1
|
Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state. THE ISME JOURNAL 2022; 16:972-982. [PMID: 34743175 PMCID: PMC8940887 DOI: 10.1038/s41396-021-01143-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/08/2022]
Abstract
Microbial communities in oxygen minimum zones (OMZs) are known to have significant impacts on global biogeochemical cycles, but viral influence on microbial processes in these regions are much less studied. Here we provide baseline ecological patterns using microscopy and viral metagenomics from the Eastern Tropical North Pacific (ETNP) OMZ region that enhance our understanding of viruses in these climate-critical systems. While extracellular viral abundance decreased below the oxycline, viral diversity and lytic infection frequency remained high within the OMZ, demonstrating that viral influences on microbial communities were still substantial without the detectable presence of oxygen. Viral community composition was strongly related to oxygen concentration, with viral populations in low-oxygen portions of the water column being distinct from their surface layer counterparts. However, this divergence was not accompanied by the expected differences in viral-encoded auxiliary metabolic genes (AMGs) relating to nitrogen and sulfur metabolisms that are known to be performed by microbial communities in these low-oxygen and anoxic regions. Instead, several abundant AMGs were identified in the oxycline and OMZ that may modulate host responses to low-oxygen stress. We hypothesize that this is due to selection for viral-encoded genes that influence host survivability rather than modulating host metabolic reactions within the ETNP OMZ. Together, this study shows that viruses are not only diverse throughout the water column in the ETNP, including the OMZ, but their infection of microorganisms has the potential to alter host physiological state within these biogeochemically important regions of the ocean.
Collapse
|
2
|
Rubel ET, Raittz RT, Coimbra NADR, Gehlen MAC, Pedrosa FDO. ProClaT, a new bioinformatics tool for in silico protein reclassification: case study of DraB, a protein coded from the draTGB operon in Azospirillum brasilense. BMC Bioinformatics 2016; 17:455. [PMID: 28105917 PMCID: PMC5249018 DOI: 10.1186/s12859-016-1338-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Azopirillum brasilense is a plant-growth promoting nitrogen-fixing bacteria that is used as bio-fertilizer in agriculture. Since nitrogen fixation has a high-energy demand, the reduction of N2 to NH4+ by nitrogenase occurs only under limiting conditions of NH4+ and O2. Moreover, the synthesis and activity of nitrogenase is highly regulated to prevent energy waste. In A. brasilense nitrogenase activity is regulated by the products of draG and draT. The product of the draB gene, located downstream in the draTGB operon, may be involved in the regulation of nitrogenase activity by an, as yet, unknown mechanism. Results A deep in silico analysis of the product of draB was undertaken aiming at suggesting its possible function and involvement with DraT and DraG in the regulation of nitrogenase activity in A. brasilense. In this work, we present a new artificial intelligence strategy for protein classification, named ProClaT. The features used by the pattern recognition model were derived from the primary structure of the DraB homologous proteins, calculated by a ProClaT internal algorithm. ProClaT was applied to this case study and the results revealed that the A. brasilense draB gene codes for a protein highly similar to the nitrogenase associated NifO protein of Azotobacter vinelandii. Conclusions This tool allowed the reclassification of DraB/NifO homologous proteins, hypothetical, conserved hypothetical and those annotated as putative arsenate reductase, ArsC, as NifO-like. An analysis of co-occurrence of draB, draT, draG and of other nif genes was performed, suggesting the involvement of draB (nifO) in nitrogen fixation, however, without the definition of a specific function. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1338-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Terumi Rubel
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil.,, Rua Dr. Alcides Vieira Arcoverde 1225, Curitiba, Paraná, Brazil
| | - Roberto Tadeu Raittz
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil.,, Rua Dr. Alcides Vieira Arcoverde 1225, Curitiba, Paraná, Brazil
| | - Nilson Antonio da Rocha Coimbra
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil.,, Rua Dr. Alcides Vieira Arcoverde 1225, Curitiba, Paraná, Brazil
| | - Michelly Alves Coutinho Gehlen
- Laboratory of Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil.,, Rua Dr. Alcides Vieira Arcoverde 1225, Curitiba, Paraná, Brazil
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil. .,, Av. Cel. Francisco H. dos Santos, s/n, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Zeth K, Fokina O, Forchhammer K. Structural basis and target-specific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein. J Biol Chem 2014; 289:8960-72. [PMID: 24519945 DOI: 10.1074/jbc.m113.536557] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PII signaling proteins comprise one of the most versatile signaling devices in nature and have a highly conserved structure. In cyanobacteria, PipX and N-acetyl-L-glutamate kinase are receptors of PII signaling, and these interactions are modulated by ADP, ATP, and 2-oxoglutarate. These effector molecules bind interdependently to three anti-cooperative binding sites on the trimeric PII protein and thereby affect its structure. Here we used the PII protein from Synechococcus elongatus PCC 7942 to reveal the structural basis of anti-cooperative ADP binding. Furthermore, we clarified the mutual influence of PII-receptor interaction and sensing of the ATP/ADP ratio. The crystal structures of two forms of trimeric PII, one with one ADP bound and the other with all three ADP-binding sites occupied, revealed significant differences in the ADP binding mode: at one site (S1) ADP is tightly bound through side-chain and main-chain interactions, whereas at the other two sites (S2 and S3) the ADP molecules are only bound by main-chain interactions. In the presence of the PII-receptor PipX, the affinity of ADP to the first binding site S1 strongly increases, whereas the affinity for ATP decreases due to PipX favoring the S1 conformation of PII-ADP. In consequence, the PII-PipX interaction is highly sensitive to subtle fluctuations in the ATP/ADP ratio. By contrast, the PII-N-acetyl-L-glutamate kinase interaction, which is negatively affected by ADP, is insensitive to these fluctuations. Modulation of the metabolite-sensing properties of PII by its receptors allows PII to differentially perceive signals in a target-specific manner and to perform multitasking signal transduction.
