1
|
Lee SJ, Ferguson C, Urbano S, Lee J, Jeong P, Cheela M, Mitsunobu H, Zhu B, Prajapati A, Richardson CC, Hernandez AJ. Mechanism of Annealing of Complementary DNA Strands by the Single-Stranded DNA Binding Protein of Bacteriophage T7. Biochemistry 2025; 64:1550-1559. [PMID: 40070037 DOI: 10.1021/acs.biochem.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gp2.5, an essential single-stranded DNA-binding protein encoded by bacteriophage T7, is integral to various steps of DNA metabolism. Unlike other single-stranded DNA binding proteins, it greatly facilitates the annealing of complementary DNA strands. Gp2.5 efficiently anneals DNA duplexes as short as 30 base pairs: efficient annealing occurs at a 100-fold lower concentration of complementary strands than that required in the absence of gp2.5. Additionally, gp2.5 selectively promotes DNA annealing with no observed effect on RNA or DNA hybrids. Kinetic studies show a substantial increase in the annealing rate, with gp2.5 accelerating the process by 30-fold compared with spontaneous annealing. Gp2.5 tolerates mismatches and unpaired loops within DNA, facilitating annealing in sequences with slight imperfections. FRET analysis demonstrates that gp2.5 brings strands of ssDNA into close proximity irrespective of their complementarity, likely through interactions between gp2.5 molecules. A unique long α helix A in gp2.5 is critical for its annealing activity: deletions of helix A impair DNA annealing without affecting DNA replication functions.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Charlotte Ferguson
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Sebastian Urbano
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Jaehun Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peter Jeong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Meghana Cheela
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Hitoshi Mitsunobu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bin Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ashmita Prajapati
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Alfredo J Hernandez
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| |
Collapse
|
2
|
Klucnika A, Mu P, Jezek J, McCormack M, Di Y, Bradshaw CR, Ma H. REC drives recombination to repair double-strand breaks in animal mtDNA. J Cell Biol 2023; 222:e202201137. [PMID: 36355348 PMCID: PMC9652705 DOI: 10.1083/jcb.202201137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Mechanisms that safeguard mitochondrial DNA (mtDNA) limit the accumulation of mutations linked to mitochondrial and age-related diseases. Yet, pathways that repair double-strand breaks (DSBs) in animal mitochondria are poorly understood. By performing a candidate screen for mtDNA repair proteins, we identify that REC-an MCM helicase that drives meiotic recombination in the nucleus-also localizes to mitochondria in Drosophila. We show that REC repairs mtDNA DSBs by homologous recombination in somatic and germline tissues. Moreover, REC prevents age-associated mtDNA mutations. We further show that MCM8, the human ortholog of REC, also localizes to mitochondria and limits the accumulation of mtDNA mutations. This study provides mechanistic insight into animal mtDNA recombination and demonstrates its importance in safeguarding mtDNA during ageing and evolution.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Peiqiang Mu
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jan Jezek
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Matthew McCormack
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Hansong Ma
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Pohjoismäki JLO, Forslund JME, Goffart S, Torregrosa-Muñumer R, Wanrooij S. Known Unknowns of Mammalian Mitochondrial DNA Maintenance. Bioessays 2018; 40:e1800102. [DOI: 10.1002/bies.201800102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/18/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland; 80101 Joensuu Finland
| | | | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland; 80101 Joensuu Finland
| | - Rubén Torregrosa-Muñumer
- Department of Environmental and Biological Sciences, University of Eastern Finland; 80101 Joensuu Finland
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University; 90187 Umeå Sweden
| |
Collapse
|
4
|
Hernandez AJ, Richardson CC. Gp2.5, the multifunctional bacteriophage T7 single-stranded DNA binding protein. Semin Cell Dev Biol 2018; 86:92-101. [PMID: 29588157 DOI: 10.1016/j.semcdb.2018.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/29/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
The essential bacteriophage T7-encoded single-stranded DNA binding protein is the nexus of T7 DNA metabolism. Multiple layers of macromolecular interactions mediate its function in replication, recombination, repair, and the maturation of viral genomes. In addition to binding ssDNA, the protein binds to DNA polymerase and DNA helicase, regulating their activities. The protein displays potent homologous DNA annealing activity, underscoring its role in recombination.
