1
|
Martín JF, Liras P. Diamine Fungal Inducers of Secondary Metabolism: 1,3-Diaminopropane and Spermidine Trigger Enzymes Involved in β-Alanine and Pantothenic Acid Biosynthesis, Precursors of Phosphopantetheine in the Activation of Multidomain Enzymes. Antibiotics (Basel) 2024; 13:826. [PMID: 39335000 PMCID: PMC11428646 DOI: 10.3390/antibiotics13090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The biosynthesis of antibiotics and other secondary metabolites (also named special metabolites) is regulated by multiple regulatory networks and cascades that act by binding transcriptional factors to the promoter regions of different biosynthetic gene clusters. The binding affinity of transcriptional factors is frequently modulated by their interaction with specific ligand molecules. In the last decades, it was found that the biosynthesis of penicillin is induced by two different molecules, 1,3-diaminopropane and spermidine, but not by putrescine (1,4-diaminobutane) or spermine. 1,3-diaminopropane and spermidine induce the expression of penicillin biosynthetic genes in Penicillium chrysogenum. Proteomic studies clearly identified two different proteins that respond to the addition to cultures of these inducers and are involved in β-alanine and pantothenic acid biosynthesis. These compounds are intermediates in the biosynthesis of phosphopantetheine that is required for the activation of non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. These large-size multidomain enzymes are inactive in the "apo" form and are activated by covalent addition of the phosphopantetheine prosthetic group by phosphopantetheinyl transferases. Both 1,3-diaminopropane and spermidine have a similar effect on the biosynthesis of cephalosporin by Acremonium chrysogenum and lovastatin by Aspergillus terreus, suggesting that this is a common regulatory mechanism in the biosynthesis of bioactive secondary metabolites/natural products.
Collapse
Affiliation(s)
- Juan Francisco Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Paloma Liras
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
2
|
Chen C, Liu J, Duan C, Pan Y, Liu G. Improvement of the CRISPR-Cas9 mediated gene disruption and large DNA fragment deletion based on a chimeric promoter in Acremonium chrysogenum. Fungal Genet Biol 2020; 134:103279. [DOI: 10.1016/j.fgb.2019.103279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022]
|
3
|
Liu J, Gao W, Pan Y, Liu G. Metabolic engineering of Acremonium chrysogenum for improving cephalosporin C production independent of methionine stimulation. Microb Cell Fact 2018; 17:87. [PMID: 29879990 PMCID: PMC5992653 DOI: 10.1186/s12934-018-0936-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
Background Cephalosporin C (CPC) produced by Acremonium chrysogenum is one of the most important drugs for treatment of bacterial infectious diseases. As the major stimulant, methionine is widely used in the industrial production of CPC. In this study, we found methionine stimulated CPC production through enhancing the accumulation of endogenous S-adenosylmethionine (SAM). To overcome the methionine dependent stimulation of CPC production, the methionine cycle of A. chrysogenum was reconstructed by metabolic engineering. Results Three engineered strains were obtained by overexpressing the SAM synthetase gene AcsamS and the cystathionine-γ-lyase gene mecB, and disrupting a SAM dependent methyltransferase gene Acppm1, respectively. Overexpression of AcsamS resulted in fourfold increase of CPC production which reached to 129.7 µg/mL. Disruption of Acppm1 also increased CPC production (up to 135.5 µg/mL) through enhancing the accumulation of intracellular SAM. Finally, an optimum recombinant strain (Acppm1DM-mecBOE) was constructed through overexpressing mecB in the Acppm1 disruption mutant. In this strain, CPC production reached to the maximum value (142.7 µg/mL) which was 5.5-fold of the wild-type level and its improvement was totally independent of methionine stimulation. Conclusions In this study, we constructed a recombinant strain in which the improvement of CPC production was totally independent of methionine stimulation. This work provides an economic route for improving CPC production in A. chrysogenum through metabolic engineering. Electronic supplementary material The online version of this article (10.1186/s12934-018-0936-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Terfehr