Collapse
Affiliation(s)
- Kornelius Zeth
- From the Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstrasse 35, 72076 Tübingen, Germany and
| | | | | |
Collapse
|
4
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
5
|
Signal-transduction protein P(II) from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro. Biochem J 2011; 440:147-56. [PMID: 21774788 DOI: 10.1042/bj20110536] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
P(II) proteins belong to a family of highly conserved signal-transduction proteins that occurs widely in bacteria, archaea and plants. They respond to the central metabolites ATP, ADP and 2-OG (2-oxoglutarate), and control enzymes, transcription factors and transport proteins involved in nitrogen metabolism. In the present study, we examined the effect of ADP on in vitro P(II)-signalling properties for the cyanobacterium Synechococcus elongatus, a model for oxygenic phototrophic organisms. Different ADP/ATP ratios strongly affected the properties of P(II) signalling. Increasing ADP antagonized the binding of 2-OG and directly affected the interactions of P(II) with its target proteins. The resulting P(II)-signalling properties indicate that, in mixtures of ADP and ATP, P(II) trimers are occupied by mixtures of adenylate nucleotides. Binding and kinetic activation of NAGK (N-acetyl-L-glutamate kinase), the controlling enzyme of arginine biosynthesis, by P(II) was weakened by ADP, but relief from arginine inhibition remained unaffected. On the other hand, ADP enhanced the binding of P(II) to PipX, a co-activator of the transcription factor NtcA and, furthermore, antagonized the inhibitory effect of 2-OG on P(II)-PipX interaction. These results indicate that S. elongatus P(II) directly senses the adenylate energy charge, resulting in target-dependent differential modification of the P(II)-signalling properties.
Collapse
|
6
|
Effect of perturbation of ATP level on the activity and regulation of nitrogenase in Rhodospirillum rubrum. J Bacteriol 2009; 191:5526-37. [PMID: 19542280 DOI: 10.1128/jb.00585-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase activity in Rhodospirillum rubrum and in some other photosynthetic bacteria is regulated in part by the availability of light. This regulation is through a posttranslational modification system that is itself regulated by P(II) homologs in the cell. P(II) is one of the most broadly distributed regulatory proteins in nature and directly or indirectly senses nitrogen and carbon signals in the cell. However, its possible role in responding to light availability remains unclear. Because P(II) binds ATP, we tested the hypothesis that removal of light would affect P(II) by changing intracellular ATP levels, and this in turn would affect the regulation of nitrogenase activity. This in vivo test involved a variety of different methods for the measurement of ATP, as well as the deliberate perturbation of intracellular ATP levels by chemical and genetic means. To our surprise, we found fairly normal levels of nitrogenase activity and posttranslational regulation of nitrogenase even under conditions of drastically reduced ATP levels. This indicates that low ATP levels have no more than a modest impact on the P(II)-mediated regulation of NifA activity and on the posttranslational regulation of nitrogenase activity. The relatively high nitrogenase activity also shows that the ATP-dependent electron flux from dinitrogenase reductase to dinitrogenase is also surprisingly insensitive to a depleted ATP level. These in vivo results disprove the simple model of ATP as the key energy signal to P(II) under these conditions. We currently suppose that the ratio of ADP/ATP might be the relevant signal, as suggested by a number of recent in vitro analyses.
Collapse
|
7
|
Zou X, Zhu Y, Pohlmann EL, Li J, Zhang Y, Roberts GP. Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum. MICROBIOLOGY-SGM 2008; 154:2689-2699. [PMID: 18757802 DOI: 10.1099/mic.0.2008/019406-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The activity of NifA, the transcriptional activator of the nitrogen fixation (nif) gene, is tightly regulated in response to ammonium and oxygen. However, the mechanisms for the regulation of NifA activity are quite different among various nitrogen-fixing bacteria. Unlike the well-studied NifL-NifA regulatory systems in Klebsiella pneumoniae and Azotobacter vinelandii, in Rhodospirillum rubrum NifA is activated by a direct protein-protein interaction with the uridylylated form of GlnB, which in turn causes a conformational change in NifA. We report the identification of several substitutions in the N-terminal GAF domain of R. rubrum NifA that allow NifA to be activated in the absence of GlnB. Presumably these substitutions cause conformational changes in NifA necessary for activation, without interaction with GlnB. We also found that wild-type NifA can be activated in a GlnB-independent manner under certain growth conditions, suggesting that some other effector(s) can also activate NifA. An attempt to use Tn5 mutagenesis to obtain mutants that altered the pool of these presumptive effector(s) failed, though much rarer spontaneous mutations in nifA were detected. This suggests that the necessary alteration of the pool of effector(s) for NifA activation cannot be obtained by knockout mutations.