Collapse
Affiliation(s)
- Alfredo J Hernandez
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Phillips AF, Millet AR, Tigano M, Dubois SM, Crimmins H, Babin L, Charpentier M, Piganeau M, Brunet E, Sfeir A. Single-Molecule Analysis of mtDNA Replication Uncovers the Basis of the Common Deletion. Mol Cell 2017; 65:527-538.e6. [PMID: 28111015 DOI: 10.1016/j.molcel.2016.12.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022]
Abstract
Mutations in mtDNA lead to muscular and neurological diseases and are linked to aging. The most frequent aberrancy is the "common deletion" that involves a 4,977-bp region flanked by 13-bp repeats. To investigate the basis of this deletion, we developed a single-molecule mtDNA combing method. The analysis of replicating mtDNA molecules provided in vivo evidence in support of the asymmetric mode of replication. Furthermore, we observed frequent fork stalling at the junction of the common deletion, suggesting that impaired replication triggers the formation of this toxic lesion. In parallel experiments, we employed mito-TALENs to induce breaks in distinct loci of the mitochondrial genome and found that breaks adjacent to the 5' repeat trigger the common deletion. Interestingly, this process was mediated by the mitochondrial replisome independent of canonical DSB repair. Altogether, our data underscore a unique replication-dependent repair pathway that leads to the mitochondrial common deletion.
Collapse
Affiliation(s)
- Aaron F Phillips
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Armêl R Millet
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France; Genome Dynamics in the Immune System Laboratory, INSERM, UMR 1163, Institut Imagine, 75015 Paris, France
| | - Marco Tigano
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Sonia M Dubois
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France
| | - Hannah Crimmins
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Loelia Babin
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France; Genome Dynamics in the Immune System Laboratory, INSERM, UMR 1163, Institut Imagine, 75015 Paris, France
| | - Marine Charpentier
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France
| | - Marion Piganeau
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France
| | - Erika Brunet
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 75005 Paris, France; Genome Dynamics in the Immune System Laboratory, INSERM, UMR 1163, Institut Imagine, 75015 Paris, France.
| | - Agnel Sfeir
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
6
|
|
7
|
Lin TY, Lo YH, Tseng PW, Chang SF, Lin YT, Chen TS. A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range. PLoS One 2012; 7:e30954. [PMID: 22347414 PMCID: PMC3276506 DOI: 10.1371/journal.pone.0030954] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/27/2011] [Indexed: 11/19/2022] Open
Abstract
It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress.
Collapse
Affiliation(s)
- Tiao-Yin Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Replisomes are the protein assemblies that replicate DNA. They function as molecular motors to catalyze template-mediated polymerization of nucleotides, unwinding of DNA, the synthesis of RNA primers, and the assembly of proteins on DNA. The replisome of bacteriophage T7 contains a minimum of proteins, thus facilitating its study. This review describes the molecular motors and coordination of their activities, with emphasis on the T7 replisome. Nucleotide selection, movement of the polymerase, binding of the processivity factor, unwinding of DNA, and RNA primer synthesis all require conformational changes and protein contacts. Lagging-strand synthesis is mediated via a replication loop whose formation and resolution is dictated by switches to yield Okazaki fragments of discrete size. Both strands are synthesized at identical rates, controlled by a molecular brake that halts leading-strand synthesis during primer synthesis. The helicase serves as a reservoir for polymerases that can initiate DNA synthesis at the replication fork. We comment on the differences in other systems where applicable.