D, Kück U. Deactivation of the autotrophic sulfate assimilation pathway substantially reduces high-level β-lactam antibiotic biosynthesis and arthrospore formation in a production strain from Acremonium chrysogenum. MICROBIOLOGY-SGM 2017; 163:817-828. [PMID: 28598313 DOI: 10.1099/mic.0.000474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The filamentous ascomycete Acremonium chrysogenum is the only industrial producer of the β-lactam antibiotic cephalosporin C. Synthesis of all β-lactam antibiotics starts with the three amino acids l-α-aminoadipic acid, l-cysteine and l-valine condensing to form the δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine tripeptide. The availability of building blocks is essential in every biosynthetic process and is therefore one of the most important parameters required for optimal biosynthetic production. Synthesis of l-cysteine is feasible by various biosynthetic pathways in all euascomycetes, and sequencing of the Acr. chrysogenum genome has shown that a full set of sulfur-metabolizing genes is present. In principle, two pathways are effective: an autotrophic one, where the sulfur atom is taken from assimilated sulfide to synthesize either l-cysteine or l-homocysteine, and a reverse transsulfuration pathway, where l-methionine is the sulfur donor. Previous research with production strains has focused on reverse transsulfuration, and concluded that both l-methionine and reverse transsulfuration are essential for high-level cephalosporin C synthesis. Here, we conducted molecular genetic analysis with A3/2, another production strain, to investigate the autotrophic pathway. Strains lacking either cysteine synthase or homocysteine synthase, enzymes of the autotrophic pathway, are still autotrophic for sulfur. However, deletion of both genes results in sulfur amino acid auxotrophic mutants exhibiting delayed biomass production and drastically reduced cephalosporin C synthesis. Furthermore, both single- and double-deletion strains are more sensitive to oxidative stress and form fewer arthrospores. Our findings provide evidence that autotrophic sulfur assimilation is essential for growth and cephalosporin C biosynthesis in production strain A3/2 from Acr. chrysogenum.
Collapse
Affiliation(s)
- Dominik Terfehr
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr 150, 44780 Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr 150, 44780 Bochum, Germany
| |
Collapse
|
5
|
CHEN LIANGYU, LI XINXING, LIU LIBO, YU BO, XUE YIXUE, LIU YUNHUI. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol Rep 2015; 33:1465-74. [DOI: 10.3892/or.2015.3712] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/04/2014] [Indexed: 01/15/2023] Open
|
6
|
|
7
|
|
8
|
Bidirectional-genetics platform, a dual-purpose mutagenesis strategy for filamentous fungi. EUKARYOTIC CELL 2013; 12:1547-53. [PMID: 24058171 DOI: 10.1128/ec.00234-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapidly increasing fungal genome sequences call for efficient ways of generating mutants to translate quickly gene sequences into their functions. A reverse genetic strategy via targeted gene replacement (TGR) has been inefficient for many filamentous fungi due to dominant production of undesirable ectopic transformants. Although large-scale random insertional mutagenesis via transformation (i.e., forward genetics) facilitates high-throughput uncovering of novel genes of interest, generating a huge number of transformants, which is necessary to ensure the likelihood of mutagenizing most genes, is time-consuming. We propose a new strategy, entitled the Bidirectional-Genetics (BiG) platform, which combines both forward and reverse genetic strategies by recycling ectopic transformants derived from TGR as a source for random insertional mutants. The BiG platform was evaluated using the rice blast fungus Magnaporthe oryzae as a model. Over 10% of >1,000 M. oryzae ectopic transformants, generated during disruption of specific genes, displayed abnormality in vegetative growth, pigmentation, and/or asexual reproduction. In this pool of putative mutants, we isolated insertional mutants with mutations in three genes involved in histidine biosynthesis (MoHIS5), vegetative growth (MoVPS74), or conidiophore formation (MoFRQ) (where "Mo" indicates "M. oryzae"), supporting the utility of this platform for systematic gene function studies.