Collapse
Affiliation(s)
- Xiaoxiao Zou
- Department of Microbiology and Immunology, College of Biological Sciences and State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, PR China
| | - Yu Zhu
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward L Pohlmann
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jilun Li
- Department of Microbiology and Immunology, College of Biological Sciences and State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, PR China
| | - Yaoping Zhang
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Microbiology and Immunology, College of Biological Sciences and State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, PR China
| | - Gary P Roberts
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Selao TT, Nordlund S, Norén A. Comparative Proteomic Studies in Rhodospirillum rubrum Grown under Different Nitrogen Conditions. J Proteome Res 2008; 7:3267-75. [DOI: 10.1021/pr700771u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tiago T. Selao
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Sweden
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Sweden
| | - Agneta Norén
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Sweden
| |
Collapse
|
9
|
Akentieva N. Formation of a cross-linking complex of dinitrogenase reductase-activating glycohydrolase (DRAG) with membrane proteins from Rhodospirillum rubrum chromatophores. BIOCHEMISTRY (MOSCOW) 2008; 73:171-7. [PMID: 18298373 DOI: 10.1134/s0006297908020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Association of dinitrogenase reductase-activating glycohydrolase (DRAG) with membrane proteins of chromatophores has been investigated. The formation of a multicomponent complex between DRAG and membrane proteins was demonstrated in the presence of glutaraldehyde and EDC/NHS (N-(3-dimethylaminopropyl)-N -ethylcarbodiimide hydrochloride/hydroxy-2,5-dioxopyrrolidine-3-sulfonic acid sodium salt). Complex formation was observed both in native chromatophore membrane and in chromatophores treated with 0.5 M NaCl in the presence of homogeneous DRAG and glutaraldehyde in cross-reaction. The molecular weight of the complex was around 200 kD, which is consistent with the association of DRAG with three or more chromatophore membrane proteins. A specific complex with molecular weight of about 75 kD was formed only in the presence of EDC/NHS in the cross-linking reaction. It was demonstrated that ammonium transport protein and P11 protein are possible candidates for association with DRAG in chromatophore membranes.
Collapse
Affiliation(s)
- N Akentieva
- Washington University in Saint Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
10
|
Abstract
A wide range of Bacteria and Archaea sense cellular 2-oxoglutarate (2OG) as an indicator of nitrogen limitation. 2OG sensor proteins are varied, but most of those studied belong to the PII superfamily. Within the PII superfamily, GlnB and GlnK represent a widespread family of homotrimeric proteins (GlnB-K) that bind and respond to 2OG and ATP. In some bacterial phyla, GlnB-K proteins are covalently modified, depending on enzymes that sense cellular glutamine as an indicator of nitrogen sufficiency. GlnB-K proteins are central clearing houses of nitrogen information and bind and modulate a variety of nitrogen assimilation regulators and enzymes. NifI(1) and NifI(2) comprise a second widespread family of PII proteins (NifI) that are heteromultimeric, respond to 2OG and ATP, and bind and regulate dinitrogenase in Euryarchaeota and many Bacteria.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, Washington 98195-7242, USA.
| | | |
Collapse
|
11
|
Huergo LF, Chubatsu LS, Souza EM, Pedrosa FO, Steffens MBR, Merrick M. Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense. FEBS Lett 2006; 580:5232-6. [PMID: 16963029 DOI: 10.1016/j.febslet.2006.08.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/17/2006] [Accepted: 08/17/2006] [Indexed: 11/16/2022]
Abstract
In Azospirillum brasilense ADP-ribosylation of dinitrogenase reductase (NifH) occurs in response to addition of ammonium to the extracellular medium and is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG). The P(II) proteins GlnB and GlnZ have been implicated in regulation of DraT and DraG by an as yet unknown mechanism. Using pull-down experiments with His-tagged versions of DraT and DraG we have now shown that DraT binds to GlnB, but only to the deuridylylated form, and that DraG binds to both the uridylylated and deuridylylated forms of GlnZ. The demonstration of these specific protein complexes, together with our recent report of the ability of deuridylylated GlnZ to be sequestered to the cell membrane by the ammonia channel protein AmtB, offers new insights into the control of NifH ADP-ribosylation.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Zhang Y, Wolfe DM, Pohlmann EL, Conrad MC, Roberts GP. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. MICROBIOLOGY-SGM 2006; 152:2075-2089. [PMID: 16804182 DOI: 10.1099/mic.0.28903-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The AmtB protein transports uncharged NH(3) into the cell, but it also interacts with the nitrogen regulatory protein P(II), which in turn regulates a variety of proteins involved in nitrogen fixation and utilization. Three P(II) homologues, GlnB, GlnK and GlnJ, have been identified in the photosynthetic bacterium Rhodospirillum rubrum, and they have roles in at least four overlapping and distinct functions, one of which is the post-translational regulation of nitrogenase activity. In R. rubrum, nitrogenase activity is tightly regulated in response to addition or energy depletion (shift to darkness), and this regulation is catalysed by the post-translational regulatory system encoded by draTG. Two amtB homologues, amtB(1) and amtB(2), have been identified in R. rubrum, and they are linked with glnJ and glnK, respectively. Mutants lacking AmtB(1) are defective in their response to both addition and darkness, while mutants lacking AmtB(2) show little effect on the regulation of nitrogenase activity. These responses to darkness and appear to involve different signal transduction pathways, and the poor response to darkness does not seem to be an indirect result of perturbation of internal pools of nitrogen. It is also shown that AmtB(1) is necessary to sequester detectable amounts GlnJ to the cell membrane. These results suggest that some element of the AmtB(1)-P(II) regulatory system senses energy deprivation and a consistent model for the integration of nitrogen, carbon and energy signals by P(II) is proposed. Other results demonstrate a degree of specificity in interaction of AmtB(1) with the different P(II) homologues in R. rubrum. Such interaction specificity might be important in explaining the way in which P(II) proteins regulate processes involved in nitrogen acquisition and utilization.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M Wolfe
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward L Pohlmann
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary C Conrad
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gary P Roberts
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Dodsworth JA, Leigh JA. Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase. Proc Natl Acad Sci U S A 2006; 103:9779-84. [PMID: 16777963 PMCID: PMC1502530 DOI: 10.1073/pnas.0602278103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranslational regulation of nitrogenase, or switch-off, in the methanogenic archaeon Methanococcus maripaludis requires both nifI(1) and nifI(2), which encode members of the PII family of nitrogen-regulatory proteins. Previous work demonstrated that nitrogenase activity in cell extracts was inhibited in the presence of NifI(1) and NifI(2), and that 2-oxoglutarate (2OG), a potential signal of nitrogen limitation, relieved this inhibition. To further explore the role of the NifI proteins in switch-off, we found proteins that interact with NifI(1) and NifI(2) and determined whether 2OG affected these interactions. Anaerobic purification of His-tagged NifI(2) resulted in copurification of NifI(1) and the dinitrogenase subunits NifD and NifK, and 2OG or a deletion mutation affecting the T-loop of NifI(2) prevented copurification of dinitrogenase but did not affect copurification of NifI(1). Similar results were obtained with His-tagged NifI(1). Gel-filtration chromatography demonstrated an interaction between purified NifI(1,2) and dinitrogenase that was inhibited by 2OG. The NifI proteins themselves formed a complex of approximately 85 kDa, which appeared to further oligomerize in the presence of 2OG. NifI(1,2) inhibited activity of purified nitrogenase when present in a 1:1 molar ratio to dinitrogenase, and 2OG fully relieved this inhibition. These results suggest a model for switch-off of nitrogenase activity, where direct interaction of a NifI(1,2) complex with dinitrogenase causes inhibition, which is relieved by 2OG. The presence of nifI(1) and nifI(2) in the nif operons of all nitrogen-fixing Archaea and some anaerobic Bacteria suggests that this mode of nitrogenase regulation may operate in a wide variety of diazotrophs.
Collapse
Affiliation(s)
- Jeremy A. Dodsworth
- Department of Microbiology, University of Washington, Box 357242, 1959 N.E. Pacific Street, Seattle, WA 98195
| | - John A. Leigh
- Department of Microbiology, University of Washington, Box 357242, 1959 N.E. Pacific Street, Seattle, WA 98195
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Abstract
Nitrogenase activity in Rhodospirillum rubrum is post-translationally regulated by DRAG (dinitrogenase reductase glycohydrolase) and DRAT (dinitrogenase reductase ADP-ribosylation transferase). When a sudden increase in fixed nitrogen concentration or energy depletion is sensed by the cells, DRAG is inactivated and DRAT activated. We propose that the regulation of DRAG is dependent on its location in the cell and the presence of an ammonium-sensing protein.
Collapse
Affiliation(s)
- H Wang
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
15
|
Klassen G, Souza EM, Yates MG, Rigo LU, Costa RM, Inaba J, Pedrosa FO. Nitrogenase switch-off by ammonium ions in Azospirillum brasilense requires the GlnB nitrogen signal-transducing protein. Appl Environ Microbiol 2005; 71:5637-41. [PMID: 16151168 PMCID: PMC1214662 DOI: 10.1128/aem.71.9.5637-5641.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase activity in several diazotrophs is switched off by ammonium and reactivated after consumption. The signaling pathway to this system in Azospirillum brasilense is not understood. We show that ammonium-dependent switch-off through ADP-ribosylation of Fe protein was partial in a glnB mutant of A. brasilense but absent in a glnB glnZ double mutant. Triggering of inactivation by anaerobic conditions was not affected in either mutant. The results suggest that glnB is necessary for full ammonium-dependent nitrogenase switch-off in A. brasilense.
