1
|
Dyotima, Abulaila S, Mendoza J, Landeta C. Development of a sensor for disulfide bond formation in diverse bacteria. J Bacteriol 2024; 206:e0043323. [PMID: 38493438 PMCID: PMC11025322 DOI: 10.1128/jb.00433-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
In bacteria, disulfide bonds contribute to the folding and stability of proteins important for processes in the cellular envelope. In Escherichia coli, disulfide bond formation is catalyzed by DsbA and DsbB enzymes. DsbA is a periplasmic protein that catalyzes disulfide bond formation in substrate proteins, while DsbB is an inner membrane protein that transfers electrons from DsbA to quinones, thereby regenerating the DsbA active state. Actinobacteria including mycobacteria use an alternative enzyme named VKOR, which performs the same function as DsbB. Disulfide bond formation enzymes, DsbA and DsbB/VKOR, represent novel drug targets because their inhibition could simultaneously affect the folding of several cell envelope proteins including virulence factors, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. We have previously developed a cell-based and target-based assay to identify molecules that inhibit the DsbB and VKOR in pathogenic bacteria, using E. coli cells expressing a periplasmic β-Galactosidase sensor (β-Galdbs), which is only active when disulfide bond formation is inhibited. Here, we report the construction of plasmids that allows fine-tuning of the expression of the β-Galdbs sensor and can be mobilized into other gram-negative organisms. As an example, when expressed in Pseudomonas aeruginosa UCBPP-PA14, which harbors two DsbB homologs, β-Galdbs behaves similarly as in E. coli, and the biosensor responds to the inhibition of the two DsbB proteins. Thus, these β-Galdbs reporter plasmids provide a basis to identify novel inhibitors of DsbA and DsbB/VKOR in multidrug-resistant gram-negative pathogens and to further study oxidative protein folding in diverse gram-negative bacteria. IMPORTANCE Disulfide bonds contribute to the folding and stability of proteins in the bacterial cell envelope. Disulfide bond-forming enzymes represent new drug targets against multidrug-resistant bacteria because inactivation of this process would simultaneously affect several proteins in the cell envelope, including virulence factors, toxins, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. Identifying the enzymes involved in disulfide bond formation in gram-negative pathogens as well as their inhibitors can contribute to the much-needed antibacterial innovation. In this work, we developed sensors of disulfide bond formation for gram-negative bacteria. These tools will enable the study of disulfide bond formation and the identification of inhibitors for this crucial process in diverse gram-negative pathogens.
Collapse
Affiliation(s)
- Dyotima
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sally Abulaila
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jocelyne Mendoza
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Cristina Landeta
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Djermoun S, Reuter A, Derollez E, Lesterlin C, Bigot S. Reprogramming targeted-antibacterial-plasmids (TAPs) to achieve broad-host range antibacterial activity. Plasmid 2023; 126:102680. [PMID: 37001687 DOI: 10.1016/j.plasmid.2023.102680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
The emergence and spread of antimicrobial resistance results in antibiotic inefficiency against multidrug resistant bacterial strains. Alternative treatment to antibiotics must be investigated to fight bacterial infections and limit this global public health problem. We recently developed an innovative strategy based on mobilizable Targeted-Antibacterial-Plasmids (TAPs) that deliver CRISPR/Cas systems with strain-specific antibacterial activity, using the F plasmid conjugation machinery for transfer into the targeted strains. These TAPs were shown to specifically kill a variety of Enterobacteriaceae strains, including E. coli K12 and the pathogen strains EPEC, Enterobacter cloacae and Citrobacter rodentium. Here, we extend the host-range of TAPs using the RP4 plasmid conjugation system for their mobilization, thus allowing the targeting of E. coli but also phylogenetically distant species, including Salmonella enterica Thyphimurium, Klebsiella pneumoniae, Vibrio cholerae, and Pseudomonas aeruginosa. This work demonstrates the versatility of the TAP strategy and represents a significant step toward the development of non-antibiotic strain-specific antimicrobial treatments.