Collapse
|
9
|
Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 2013; 31:287-311. [DOI: 10.1016/j.biotechadv.2012.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/23/2022]
|
10
|
Expression of cefF significantly decreased deacetoxycephalosporin C formation during cephalosporin C production in Acremonium chrysogenum. ACTA ACUST UNITED AC 2012; 39:269-74. [DOI: 10.1007/s10295-011-1025-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Abstract
Deacetoxycephalosporin C (DAOC) is not only the precursor but also one of the by-products during cephalosporin C (CPC) biosynthesis. One enzyme (DAOC/DAC synthase) is responsible for the two-step conversion of penicillin N into deacetylcephalosporin C (DAC) in Acremonium chrysogenum, while two enzymes (DAOC synthase and DAOC hydroxylase) were involved in this reaction in Streptomyces clavuligerus and Amycolatopsis lactamdurans (Nocardia lactamdurans). In this study, the DAOC hydroxylase gene cefF was cloned from Streptomyces clavuligerus and introduced into Acremonium chrysogenum through Agrobacterium tumefaciens-mediated transformation. When cefF was expressed under the promoter of pcbC, the ratio of DAOC/CPC in the fermentation broth significantly decreased. These results suggested that introduction of cefF could function quite well in Acremonium chrysogenum and successfully reduce the content of DAOC in the CPC fermentation broth. This work offered a practical way to improve the CPC purification and reduce its production cost.
Collapse
|
11
|
Shin HY, Lee JY, Park C, Kim SW. Utilization of glycerol as cysteine and carbon sources for cephalosporin C production by Acremonium chrysogenum M35 in methionine-unsupplemented culture. J Biotechnol 2011; 151:363-8. [DOI: 10.1016/j.jbiotec.2010.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 11/30/2022]
|
12
|
Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem J 2010; 432:227-36. [PMID: 20819073 DOI: 10.1042/bj20100827] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanisms of compartmentalization of intermediates and secretion of penicillins and cephalosporins in β-lactam antibiotic-producing fungi are of great interest. In Acremonium chrysogenum, there is a compartmentalization of the central steps of the CPC (cephalosporin C) biosynthetic pathway. In the present study, we found in the 'early' CPC cluster a new gene named cefP encoding a putative transmembrane protein containing 11 transmembrane spanner. Targeted inactivation of cefP by gene replacement showed that it is essential for CPC biosynthesis. The disrupted mutant is unable to synthesize cephalosporins and secretes a significant amount of IPN (isopenicillin N), indicating that the mutant is blocked in the conversion of IPN into PenN (penicillin N). The production of cephalosporin in the disrupted mutant was restored by transformation with both cefP and cefR (a regulatory gene located upstream of cefP), but not with cefP alone. Fluorescence microscopy studies with an EGFP (enhanced green fluorescent protein)-SKL (Ser-Lys-Leu) protein (a peroxisomal-targeted marker) as a control showed that the red-fluorescence-labelled CefP protein co-localized in the peroxisomes with the control peroxisomal protein. In summary, CefP is a peroxisomal membrane protein probably involved in the import of IPN into the peroxisomes where it is converted into PenN by the two-component CefD1/CefD2 protein system.
Collapse
|
13
|
Shin HY, Lee JY, Jung YR, Kim SW. Stimulation of cephalosporin C production in Acremonium chrysogenum M35 by glycerol. BIORESOURCE TECHNOLOGY 2010; 101:4549-4553. [PMID: 20171092 DOI: 10.1016/j.biortech.2010.01.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/14/2010] [Accepted: 01/21/2010] [Indexed: 05/28/2023]
Abstract
In this study, the effects of glycerol on cephalosporin C production by Acremonium chrysogenum M35 were evaluated. The addition of glycerol increased cephalosporin production by up to 12-fold. Glycerol caused the upregulation of the transcription of the isopenicillin synthase (pcbC) and transporter (cefT) genes in early exponential phase, and affected the cell morphology since hyphal fragments differentiated into arthrospores. These results indicate that glycerol effectively enhances cephalosporin C production via stimulation of cell differentiation.