Collapse
Affiliation(s)
- Giseli Klassen
- Universidade Federal do Paraná, Departamento de Bioquímica e Biologia Molecular, Caixa Postal 19046 CEP-81531-990, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang H, Franke CC, Nordlund S, Norén A. Reversible membrane association of dinitrogenase reductase activating glycohydrolase in the regulation of nitrogenase activity in Rhodospirillum rubrum; dependence on GlnJ and AmtB1. FEMS Microbiol Lett 2005; 253:273-9. [PMID: 16243452 DOI: 10.1016/j.femsle.2005.09.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022] Open
Abstract
In the photosynthetic bacterium Rhodospirillum rubrum nitrogenase activity is regulated by reversible ADP-ribosylation of dinitrogenase reductase in response to external so called "switch-off" effectors. Activation of the modified, inactive form is catalyzed by dinitrogenase reductase activating glycohydrolase (DRAG) which removes the ADP-ribose moiety. This study addresses the signal transduction between external effectors and DRAG. R. rubrum, wild-type and P(II) mutant strains, were studied with respect to DRAG localization. We conclude that GlnJ clearly has an effect on the association of DRAG to the membrane in agreement with the effect on regulation of nitrogenase activity. Furthermore, we have generated a R. rubrum mutant lacking the putative ammonium transporter AmtB1 which was shown not to respond to "switch-off" effectors; no loss of nitrogenase activity and no ADP-ribosylation. Interestingly, DRAG was mainly localized to the cytosol in this mutant. Overall the results support our model in which association to the membrane is part of the mechanism regulating DRAG activity.
Collapse
Affiliation(s)
- He Wang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
17
|
Huergo LF, Filipaki A, Chubatsu LS, Yates MG, Steffens MB, Pedrosa FO, Souza EM. Effect of the over-expression of PII and PZ proteins on the nitrogenase activity of Azospirillum brasilense. FEMS Microbiol Lett 2005; 253:47-54. [PMID: 16239079 DOI: 10.1016/j.femsle.2005.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/12/2005] [Indexed: 11/30/2022] Open
Abstract
The Azospirillum brasilense PII and PZ proteins, encoded by the glnB and glnZ genes respectively, are intracellular transducers of nitrogen levels with distinct functions. The PII protein participates in nif regulation by controlling the activity of the transcriptional regulator NifA. PII is also involved in transducing the prevailing nitrogen levels to the Fe-protein ADP-ribosylation system. PZ regulates negatively ammonium transport and is involved in nitrogenase reactivation. To further investigate the role of PII and PZ in the regulation of nitrogen fixation, broad-host-range plasmids capable of over-expressing the glnB and glnZ genes under control of the ptac promoter were constructed and introduced into A. brasilense. The nitrogenase activity and nitrate-dependent growth was impaired in A. brasilense cells over-expressing the PII protein. Using immunoblot analysis we observed that the reduction of nitrogenase activity in cells over-expressing PII was due to partial ADP-ribosylation of the Fe-protein under derepressing conditions and a reduction in the amount of Fe-protein. These results support the hypothesis that the unmodified PII protein act as a signal to the DraT enzyme to ADP-ribosylate the Fe-protein in response to ammonium shock, and that it also inhibits nif gene expression. In cells over-expressing the PZ protein the nitrogenase reactivation after an ammonium shock was delayed indicating that the PZ protein is involved in regulation of DraG activity.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990, Curitiba, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Dodsworth JA, Cady NC, Leigh JA. 2-Oxoglutarate and the PII homologues NifI1and NifI2regulate nitrogenase activity in cell extracts ofMethanococcus maripaludis. Mol Microbiol 2005; 56:1527-38. [PMID: 15916603 DOI: 10.1111/j.1365-2958.2005.04621.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Post-translational regulation of nitrogen fixation, or switch-off, in the methanogenic archaeon Methanococcus maripaludis does not involve detectable covalent modification of the dinitrogenase reductase as in some bacteria, and the genes encoding the PII homologues NifI(1) and NifI(2) are both required, indicating a novel mechanism. To further understand the mechanism of switch-off, we assayed nitrogenase activity in cell extracts from wild-type and nifI mutant strains in the absence or presence of potential signals of nitrogen status. Activity in extracts from a DeltanifI(1)nifI(2) strain was sixfold higher than in extracts from wild-type cells. Addition of 2-oxoglutarate to wild-type extracts enhanced activity up to fivefold, a level similar to that observed in DeltanifI(1)nifI(2) extracts. 2-Oxoglutarate did not affect activity in DeltanifI(1)nifI(2) or single nifI mutant extracts. Furthermore, extracts from genetically complimented nifI mutants regained wild-type characteristics, indicating an in vitro correlation with in vivo effects. Extraction and quantification of 2-oxoglutarate indicated concentrations 10-fold higher in nitrogen-fixing cells than in switched-off and ammonium-grown cells. We propose a model for switch-off where the NifI proteins have an inhibitory effect on nitrogenase activity that is counteracted by high levels of 2-oxoglutarate, which acts as a signal of nitrogen limitation.
