Its cytoplasmic domain contains three predicted tetratricopeptide repeat (TPR) motifs separated by an unstructured region: two proximal to the inner membrane and one within the "FimV C-terminal domain," which is highly conserved across diverse homologs. Here, we present the crystal structure of the FimV C terminus, FimV861-919, containing a TPR motif decorated with solvent-exposed, charged side chains, plus a C-terminal capping helix. FimV689, a truncated form lacking this C-terminal motif, did not restore wild-type levels of twitching or surface piliation compared to the full-length protein. FimV689 failed to restore wild-type levels of the T4P motor ATPase PilU or T2S, suggesting that it was unable to activate cAMP synthesis. Bacterial two-hybrid analysis showed that TPR3 interacts directly with the CyaB activator, FimL. However, FimV689 failed to restore wild-type motility in a fimV mutant expressing a constitutively active CyaB (fimV cyaB-R456L), suggesting that the C-terminal motif is also involved in cAMP-independent functions of FimV. The data show that the highly conserved TPR-containing C-terminal domain of FimV is critical for its cAMP-dependent and -independent functions. IMPORTANCE FimV is important for twitching motility and cAMP-dependent virulence gene expression in P. aeruginosa FimV homologs have been identified in several human pathogens, and their functions are not limited to T4P expression. The C terminus of FimV is remarkably conserved among otherwise very diverse family members, but its role is unknown. We provide here biological evidence for the importance of the C-terminal domain in both cAMP-dependent (through FimL) and -independent functions of FimV. We present X-ray crystal structures of the conserved C-terminal domain and identify a consensus sequence for the C-terminal TPR within the conserved domain. Our data extend our knowledge of FimV's functionally important domains, and the structures and consensus sequences provide a foundation for studies of FimV and its homologs.
Collapse
|
41
|
Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1. Appl Environ Microbiol 2016; 82:3774-3782. [PMID: 27084014 DOI: 10.1128/aem.00046-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The oxidation of soluble Mn(II) to insoluble Mn(IV) is a widespread bacterial activity found in a diverse array of microbes. In the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1, two Mn(II) oxidase genes, named mnxG and mcoA, were previously identified; each encodes a multicopper oxidase (MCO)-type enzyme. Expression of these two genes is positively regulated by the response regulator MnxR. Preliminary investigation into putative additional regulatory pathways suggested that the flagellar regulators FleN and FleQ also regulate Mn(II) oxidase activity; however, it also revealed the presence of a third, previously uncharacterized Mn(II) oxidase activity in P. putida GB-1. A strain from which both of the Mn(II) oxidase genes and fleQ were deleted exhibited low levels of Mn(II) oxidase activity. The enzyme responsible was genetically and biochemically identified as an animal heme peroxidase (AHP) with domain and sequence similarity to the previously identified Mn(II) oxidase MopA. In the ΔfleQ strain, P. putida GB-1 MopA is overexpressed and secreted from the cell, where it actively oxidizes Mn. Thus, deletion of fleQ unmasked a third Mn(II) oxidase activity in this strain. These results provide an example of an Mn(II)-oxidizing bacterium utilizing both MCO and AHP enzymes. IMPORTANCE The identity of the Mn(II) oxidase enzyme in Pseudomonas putida GB-1 has been a long-standing question in the field of bacterial Mn(II) oxidation. In the current work, we demonstrate that P. putida GB-1 employs both the multicopper oxidase- and animal heme peroxidase-mediated pathways for the oxidation of Mn(II), rendering this model organism relevant to the study of both types of Mn(II) oxidase enzymes. The presence of three oxidase enzymes in P. putida GB-1 deepens the mystery of why microorganisms oxidize Mn(II) while providing the field with the tools necessary to address this question. The initial identification of MopA as a Mn(II) oxidase in this strain required the deletion of FleQ, a regulator involved in both flagellum synthesis and biofilm synthesis in Pseudomonas aeruginosa Therefore, these results are also an important step toward understanding the regulation of Mn(II) oxidation.