Collapse
Affiliation(s)
- Hyun Yong Shin
- Department of Chemical Biological Engineering, Korea University, 1-5Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
14
|
New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 2010; 86:51-62. [DOI: 10.1007/s00253-009-2416-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
|
15
|
Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U. Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 2009; 85:1081-94. [DOI: 10.1007/s00253-009-2168-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 11/29/2022]
|
16
|
Kemppainen M, Duplessis S, Martin F, Pardo AG. RNA silencing in the model mycorrhizal fungusLaccaria bicolor: gene knock-down of nitrate reductase results in inhibition of symbiosis withPopulus. Environ Microbiol 2009; 11:1878-96. [DOI: 10.1111/j.1462-2920.2009.01912.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Abstract
Penicillins and cephalosporins are β‐lactam antibiotics widely used in human medicine. The biosynthesis of these compounds starts by the condensation of the amino acids l‐α‐aminoadipic acid, l‐cysteine and l‐valine to form the tripeptide δ‐l‐α‐aminoadipyl‐l‐cysteinyl‐d‐valine catalysed by the non‐ribosomal peptide ‘ACV synthetase’. Subsequently, this tripeptide is cyclized to isopenicillin N that in Penicillium is converted to hydrophobic penicillins, e.g. benzylpenicillin. In Acremonium and in streptomycetes, isopenicillin N is later isomerized to penicillin N and finally converted to cephalosporin. Expression of genes of the penicillin (pcbAB, pcbC, pendDE) and cephalosporin clusters (pcbAB, pcbC, cefD1, cefD2, cefEF, cefG) is controlled by pleitropic regulators including LaeA, a methylase involved in heterochromatin rearrangement. The enzymes catalysing the last two steps of penicillin biosynthesis (phenylacetyl‐CoA ligase and isopenicillin N acyltransferase) are located in microbodies, as shown by immunoelectron microscopy and microbodies proteome analyses. Similarly, the Acremonium two‐component CefD1–CefD2 epimerization system is also located in microbodies. This compartmentalization implies intracellular transport of isopenicillin N (in the penicillin pathway) or isopenicillin N and penicillin N in the cephalosporin route. Two transporters of the MFS family cefT and cefM are involved in transport of intermediates and/or secretion of cephalosporins. However, there is no known transporter of benzylpenicillin despite its large production in industrial strains.
Collapse
Affiliation(s)
- Juan F Martín
- Institute of Biotechnology of León, Science Park, Avda. Real 1, 24006 León, Spain.
| | | | | |
Collapse
|
18
|
The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J 2009; 418:113-24. [DOI: 10.1042/bj20081180] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cluster of early cephalosporin biosynthesis genes (pcbAB, pcbC, cefD1, cefD2 and cefT of Acremonium chrysogenum) contains all of the genes required for the biosynthesis of the cephalosporin biosynthetic pathway intermediate penicillin N. Downstream of the cefD1 gene, there is an unassigned open reading frame named cefM encoding a protein of the MFS (major facilitator superfamily) with 12 transmembrane domains, different from the previously reported cefT. Targeted inactivation of cefM by gene replacement showed that it is essential for cephalosporin biosynthesis. The disrupted mutant accumulates a significant amount of penicillin N, is unable to synthesize deacetoxy-, deacetyl-cephalosporin C and cephalosporin C and shows impaired differentiation into arthrospores. Complementation of the disrupted mutant with the cefM gene restored the intracellular penicillin N concentration to normal levels and allowed synthesis and secretion of the cephalosporin intermediates and cephalosporin C. A fused cefM-gfp gene complemented the cefM-disrupted mutant, and the CefM–GFP (green fluorescent protein) fusion was targeted to intracellular microbodies that were abundant after 72 h of culture in the differentiating hyphae and in the arthrospore chains, coinciding with the phase of intense cephalosporin biosynthesis. Since the dual-component enzyme system CefD1–CefD2 that converts isopenicillin N into penicillin N contains peroxisomal targeting sequences, it is probable that the epimerization step takes place in the peroxisome matrix. The CefM protein seems to be involved in the translocation of penicillin N from the peroxisome (or peroxisome-like microbodies) lumen to the cytosol, where it is converted into cephalosporin C.