Collapse
Affiliation(s)
- Jeremy A Dodsworth
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
19
|
Huergo LF, Souza EM, Steffens MBR, Yates MG, Pedrosa FO, Chubatsu LS. Effects of over-expression of the regulatory enzymes DraT and DraG on the ammonium-dependent post-translational regulation of nitrogenase reductase in Azospirillum brasilense. Arch Microbiol 2005; 183:209-17. [PMID: 15723223 DOI: 10.1007/s00203-005-0763-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/20/2005] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
Nitrogen fixation in Azospirillum brasilense is regulated at transcriptional and post-translational levels. Post-translational control occurs through the reversible ADP-ribosylation of dinitrogenase reductase (Fe Protein), mediated by the dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase glycohydrolase (DraG). Although the DraT and DraG activities are regulated in vivo, the molecules responsible for such regulation remain unknown. We have constructed broad-host-range plasmids capable of over-expressing, upon IPTG induction, the regulatory enzymes DraT and DraG as six-histidine-N-terminal fused proteins (His). Both DraT-His and DraG-His are functional in vivo. We have analyzed the effects of DraT-His and DraG-His over-expression on the post-translational modification of Fe Protein. The DraT-His over-expression led to Fe Protein modification in the absence of ammonium addition, while cells over-expressing DraG-His showed only partial ADP-ribosylation of Fe Protein by adding ammonium. These results suggest that both DraT-His and DraG-His lose their regulation upon over-expression, possible by titrating out negative regulators.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Tiemann B, Depping R, Gineikiene E, Kaliniene L, Nivinskas R, Rüger W. ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis. J Bacteriol 2004; 186:7262-72. [PMID: 15489438 PMCID: PMC523198 DOI: 10.1128/jb.186.21.7262-7272.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage T4 encodes three ADP-ribosyltransferases, Alt, ModA, and ModB. These enzymes participate in the regulation of the T4 replication cycle by ADP-ribosylating a defined set of host proteins. In order to obtain a better understanding of the phage-host interactions and their consequences for regulating the T4 replication cycle, we studied cloning, overexpression, and characterization of purified ModA and ModB enzymes. Site-directed mutagenesis confirmed that amino acids, as deduced from secondary structure alignments, are indeed decisive for the activity of the enzymes, implying that the transfer reaction follows the Sn1-type reaction scheme proposed for this class of enzymes. In vitro transcription assays performed with Alt- and ModA-modified RNA polymerases demonstrated that the Alt-ribosylated polymerase enhances transcription from T4 early promoters on a T4 DNA template, whereas the transcriptional activity of ModA-modified polymerase, without the participation of T4-encoded auxiliary proteins for middle mode or late transcription, is reduced. The results presented here support the conclusion that ADP-ribosylation of RNA polymerase and of other host proteins allows initial phage-directed mRNA synthesis reactions to escape from host control. In contrast, subsequent modification of the other cellular target proteins limits transcription from phage early genes and participates in redirecting transcription to phage middle and late genes.
Collapse
Affiliation(s)
- Bernd Tiemann
- Ruhr Universität Bochum, Fakultät für Biologie, Arbeitsgruppe Molekulare Genetik, 44780 Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Pawlowski A, Riedel KU, Klipp W, Dreiskemper P, Gross S, Bierhoff H, Drepper T, Masepohl B. Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. J Bacteriol 2003; 185:5240-7. [PMID: 12923097 PMCID: PMC181009 DOI: 10.1128/jb.185.17.5240-5247.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter capsulatus contains two PII-like proteins, GlnB and GlnK, which play central roles in controlling the synthesis and activity of nitrogenase in response to ammonium availability. Here we used the yeast two-hybrid system to probe interactions between these PII-like proteins and proteins known to be involved in regulating nitrogen fixation. Analysis of defined protein pairs demonstrated the following interactions: GlnB-NtrB, GlnB-NifA1, GlnB-NifA2, GlnB-DraT, GlnK-NifA1, GlnK-NifA2, and GlnK-DraT. These results corroborate earlier genetic data and in addition show that PII-dependent ammonium regulation of nitrogen fixation in R. capsulatus does not require additional proteins, like NifL in Klebsiella pneumoniae. In addition, we found interactions for the protein pairs GlnB-GlnB, GlnB-GlnK, NifA1-NifA1, NifA2-NifA2, and NifA1-NifA2, suggesting that fine tuning of the nitrogen fixation process in R. capsulatus may involve the formation of GlnB-GlnK heterotrimers as well as NifA1-NifA2 heterodimers. In order to identify new proteins that interact with GlnB and GlnK, we constructed an R. capsulatus genomic library for use in yeast two-hybrid studies. Screening of this library identified the ATP-dependent helicase PcrA as a new putative protein that interacts with GlnB and the Ras-like protein Era as a new protein that interacts with GlnK.
Collapse
Affiliation(s)
- Alice Pawlowski
- Lehrstuhl für Biologie der Mikroorganismen, Fakultät für Biologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Drepper T, Groß S, Yakunin AF, Hallenbeck PC, Masepohl B, Klipp W. Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2203-2212. [PMID: 12904560 DOI: 10.1099/mic.0.26235-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In most bacteria, nitrogen metabolism is tightly regulated and P(II) proteins play a pivotal role in the regulatory processes. Rhodobacter capsulatus possesses two genes (glnB and glnK) encoding P(II)-like proteins. The glnB gene forms part of a glnB-glnA operon and the glnK gene is located immediately upstream of amtB, encoding a (methyl-) ammonium transporter. Expression of glnK is activated by NtrC under nitrogen-limiting conditions. The synthesis and activity of the molybdenum and iron nitrogenases of R. capsulatus are regulated by ammonium on at least three levels, including the transcriptional activation of nifA1, nifA2 and anfA by NtrC, the regulation of NifA and AnfA activity by two different NtrC-independent mechanisms, and the post-translational control of the activity of both nitrogenases by reversible ADP-ribosylation of NifH and AnfH as well as by ADP-ribosylation independent switch-off. Mutational analysis revealed that both P(II)-like proteins are involved in the ammonium regulation of the two nitrogenase systems. A mutation in glnB results in the constitutive expression of nifA and anfA. In addition, the post-translational ammonium inhibition of NifA activity is completely abolished in a glnB-glnK double mutant. However, AnfA activity was still suppressed by ammonium in the glnB-glnK double mutant. Furthermore, the P(II)-like proteins are involved in ammonium control of nitrogenase activity via ADP-ribosylation and the switch-off response. Remarkably, in the glnB-glnK double mutant, all three levels of the ammonium regulation of the molybdenum (but not of the alternative) nitrogenase are completely circumvented, resulting in the synthesis of active molybdenum nitrogenase even in the presence of high concentrations of ammonium.