Collapse
|
42
|
Roux D, Danilchanka O, Guillard T, Cattoir V, Aschard H, Fu Y, Angoulvant F, Messika J, Ricard JD, Mekalanos JJ, Lory S, Pier GB, Skurnik D. Fitness cost of antibiotic susceptibility during bacterial infection. Sci Transl Med 2016. [PMID: 26203082 DOI: 10.1126/scitranslmed.aab1621] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in high-throughput DNA sequencing allow for a comprehensive analysis of bacterial genes that contribute to virulence in a specific infectious setting. Such information can yield new insights that affect decisions on how to best manage major public health issues such as the threat posed by increasing antimicrobial drug resistance. Much of the focus has been on the consequences of the selective advantage conferred on drug-resistant strains during antibiotic therapy. It is thought that the genetic and phenotypic changes that confer resistance also result in concomitant reductions in in vivo fitness, virulence, and transmission. However, experimental validation of this accepted paradigm is modest. Using a saturated transposon library of Pseudomonas aeruginosa, we identified genes across many functional categories and operons that contributed to maximal in vivo fitness during lung infections in animal models. Genes that bestowed both intrinsic and acquired antibiotic resistance provided a positive in vivo fitness advantage to P. aeruginosa during infection. We confirmed these findings in the pathogenic bacteria Acinetobacter baumannii and Vibrio cholerae using murine and rabbit infection models, respectively. Our results show that efforts to confront the worldwide increase in antibiotic resistance might be exacerbated by fitness advantages that enhance virulence in drug-resistant microbes.
Collapse
Affiliation(s)
- Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. INSERM, IAME, UMR 1137, F-75018 Paris, France. Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France
| | - Olga Danilchanka
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Guillard
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. EA 4687, Faculté de Médecine, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Vincent Cattoir
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. EA 4655, Faculté de Médecine, Université de Caen Basse-Normandie, 14033 Caen, France
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yang Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Francois Angoulvant
- Hôpitaux de Paris (AP-HP), Pédiatrique Emergency Département, Hôpital Necker-Enfants Malades and Université Paris Descartes, 75015 Paris, France
| | | | | | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Chen H, Wang H, Sun T, Tian S, Lin D, Guo C. Recombinant preparation and functional studies of EspI ATP binding domain from Mycobacterium tuberculosis. Protein Expr Purif 2016; 123:51-9. [PMID: 27017992 DOI: 10.1016/j.pep.2016.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
The ESX-1 secretion system of Mycobacterium tuberculosis is required for the virulence of tubercle bacillus. EspI, the ESX-1 secretion-associated protein in Mycobacterium tuberculosis (MtEspI), is involved in repressing the activity of ESX-1-mediated secretion when the cellular ATP level is low. The ATP binding domain of MtEspI plays a crucial role in this regulatory process. However, further structural and functional studies of MtEspI are hindered due to the bottleneck of obtaining stable and pure recombinant protein. In this study, we systematically analyzed the structure and function of MtEspI using bioinformatics tools and tried various expression constructs to recombinantly express full-length and truncated MtEspI ATP binding domain. Finally, we prepared pure and stable MtEspI ATP binding domain, MtEspI415-493, in Escherichia coli by fusion expression and purification with dual tag, Glutathione S-transferase (GST) tag and (His)6 tag. (31)P NMR titration assay indicated that MtEspI415-493 possessed a moderate affinity (∼μM) for ATP and the residue K425 was located at the binding site. The protocol described here may provide a train of thought for recombinant preparation of other ESX-1 secretion-associated proteins.
Collapse
Affiliation(s)
- Hanyu Chen
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Huilin Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Tao Sun
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Shuangliang Tian
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
44
|
c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review. Microbiol Spectr 2016; 3:MB-0003-2014. [PMID: 26104694 DOI: 10.1128/microbiolspec.mb-0003-2014] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Since its initial discovery as an allosteric factor regulating cellulose biosynthesis in Gluconacetobacter xylinus, the list of functional outputs regulated by c-di-GMP has grown. We have focused this article on one of these c-di-GMP-regulated processes, namely, biofilm formation in the organism Pseudomonas aeruginosa. The majority of diguanylate cyclases and phosphodiesterases encoded in the P. aeruginosa genome still remain uncharacterized; thus, there is still a great deal to be learned about the link between c-di-GMP and biofilm formation in this microbe. In particular, while a number of c-di-GMP metabolizing enzymes have been identified that participate in reversible and irreversible attachment and biofilm maturation, there is a still a significant knowledge gap regarding the c-di-GMP output systems in this organism. Even for the well-characterized Pel system, where c-di-GMP-mediated transcriptional regulation is now well documented, how binding of c-di-GMP by PelD stimulates Pel production is not understood in any detail. Similarly, c-di-GMP-mediated control of swimming, swarming and twitching also remains to be elucidated. Thus, despite terrific advances in our understanding of P. aeruginosa biofilm formation and the role of c-di-GMP in this process since the last version of this book (indeed there was no chapter on c-di-GMP!) there is still much to learn.