Collapse
|
19
|
Ullán RV, Godio RP, Teijeira F, Vaca I, García-Estrada C, Feltrer R, Kosalkova K, Martín JF. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression. J Microbiol Methods 2008; 75:209-18. [PMID: 18590779 DOI: 10.1016/j.mimet.2008.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/03/2008] [Accepted: 06/05/2008] [Indexed: 11/26/2022]
Abstract
In this work we report the development and validation of a new RNA interference vector (pJL43-RNAi) containing a double-stranded RNA expression cassette for gene silencing in the filamentous fungi Penicillium chrysogenum and Acremonium chrysogenum. Classical targeted gene disruption in these fungi is very laborious and inefficient due to the low frequency of homologous recombination. The RNAi vector has been validated by testing the attenuation of two different genes of the beta-lactam pathway; pcbC in P. chrysogenum and cefEF in A. chrysogenum. Quantification of mRNA transcript levels and antibiotic production showed knockdown of pcbC and cefEF genes in randomly isolated transformants of P. chrysogenum and A. chrysogenum, respectively. The process is efficient; 15 to 20% of the selected transformants were found to be knockdown mutants showing reduced penicillin or cephalosporin production. This new RNAi vector opens the way for exploring gene function in the genomes of P. chrysogenum and A. chrysogenum.
Collapse
Affiliation(s)
- Ricardo V Ullán
- Institute of Biotechnology (INBIOTEC), Avda. Real no. 1, 24006 León, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Janus D, Hoff B, Hofmann E, Kück U. An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol 2006; 73:962-70. [PMID: 17142377 PMCID: PMC1800780 DOI: 10.1128/aem.02127-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In filamentous fungi, RNA silencing is an attractive alternative to disruption experiments for the functional analysis of genes. We adapted the gene encoding the autofluorescent DsRed protein as a reporter to monitor the silencing process in fungal transformants. Using the cephalosporin C producer Acremonium chrysogenum, strains showing a high level of expression of the DsRed gene were constructed, resulting in red fungal colonies. Transfer of a hairpin-expressing vector carrying fragments of the DsRed gene allowed efficient silencing of DsRed expression. Monitoring of this process by Northern hybridization, real-time PCR quantification, and spectrofluorometric measurement of the DsRed protein confirmed that downregulation of gene expression can be observed at different expression levels. The usefulness of the DsRed silencing system was demonstrated by investigating cosilencing of DsRed together with pcbC, encoding the isopenicillin N synthase, an enzyme involved in cephalosporin C biosynthesis. Downregulation of pcbC can be detected easily by a bioassay measuring the antibiotic activity of individual strains. In addition, the presence of the isopenicillin N synthase was investigated by Western blot hybridization. All transformants having a colorless phenotype showed simultaneous downregulation of the pcbC gene, albeit at different levels. The RNA-silencing system presented here should be a powerful genetic tool for strain improvement and genome-wide analysis of this biotechnologically important filamentous fungus.
Collapse
Affiliation(s)
- Danielle Janus
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
21
|
Demain AL, Vaishnav P. Involvement of nitrogen-containing compounds in beta-lactam biosynthesis and its control. Crit Rev Biotechnol 2006; 26:67-82. [PMID: 16809098 DOI: 10.1080/07388550600671466] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biosynthesis of beta-lactam antibiotics by fungi and actinomycetes is markedly affected by compounds containing nitrogen. The different processes employed by the spectrum of microbes capable of making these valuable compounds are affected differently by particular compounds. Ammonium ions, except at very low concentrations, exert negative effects via nitrogen metabolite repression, sometimes involving the nitrogen regulatory gene nre. Certain amino acids are precursors or inducers, whereas others are involved in repression and, in certain cases, as inhibitors of biosynthetic enzymes and of enzymes supplying precursors. The most important amino acids from the viewpoint of regulation are lysine, methionine, glutamate and valine. Surprisingly, diamines such as diaminopropane, putrescine and cadaverine induce cephamycin production by actinomycetes. In addition to penicillins and cephalosporins made by fungi and cephamycins made by actinomycetes, other beta-lactams are made by actinomycetes and unicellular bacteria. These include clavams (e.g., clavulanic acid), carbapenems (e.g., thienamycin), nocardicins and monobactams. Here also, amino acids are precursors and inhibitors, but only little is known about regulation. In the case of the simplest carbapenem made by unicellular bacteria, i.e., 1-carba-2-em-3-carboxylic acid, quorum sensors containing homoserine lactone are inducers.