Collapse
Affiliation(s)
- Samir M Hamdan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
9
|
Shokri L, Marintcheva B, Eldib M, Hanke A, Rouzina I, Williams MC. Kinetics and thermodynamics of salt-dependent T7 gene 2.5 protein binding to single- and double-stranded DNA. Nucleic Acids Res 2008; 36:5668-77. [PMID: 18772224 PMCID: PMC2553585 DOI: 10.1093/nar/gkn551] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteriophage T7 gene 2.5 protein (gp2.5) is a single-stranded DNA (ssDNA)-binding protein that has essential roles in DNA replication, recombination and repair. However, it differs from other ssDNA-binding proteins by its weaker binding to ssDNA and lack of cooperative ssDNA binding. By studying the rate-dependent DNA melting force in the presence of gp2.5 and its deletion mutant lacking 26 C-terminal residues, we probe the kinetics and thermodynamics of gp2.5 binding to ssDNA and double-stranded DNA (dsDNA). These force measurements allow us to determine the binding rate of both proteins to ssDNA, as well as their equilibrium association constants to dsDNA. The salt dependence of dsDNA binding parallels that of ssDNA binding. We attribute the four orders of magnitude salt-independent differences between ssDNA and dsDNA binding to nonelectrostatic interactions involved only in ssDNA binding, in contrast to T4 gene 32 protein, which achieves preferential ssDNA binding primarily through cooperative interactions. The results support a model in which dimerization interactions must be broken for DNA binding, and gp2.5 monomers search dsDNA by 1D diffusion to bind ssDNA. We also quantitatively compare the salt-dependent ssDNA- and dsDNA-binding properties of the T4 and T7 ssDNA-binding proteins for the first time.
Collapse
Affiliation(s)
- Leila Shokri
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
10
|
Shokri L, Marintcheva B, Richardson CC, Rouzina I, Williams MC. Single molecule force spectroscopy of salt-dependent bacteriophage T7 gene 2.5 protein binding to single-stranded DNA. J Biol Chem 2006; 281:38689-96. [PMID: 17050544 DOI: 10.1074/jbc.m608460200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene 2.5 protein (gp2.5) encoded by bacteriophage T7 binds preferentially to single-stranded DNA. This property is essential for its role in DNA replication and recombination in the phage-infected cell. gp2.5 lowers the phage lambda DNA melting force as measured by single molecule force spectroscopy. T7 gp2.5-Delta26C, lacking 26 acidic C-terminal residues, also reduces the melting force but at considerably lower concentrations. The equilibrium binding constants of these proteins to single-stranded DNA (ssDNA) as a function of salt concentration have been determined, and we found for example that gp2.5 binds with an affinity of (3.5 +/- 0.6) x 10(5) m(-1) in a 50 mm Na(+) solution, whereas the truncated protein binds to ssDNA with a much higher affinity of (7.8 +/- 0.9) x 10(7) m(-1) under the same solution conditions. T7 gp2.5-Delta26C binding to single-stranded DNA also exhibits a stronger salt dependence than the full-length protein. The data are consistent with a model in which a dimeric gp2.5 must dissociate prior to binding to ssDNA, a dissociation that consists of a weak non-electrostatic and a strong electrostatic component.
Collapse
Affiliation(s)
- Leila Shokri
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
11
|
He ZG, Rezende LF, Willcox S, Griffith JD, Richardson CC. The carboxyl-terminal domain of bacteriophage T7 single-stranded DNA-binding protein modulates DNA binding and interaction with T7 DNA polymerase. J Biol Chem 2003; 278:29538-45. [PMID: 12766155 DOI: 10.1074/jbc.m304318200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein (gp2.5). Previous studies have demonstrated that the acidic carboxyl terminus of the protein is essential and that it mediates multiple protein-protein interactions. A screen for lethal mutations in gene 2.5 uncovered a variety of essential amino acids, among which was a single amino acid substitution, F232L, at the carboxyl-terminal residue. gp2.5-F232L exhibits a 3-fold increase in binding affinity for single-stranded DNA and a slightly lower affinity for T7 DNA polymerase when compared with wild type gp2.5. gp2.5-F232L stimulates the activity of T7 DNA polymerase and, in contrast to wild-type gp2.5, promotes strand displacement DNA synthesis by T7 DNA polymerase. A carboxyl-terminal truncation of gene 2.5 protein, gp2.5-Delta 26C, binds single-stranded DNA 40-fold more tightly than the wild-type protein and cannot physically interact with T7 DNA polymerase. gp2.5-Delta 26C is inhibitory for DNA synthesis catalyzed by T7 DNA polymerase on single-stranded DNA, and it does not stimulate strand displacement DNA synthesis at high concentration. The biochemical and genetic data support a model in which the carboxyl-terminal tail modulates DNA binding and mediates essential interactions with T7 DNA polymerase.