Collapse
|
45
|
Jain D. Cloning, expression, purification, crystallization and initial crystallographic analysis of FleN from Pseudomonas aeruginosa. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:135-8. [PMID: 26841764 DOI: 10.1107/s2053230x16000170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/05/2016] [Indexed: 11/11/2022]
Abstract
The assembly of bacterial flagella requires the coordinated expression of a large number of genes in a hierarchical manner. These genes code for structural components of flagella, regulatory components and components that are required for chemotaxis. Stringent spatial and numerical control of flagella biosynthesis is essential for promoting motility and pathogenesis in bacteria. These genes are regulated at the level of transcription. FleN, a P-loop-containing ATPase, plays an important role in maintaining flagellar number in Pseudomonas aeruginosa. FleN exhibits anti-activator activity against FleQ, the global transcriptional regulator of flagellar genes. In order to gain insights into the regulatory mechanism of flagella synthesis, full-length FleN was crystallized in complex with the nonhydrolyzable ATP analogue β,γ-imidoadenosine 5'-triphosphate (AMPPNP) in space group C2221, with unit-cell parameters a = 49.1, b = 206.9, c = 103.3 Å. The Matthews coefficient is 2.19 Å(3) Da(-1) assuming the presence of two molecules in the asymmetric unit, and the corresponding solvent content is 43.7%. X-ray diffraction data were collected to a minimum Bragg spacing of 2.21 Å and crystals of FleN-AMPPNP were prepared with selenomethionine-labelled FleN for ab initio phasing.
Collapse
Affiliation(s)
| | | | - Deepti Jain
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India
| |
Collapse
|
46
|
Baraquet C, Harwood CS. FleQ DNA Binding Consensus Sequence Revealed by Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in Pseudomonas aeruginosa. J Bacteriol 2016; 198:178-86. [PMID: 26483521 PMCID: PMC4686206 DOI: 10.1128/jb.00539-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/07/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The transcription factor FleQ from Pseudomonas aeruginosa derepresses expression of genes involved in biofilm formation when intracellular levels of the second messenger cyclic diguanosine monophosphate (c-di-GMP) are high. FleQ also activates transcription of flagellar genes, and the expression of these genes is highest at low intracellular c-di-GMP. FleQ thus plays a central role in mediating the transition between planktonic and biofilm lifestyles of P. aeruginosa. Previous work showed that FleQ controls expression of the pel operon for Pel exopolysaccharide biosynthesis by converting from a repressor to an activator upon binding c-di-GMP. To explore the activity of FleQ further, we carried out DNase I footprinting at three additional biofilm gene promoters, those of psl, cdrAB, and PA2440. The expression of cdrAB, encoding a cell surface adhesin, was sufficiently responsive to FleQ to allow us to carry out in vivo promoter assays. The results showed that, similarly to our observations with the pel operon, FleQ switches from a repressor to an activator of cdrAB gene expression in response to c-di-GMP. From the footprinting data, we identified a FleQ DNA binding consensus sequence. A search for this conserved sequence in bacterial genome sequences led to the identification of FleQ binding sites in the promoters of the siaABCD operon, important for cell aggregation, and the bdlA gene, important for biofilm dispersal, in P. aeruginosa. We also identified FleQ binding sites upstream of lapA-like adhesin genes in other Pseudomonas species. IMPORTANCE The transcription factor FleQ is widely distributed in Pseudomonas species. In all species examined, it is a master regulator of flagellar gene expression. It also regulates diverse genes involved in biofilm formation in P. aeruginosa when intracellular levels of the second messenger c-di-GMP are high. Unlike flagellar genes, biofilm-associated genes are not always easy to recognize in genome sequences. Here, we identified a consensus DNA binding sequence for FleQ. This allowed us to survey Pseudomonas strains and find new genes that are likely regulated by FleQ and possibly involved in biofilm formation.
Collapse
Affiliation(s)
- Claudine Baraquet
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
47
|
Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2015; 113:E209-18. [PMID: 26712005 DOI: 10.1073/pnas.1523148113] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ(54)-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response to cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ's AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP-complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.