Collapse
Affiliation(s)
- Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA.
| | | |
Collapse
|
22
|
Lamas-Maceiras M, Vaca I, Rodríguez E, Casqueiro J, Martín J. Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. Biochem J 2006; 395:147-55. [PMID: 16321143 PMCID: PMC1409706 DOI: 10.1042/bj20051599] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A gene, phl, encoding a phenylacetyl-CoA ligase was cloned from a phage library of Penicillium chrysogenum AS-P-78. The presence of five introns in the phl gene was confirmed by reverse transcriptase-PCR. The phl gene encoded an aryl-CoA ligase closely related to Arabidopsis thaliana 4-coumaroyl-CoA ligase. The Phl protein contained most of the amino acids defining the aryl-CoA (4-coumaroyl-CoA) ligase substrate-specificity code and differed from acetyl-CoA ligase and other acyl-CoA ligases. The phl gene was not linked to the penicillin gene cluster. Amplification of phl in an autonomous replicating plasmid led to an 8-fold increase in phenylacetyl-CoA ligase activity and a 35% increase in penicillin production. Transformants containing the amplified phl gene were resistant to high concentrations of phenylacetic acid (more than 2.5 g/l). Disruption of the phl gene resulted in a 40% decrease in penicillin production and a similar reduction of phenylacetyl-CoA ligase activity. The disrupted mutants were highly susceptible to phenylacetic acid. Complementation of the disrupted mutants with the phl gene restored normal levels of penicillin production and resistance to phenylacetic acid. The phenylacetyl-CoA ligase encoded by the phl gene is therefore involved in penicillin production, although a second aryl-CoA ligase appears to contribute partially to phenylacetic acid activation. The Phl protein lacks a peptide-carrier-protein domain and behaves as an aryl-capping enzyme that activates phenylacetic acid and transfers it to the isopenicillin N acyltransferase. The Phl protein contains the peroxisome-targeting sequence that is also present in the isopenicillin N acyltransferase. The peroxisomal co-localization of these two proteins indicates that the last two enzymes of the penicillin pathway form a peroxisomal functional complex.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- *Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain
| | - Inmaculada Vaca
- †Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, 1 Av. Real, 24006 León, Spain
| | - Esther Rodríguez
- *Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain
| | - Javier Casqueiro
- *Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain
| | - Juan F. Martín
- *Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain
- †Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, 1 Av. Real, 24006 León, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Castillo NI, Fierro F, Gutiérrez S, Martín JF. Genome-wide analysis of differentially expressed genes from Penicillium chrysogenum grown with a repressing or a non-repressing carbon source. Curr Genet 2005; 49:85-96. [PMID: 16362424 DOI: 10.1007/s00294-005-0029-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 09/21/2005] [Accepted: 09/22/2005] [Indexed: 01/23/2023]
Abstract
Penicillium chrysogenum is an economically important ascomycete used as industrial producer of penicillin. However, with the exception of penicillin biosynthesis genes, little attention has been paid to the genetics of other aspects of the metabolism of this fungus. In this article we describe the first attempt of systematic analysis of expressed genes in P. chrysogenum, using a suppression subtractive hybridization approach to clone and identify sequences of genes differentially expressed in media with glucose or lactose as carbon source (penicillin-repressing or non-repressing conditions). A total of 167 clones were analysed, 95 from the glucose condition and 72 from the lactose condition. Genes differentially expressed in the glucose condition encode mainly proteins involved in the mitochondrial electron transport chain and primary metabolism. Genes expressed differentially in lactose-containing medium include genes for secondary metabolism (pcbC, isopenicillin N synthase), different hydrolases and a gene encoding a putative hexose transporter or sensor. The results provided information on how the metabolism of this fungus adapts to different carbon sources. The expression patterns of some of the genes support the hypothesis that glucose induces higher rates of respiration in P. chrysogenum while repressing secondary metabolism.