Collapse
Affiliation(s)
- Zheng-Guo He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Rezende LF, Willcox S, Griffith JD, Richardson CC. A single-stranded DNA-binding protein of bacteriophage T7 defective in DNA annealing. J Biol Chem 2003; 278:29098-105. [PMID: 12748198 DOI: 10.1074/jbc.m303374200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The annealing of complementary strands of DNA is a vital step during the process of DNA replication, recombination, and repair. In bacteriophage T7-infected cells, the product of viral gene 2.5, a single-stranded DNA-binding protein, performs this function. We have identified a single amino acid residue in gene 2.5 protein, arginine 82, that is critical for its DNA annealing activity. Expression of gene 2.5 harboring this mutation does not complement the growth of a T7 bacteriophage lacking gene 2.5. Purified gene 2.5 protein-R82C binds single-stranded DNA with a greater affinity than the wild-type protein but does not mediate annealing of complementary strands of DNA. A carboxyl-terminal-deleted protein, gene 2.5 protein-Delta26C, binds even more tightly to single-stranded DNA than does gene 2.5 protein-R82C, but it anneals homologous strands of DNA as well as does the wild-type protein. The altered protein forms dimers and interacts with T7 DNA polymerase comparable with the wild-type protein. Gene 2.5 protein-R82C condenses single-stranded M13 DNA in a manner similar to wild-type protein when viewed by electron microscopy.
Collapse
Affiliation(s)
- Lisa F Rezende
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
13
|
Hyland EM, Rezende LF, Richardson CC. The DNA binding domain of the gene 2.5 single-stranded DNA-binding protein of bacteriophage T7. J Biol Chem 2003; 278:7247-56. [PMID: 12496273 DOI: 10.1074/jbc.m210605200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene 2.5 of bacteriophage T7 encodes a single-stranded DNA-binding protein that is essential for viral survival. Its crystal structure reveals a conserved oligosaccharide/oligonucleotide binding fold predicted to interact with single-stranded DNA. However, there is no experimental evidence to support this hypothesis. Recently, we reported a genetic screen for lethal mutations in gene 2.5 that we are using to identify functional domains of the gene 2.5 protein. This screen uncovered a number of mutations that led to amino acid substitutions in the proposed DNA binding domain. Three variant proteins, gp2.5-Y158C, gp2.5-K152E, and gp2.5-Y111C/Y158C, exhibit a decrease in binding affinity for oligonucleotides. A fourth, gp2.5-K109I, exhibits an altered mode of binding single-stranded DNA. A carboxyl-terminal truncation of gene 2.5 protein, gp2.5-Delta26C, binds single-stranded DNA 10-fold more tightly than the wild-type protein. The three altered proteins defective in single-stranded DNA binding cannot mediate the annealing of homologous DNA, whereas gp2.5-Delta26C mediates the reaction more effectively than does wild-type. Gp2.5-K109I retains this annealing ability, albeit slightly less efficiently. With the exception of gp2.5-Delta26C, all variant proteins form dimers in solution and physically interact with T7 DNA polymerase.
Collapse
Affiliation(s)
- Edel M Hyland
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
14
|
Rezende LF, Hollis T, Ellenberger T, Richardson CC. Essential amino acid residues in the single-stranded DNA-binding protein of bacteriophage T7. Identification of the dimer interface. J Biol Chem 2002; 277:50643-53. [PMID: 12379653 DOI: 10.1074/jbc.m207359200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein. T7 phage with gene 2.5 deleted can grow only on Escherichia coli cells that express gene 2.5 from a plasmid. This complementation assay was used to screen for lethal mutations in gene 2.5. By screening a library of randomly mutated plasmids encoding gene 2.5, we identified 20 different single amino acid alterations in gene 2.5 protein that are lethal in vivo. The location of these essential residues within the three-dimensional structure of gene 2.5 protein assists in the identification of motifs in the protein. In this study we show that a subset of these alterations defines the dimer interface of gene 2.5 protein predicted by the crystal structure. Recombinantly expressed and purified gene 2.5 protein-P22L, gene 2.5 protein-F31S, and gene 2.5 protein-G36S do not form dimers at salt concentrations where the wild-type gene 2.5 protein exists as a dimer. The basis of the lethality of these mutations in vivo is not known because altered proteins retain the ability to bind single-stranded DNA, anneal complementary strands of DNA, and interact with T7 DNA polymerase.
Collapse
Affiliation(s)
- Lisa F Rezende
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|