Collapse
Affiliation(s)
- Thomas Drepper
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, D-44780 Bochum, Germany
| | - Silke Groß
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, D-44780 Bochum, Germany
| | - Alexander F Yakunin
- Université de Montréal, Département de microbiologie et immunologie, CP 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Patrick C Hallenbeck
- Université de Montréal, Département de microbiologie et immunologie, CP 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Bernd Masepohl
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, D-44780 Bochum, Germany
| | - Werner Klipp
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, D-44780 Bochum, Germany
| |
Collapse
|
23
|
Yakunin AF, Hallenbeck PC. AmtB is necessary for NH(4)(+)-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J Bacteriol 2002; 184:4081-8. [PMID: 12107124 PMCID: PMC135213 DOI: 10.1128/jb.184.15.4081-4088.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter capsulatus possesses two genes potentially coding for ammonia transporters, amtB and amtY. In order to better understand their role in the physiology of this bacterium and their possible significance in nitrogen fixation, we created single-knockout mutants. Strains mutated in either amtB or amtY did not show a growth defect under any condition tested and were still capable of taking up ammonia at nearly wild-type rates, but an amtB mutant was no longer capable of transporting methylamine. The amtB strain but not the amtY strain was also totally defective in carrying out ADP-ribosylation of Fe-protein or the switch-off of in vivo nitrogenase activity in response to NH(4)(+) addition. ADP-ribosylation in response to darkness was unaffected in amtB and amtBY strains, and glutamine synthetase activity was normally regulated in these strains in response to ammonium addition, suggesting that one role of AmtB is to function as an ammonia sensor for the processes that regulate nitrogenase activity.
Collapse
Affiliation(s)
- Alexander F Yakunin
- Département de Microbiologie et Immunologie, Université de Montréal, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
24
|
Martin DE, Reinhold-Hurek B. Distinct roles of P(II)-like signal transmitter proteins and amtB in regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. strain BH72. J Bacteriol 2002; 184:2251-9. [PMID: 11914357 PMCID: PMC134945 DOI: 10.1128/jb.184.8.2251-2259.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P(II)-like signal transmitter proteins, found in Bacteria, Archaea, and plants, are known to mediate control of carbon and nitrogen assimilation. They indirectly regulate the activity of key metabolic enzymes and transcription factors by protein-protein interactions with signal transduction proteins. Many Proteobacteria harbor two paralogous P(II)-like proteins, GlnB and GlnK, whereas a novel third P(II) paralogue (GlnY) was recently identified in Azoarcus sp. strain BH72, a diazotrophic endophyte of grasses. In the present study, evidence was obtained that the P(II)-like proteins have distinct roles in mediating nitrogen and oxygen control of nif gene transcription and nitrogenase activity. Full repression of nif gene transcription in the presence of a combined nitrogen source or high oxygen concentrations was observed in wild-type and glnB and glnK knockout mutants, revealing that GlnB and GlnK can complement each other in mediating the repression. In contrast, in a glnBK double mutant strain in the presence of only GlnY, nif gene transcription was still detectable, albeit at a lower level, on nitrate or 20% oxygen. As another level of control, nitrogenase activity was regulated by at least three types of mechanisms in strain BH72: covalent modification of dinitrogenase reductase (NifH), probably by ADP-ribosylation, and two other, unknown means. Functional inactivation upon ammonium addition (switch-off) required the putative high-affinity ammonium transporter AmtB and GlnK, but not GlnB or GlnY. Functional inactivation in response to anaerobiosis did not depend on AmtB, GlnK, or GlnB. In contrast, covalent modification of NifH required both GlnB and GlnK and AmtB as response to ammonium addition, whereas it required either GlnB or GlnK and not AmtB when cells were shifted to anaerobiosis. In a glnBK double mutant expressing only GlnY, NifH modification was completely abolished, further revealing functional differences between the three P(II) paralogues.