Collapse
Affiliation(s)
- Nancy Isabel Castillo
- Instituto de Biotecnología de León, Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | | | | | | |
Collapse
|
24
|
Naranjo L, Lamas-Maceiras M, Ullán RV, Campoy S, Teijeira F, Casqueiro J, Martín JF. Characterization of the oat1 gene of Penicillium chrysogenum encoding an omega-aminotransferase: induction by L-lysine, L-ornithine and L-arginine and repression by ammonium. Mol Genet Genomics 2005; 274:283-94. [PMID: 16163487 DOI: 10.1007/s00438-005-0019-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/11/2005] [Indexed: 11/29/2022]
Abstract
The Penicillium chrysogenum oat1 gene, which encodes a class III omega-aminotransferase, was cloned and characterized. This enzyme converts lysine into 2-aminoadipic semialdehyde, and plays an important role in the biosynthesis of 2-aminoadipic acid, a precursor of penicillin and other beta-lactam antibiotics. The enzyme is related to ornithine-5-aminotransferases and to the lysine-6-aminotransferases encoded by the lat genes found in bacterial cephamycin gene clusters. Expression of oat1 is induced by lysine, ornithine and arginine, and repressed by ammonium ions. AreA-binding GATA and GATT sequences involved in regulation by ammonium, and an 8-bp direct repeat associated with arginine induction in Emericella (Aspergillus nidulans and Saccharomyces cerevisiae, were found in the oat1 promoter region. Deletion of the oat1 gene resulted in the loss of omega-aminotransferase activity. The null mutants were unable to grow on ornithine or arginine as sole nitrogen sources and showed reduced growth on lysine. Complementation of the null mutant with the oat1 gene restored normal levels of omega-aminotransferase activity and the ability to grow on ornithine, arginine and lysine. The role of the oat1 gene in the biosynthesis of 2-aminoadipic acid is discussed.
Collapse
Affiliation(s)
- Leopoldo Naranjo
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Nagy MA, Emri T, Fekete E, Sándor E, Springael JY, Penninckx MJ, Pócsi I. Glutathione metabolism of Acremonium chrysogenum in relation to cephalosporin C production: is gamma-glutamyltransferase in the center? Folia Microbiol (Praha) 2003; 48:149-55. [PMID: 12800495 DOI: 10.1007/bf02930947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methionine increased the intracellular glutathione (reduced) (GSH) pool and the specific gamma-glutamyltransferase (gamma-GT) activity in the cephalosporin C (CPC) producer Acremonium chrysogenum. The accelerated turnover of GSH might be indicative of the existence of a functioning gamma-glutamate cycle, and might supply the CPC biosynthetic machinery with L-cysteine. The gamma-GT was not subject to nitrogen metabolic repression but was more active in cells exposed to different oxidative-stress-generating agents. Exogenous cysteine hindered both the uptake of methionine and the induction of gamma-GT, and was not beneficial for CPC production. There was no causal relationship between the redox status of the cells and the observed cell morphology.
Collapse
Affiliation(s)
- M A Nagy
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, 4010 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Methionine has long been known as the major stimulant of the formation of cephalosporin C in Acremonium chrysogenum. Enzymatic and genetic studies of methionine have revealed that it induces four of the enzymes of cephalosporin-C biosynthesis at the level of transcription. It is also converted to cysteine, one of three precursors of cephalosporin C, by cystathionine-gamma-lyase. The main effect of methionine on cephalosporin production results from its regulatory role, which can be duplicated by the non-sulfur analog norleucine. Eliminating cystathionine-gamma-lyase prevents the enhancing precursor effect of methionine on cephalosporin-C production, and cystathionine-gamma-lyase overproduction in moderate doses increases cephalosporin-C formation.