Collapse
|
48
|
Gulbronson CJ, Ribardo DA, Balaban M, Knauer C, Bange G, Hendrixson DR. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni. Mol Microbiol 2015; 99:291-306. [PMID: 26411371 DOI: 10.1111/mmi.13231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Abstract
Flagellation in polar flagellates is one of the rare biosynthetic processes known to be numerically regulated in bacteria. Polar flagellates must spatially and numerically regulate flagellar biogenesis to create flagellation patterns for each species that are ideal for motility. FlhG ATPases numerically regulate polar flagellar biogenesis, yet FlhG orthologs are diverse in motif composition. We discovered that Campylobacter jejuni FlhG is at the center of a multipartite mechanism that likely influences a flagellar biosynthetic step to control flagellar number for amphitrichous flagellation, rather than suppressing activators of flagellar gene transcription as in Vibrio and Pseudomonas species. Unlike other FlhG orthologs, the FlhG ATPase domain was not required to regulate flagellar number in C. jejuni. Instead, two regions of C. jejuni FlhG that are absent or significantly altered in FlhG orthologs are involved in numerical regulation of flagellar biogenesis. Additionally, we found that C. jejuni FlhG influences FlhF GTPase activity, which may mechanistically contribute to flagellar number regulation. Our work suggests that FlhG ATPases divergently evolved in each polarly flagellated species to employ different intrinsic domains and extrinsic effectors to ultimately mediate a common output - precise numerical control of polar flagellar biogenesis required to create species-specific flagellation patterns optimal for motility.
Collapse
Affiliation(s)
- Connor J Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Murat Balaban
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carina Knauer
- LOEWE Center for Synthetic Microbiology (Synmikro) and Department of Chemistry, Philipps University Marburg, 35403, Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (Synmikro) and Department of Chemistry, Philipps University Marburg, 35403, Marburg, Germany
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
49
|
Su T, Liu S, Wang K, Chi K, Zhu D, Wei T, Huang Y, Guo L, Hu W, Xu S, Lin Z, Gu L. The REC domain mediated dimerization is critical for FleQ from Pseudomonas aeruginosa to function as a c-di-GMP receptor and flagella gene regulator. J Struct Biol 2015; 192:1-13. [PMID: 26362077 DOI: 10.1016/j.jsb.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/27/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
FleQ is an AAA+ ATPase enhancer-binding protein that regulates both flagella and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. FleQ belongs to the NtrC subfamily of response regulators, but lacks the corresponding aspartic acid for phosphorylation in the REC domain (FleQ(R), also named FleQ domain). Here, we show that the atypical REC domain of FleQ is essential for the function of FleQ. Crystal structure of FleQ(R) at 2.3Å reveals that the structure of FleQ(R) is significantly different from the REC domain of NtrC1 which regulates gene expression in a phosphorylation dependent manner. FleQ(R) forms a novel active dimer (transverse dimer), and mediates the dimerization of full-length FleQ in an unusual manner. Point mutations that affect the dimerization of FleQ lead to loss of function of the protein. Moreover, a c-di-GMP binding site deviating from the previous reported one is identified through structure analysis and point mutations.
Collapse
Affiliation(s)
- Tiantian Su
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Shiheng Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Kang Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Kaikai Chi
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Deyu Zhu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Tiandi Wei
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Yan Huang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Liming Guo
- Rizhao Center for Diseases Prevention and Control, Rizhao Health Bureau, Rizhao 276826, Shandong, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Zong Lin
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
50
|
Gao T, Shi M, Ju L, Gao H. Investigation into FlhFG reveals distinct features of FlhF in regulating flagellum polarity in Shewanella oneidensis. Mol Microbiol 2015; 98:571-85. [PMID: 26194016 DOI: 10.1111/mmi.13141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/14/2022]
Abstract
Rod-shaped bacterial cells are polarized, with many organelles confined to a polar cellular site. In polar flagellates, FlhF and FlhG, a multiple-domain (B-N-G) GTPase and a MinD-like ATPase respectively, function as a cognate pair to regulate flagellar localization and number as revealed in Vibrio and Pseudomonas species. In this study, we show that FlhFG of Shewanella oneidensis (SoFlhFG), a monotrichous γ-proteobacterium renowned for respiratory diversity, also play an important role in the flagellar polar placement and number control. Despite this, SoFlhFG exhibit distinct features that are not observed in the characterized counterparts. Most strikingly, the G domain of SoFlhF determines the polar placement, contrasting the N domain of the Vibrio cholerae FlhF. The SoFlhF N domain in fact counteracts the function of the G domain with respect to the terminal targeting in the absence of the B domain. We further show that GTPase activity of SoFlhF is essential for motility but not positioning. Overall, our results suggest that mechanisms underlying the polar placement of organelles appear to be diverse, even for evolutionally relatively conserved flagellum.
Collapse
Affiliation(s)
- Tong Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Miaomiao Shi
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lili Ju
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|