Collapse
Affiliation(s)
- Dietmar E Martin
- Group Symbiosis Research, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | | |
Collapse
|
25
|
Rudnick P, Kunz C, Gunatilaka MK, Hines ER, Kennedy C. Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii. J Bacteriol 2002; 184:812-20. [PMID: 11790752 PMCID: PMC139532 DOI: 10.1128/jb.184.3.812-820.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In several diazotrophic species of Proteobacteria, P(II) signal transduction proteins have been implicated in the regulation of nitrogen fixation in response to NH(4)(+) by several mechanisms. In Azotobacter vinelandii, expression of nifA, encoding the nif-specific activator, is constitutive, and thus, regulation of NifA activity by the flavoprotein NifL appears to be the primary level of nitrogen control. In vitro and genetic evidence suggests that the nitrogen response involves the P(II)-like GlnK protein and GlnD (uridylyltransferase/uridylyl-removing enzyme), which reversibly uridylylates GlnK in response to nitrogen limitation. Here, the roles of GlnK and GlnK-UMP in A. vinelandii were studied to determine whether the Nif (-) phenotype of glnD strains was due to an inability to modify GlnK, an effort previously hampered because glnK is an essential gene in this organism. A glnKY51F mutation, encoding an unuridylylatable form of the protein, was stable only in a strain in which glutamine synthetase activity is not inhibited by NH(4)(+), suggesting that GlnK-UMP is required to signal adenylyltransferase/adenylyl-removing enzyme-mediated deadenylylation. glnKY51F strains were significantly impaired for diazotrophic growth and expression of a nifH-lacZ fusion. NifL interacted with GlnK and GlnKY51F in a yeast two-hybrid system. Together, these data are consistent with those obtained from in vitro experiments (Little et al., EMBO J., 19:6041-6050, 2000) and support a model for regulation of NifA activity in which unmodified GlnK stimulates NifL inhibition and uridylylation of GlnK in response to nitrogen limitation prevents this function. This model is distinct from one proposed for the related bacterium Klebsiella pneumoniae, in which unmodified GlnK relieves NifL inhibition instead of stimulating it.
Collapse
Affiliation(s)
- Paul Rudnick
- Department of Plant Pathology, The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
26
|
Ludden PW, Roberts GP. Nitrogen fixation by photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2002; 73:115-8. [PMID: 16245111 DOI: 10.1023/a:1020497619288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In 1949, Howard Gest and Martin Kamen published two brief papers in Science that changed our perceptions about the metabolic capabilities of photosynthetic bacteria. Their discovery of photoproduction of hydrogen and the ability of Rhodospirillum rubrum to fix nitrogen led to a greater understanding of both processes.
Collapse
Affiliation(s)
- Paul W Ludden
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA,
| | | |
Collapse
|
27
|
Zhang Y, Pohlmann EL, Ludden PW, Roberts GP. Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. J Bacteriol 2001; 183:6159-68. [PMID: 11591658 PMCID: PMC100091 DOI: 10.1128/jb.183.21.6159-6168.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GlnB (P(II)) protein, the product of glnB, has been characterized previously in the photosynthetic bacterium Rhodospirillum rubrum. Here we describe identification of two other P(II) homologs in this organism, GlnK and GlnJ. Although the sequences of these three homologs are very similar, the molecules have both distinct and overlapping functions in the cell. While GlnB is required for activation of NifA activity in R. rubrum, GlnK and GlnJ do not appear to be involved in this process. In contrast, either GlnB or GlnJ can serve as a critical element in regulation of the reversible ADP ribosylation of dinitrogenase reductase catalyzed by the dinitrogenase reductase ADP-ribosyl transferase (DRAT)/dinitrogenase reductase-activating glycohydrolase (DRAG) regulatory system. Similarly, either GlnB or GlnJ is necessary for normal growth on a variety of minimal and rich media, and any of the proteins is sufficient for normal posttranslational regulation of glutamine synthetase. Surprisingly, in their regulation of the DRAT/DRAG system, GlnB and GlnJ appeared to be responsive not only to changes in nitrogen status but also to changes in energy status, revealing a new role for this family of regulators in central metabolic regulation.
Collapse
Affiliation(s)
- Y Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
28
|
Klassen G, de Souza EM, Yates MG, Rigo LU, Inaba J, Pedrosa FDO. Control of nitrogenase reactivation by the GlnZ protein in Azospirillum brasilense. J Bacteriol 2001; 183:6710-3. [PMID: 11673445 PMCID: PMC95506 DOI: 10.1128/jb.183.22.6710-6713.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glnZ mutant of Azospirillum brasilense (strain 7611) showed only partial recovery (20 to 40%) after 80 min of ammonia-induced nitrogenase switch-off, whereas the wild type recovered totally within 10 min. In contrast, the two strains showed identical anoxic-induced switch-on/switch-off, indicating no cross talk between the two reactivation mechanisms.
Collapse
Affiliation(s)
- G Klassen
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-970, Curitiba, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Arcondéguy T, Jack R, Merrick M. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 2001; 65:80-105. [PMID: 11238986 PMCID: PMC99019 DOI: 10.1128/mmbr.65.1.80-105.2001] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P(II) family of signal transduction proteins are among the most widely distributed signal proteins in the bacterial world. First identified in 1969 as a component of the glutamine synthetase regulatory apparatus, P(II) proteins have since been recognized as playing a pivotal role in control of prokaryotic nitrogen metabolism. More recently, members of the family have been found in higher plants, where they also potentially play a role in nitrogen control. The P(II) proteins can function in the regulation of both gene transcription, by modulating the activity of regulatory proteins, and the catalytic activity of enzymes involved in nitrogen metabolism. There is also emerging evidence that they may regulate the activity of proteins required for transport of nitrogen compounds into the cell. In this review we discuss the history of the P(II) proteins, their structures and biochemistry, and their distribution and functions in prokaryotes. We survey data emerging from bacterial genome sequences and consider other likely or potential targets for control by P(II) proteins.
Collapse
Affiliation(s)
- T Arcondéguy
- Department of Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|