Collapse
|
27
|
Ullan RV, Casqueiro J, Banuelos O, Fernandez FJ, Gutierrez S, Martin JF. A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem 2002; 277:46216-25. [PMID: 12228250 DOI: 10.1074/jbc.m207482200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epimerization step that converts isopenicillin N into penicillin N during cephalosporin biosynthesis has remained uncharacterized despite its industrial relevance. A transcriptional analysis of a 9-kb region located downstream of the pcbC gene revealed the presence of two transcripts that correspond to the genes named cefD1 and cefD2 encoding proteins with high similarity to long chain acyl-CoA synthetases and acyl-CoA racemases from Mus musculus, Homo sapiens, and Rattus norvegicus. Both genes are expressed in opposite orientations from a bidirectional promoter region. Targeted inactivation of cefD1 and cefD2 was achieved by the two-marker gene replacement procedure. Disrupted strains lacked isopenicillin N epimerase activity, were blocked in cephalosporin C production, and accumulated isopenicillin N. Complementation in trans of the disrupted nonproducer mutant with both genes restored epimerase activity and cephalosporin biosynthesis. However, when cefD1 or cefD2 were introduced separately into the double-disrupted mutant, no epimerase activity was detected, indicating that the concerted action of both proteins encoded by cefD1 and cefD2 is required for epimerization of isopenicillin N into penicillin N. This epimerization system occurs in eukaryotic cells and is entirely different from the known epimerization systems involved in the biosynthesis of bacterial beta-lactam antibiotics.
Collapse
Affiliation(s)
- Ricardo V Ullan
- Area de Microbiologia, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Moralejo FJ, Cardoza RE, Gutierrez S, Lombraña M, Fierro F, Martín JF. Silencing of the aspergillopepsin B (pepB) gene of Aspergillus awamori by antisense RNA expression or protease removal by gene disruption results in a large increase in thaumatin production. Appl Environ Microbiol 2002; 68:3550-9. [PMID: 12089041 PMCID: PMC126795 DOI: 10.1128/aem.68.7.3550-3559.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillopepsin B was identified in culture broths of Aspergillus awamori by in situ detection of its proteolytic activity and by immunodetection with anti-aspergillopepsin B antibodies. Severe thaumatin degradation was observed after in vitro treatment of thaumatin with purified aspergillopepsin B. The pepB gene encoding aspergillopepsin B of A. awamori was cloned and characterized. It is located in chromosome IV of A. awamori, as shown by pulsed-field gel electrophoresis, and encodes a protein of 282 amino acids with high similarity to the aspergillopepsin B of Aspergillus niger var. macrosporus. The pepB gene is expressed at high rates as a monocistronic 1.0-kb transcript in media with casein at acidic pH values. An antisense cassette constructed by inserting the pepB gene in the antisense orientation downstream from the gpdA promoter resulted in a good level of antisense mRNA, as shown by reverse transcription-PCR. Partial silencing of the pepB gene by the antisense mRNA resulted in a 31% increase in thaumatin yield. However, significant residual degradation of thaumatin still occurred. To completely remove aspergillopepsin B, the pepB gene was deleted by double crossover. Two of the selected transformants lacked the endogenous pepB gene and did not form aspergillopepsin B. Thaumatin yields increased by between 45% in transformant APB 7/25 and 125% in transformant 7/36 with respect to the parental strain. Reduction of proteolytic degradation by gene silencing with antisense mRNA or total removal of the aspergillopepsin B by directed gene deletion was a very useful method for improving thaumatin production in A. awamori.
Collapse
Affiliation(s)
- Francisco J Moralejo
- Instituto de Biotecnología de León INBIOTEC, Parque Científico de León, Aveñida del Real no. 1, 24006 León, Spain
| | | | | | | | | | | |
Collapse
|