Collapse
|
3
|
Konishi K, Yasutake Y, Muramatsu S, Murata S, Yoshida K, Ishiya K, Aburatani S, Sakasegawa SI, Tamura T. Disruption of SMC-related genes promotes recombinant cholesterol esterase production in Burkholderia stabilis. Appl Microbiol Biotechnol 2022; 106:8093-8110. [PMID: 36399168 DOI: 10.1007/s00253-022-12277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Burkholderia stabilis strain FERMP-21014 secretes cholesterol esterase (BsChe), which is used in clinical settings to determine serum cholesterol levels. Previously, we constructed an expression plasmid with an endogenous constitutive promoter to enable the production of recombinant BsChe. In this study, we obtained one mutant strain with 13.1-fold higher BsChe activity than the wild type, using N-methyl-N'-nitro-N-nitrosoguanidine as a mutagen. DNA-sequencing analysis revealed that the strain had lost chromosome 3 (∆Chr3), suggesting that the genes hindering BsChe production may be encoded on Chr3. We also identified common mutations in the functionally unknown BSFP_068720/30 genes in the top 10 active strains generated during transposon mutagenesis. As BSFP_068720/30/40 comprised an operon on Chr3, we created the BSFP_068720/30/40 disruption mutant and confirmed that each disruption mutant containing the expression plasmid exhibited ~ 16.1-fold higher BsChe activity than the wild type. Quantitative PCR showed that each disruption mutant and ΔChr3 had a ~ 9.4-fold higher plasmid copy number than the wild type. Structural prediction models indicate that BSFP_068730/40 is structurally homologous to the structural maintenance of chromosomes (SMC) protein MukBE, which is responsible for chromosome segregation during cell division. Conversely, BSFP_068720/30/40 disruption did not lead to a Chr3 drop-out. These results imply that BSFP_068720/30/40 is not a SMC protein but is involved in destabilizing foreign plasmids to prevent the influx of genetic information from the environment. In conclusion, the disruption of BSFP_068720/30/40 improved plasmid stability and copy number, resulting in exceptionally high BsChe production. KEY POINTS: • Disruption of BSFP_068720/30/40 enabled mass production of Burkholderia Che/Lip. • BSFP_068730/40 is an SMC protein homolog not involved in chromosome retention. • BSFP_068720/30/40 is likely responsible for the exclusion of exogenous plasmids.
Collapse
Affiliation(s)
- Kenji Konishi
- Asahi Kasei Pharma Corporation, Shizuoka, 410-2321, Japan.,Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan
| | | | - Satomi Murata
- Asahi Kasei Pharma Corporation, Shizuoka, 410-2321, Japan
| | - Keitaro Yoshida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | | | - Tomohiro Tamura
- Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan. .,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.
| |
Collapse
|
4
|
Pathogen-Specific Bactericidal Method Mediated by Conjugative Delivery of CRISPR-Cas13a Targeting Bacterial Endogenous Transcripts. Microbiol Spectr 2022; 10:e0130022. [PMID: 35950861 PMCID: PMC9430969 DOI: 10.1128/spectrum.01300-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The emergence of antibiotic-resistant bacteria threatens public health, and the use of broad-spectrum antibiotics often leads to unintended consequences, including disturbing the beneficial gut microbiota and resulting in secondary diseases. Therefore, developing a novel strategy that specifically kills pathogens without affecting the residential microbiota is desirable and urgently needed. Here, we report the development of a precise bactericidal system by taking advantage of CRISPR-Cas13a targeting endogenous transcripts of Salmonella enterica serovar Typhimurium delivered through a conjugative vehicle. In vitro, the CRISPR-Cas13a system exhibited specific killing, growth inhibition, and clearance of S. Typhimurium in mixed microbial flora. In a mouse infection model, the CRISPR-Cas13a system, when delivered by a donor Escherichia coli strain, significantly reduced S. Typhimurium colonization in the intestinal tract. Overall, the results demonstrate the feasibility and efficacy of the designed CRISPR-Cas13a system in selective killing of pathogens and broaden the utility of conjugation-based delivery of bactericidal approaches. IMPORTANCE Antibiotics with broad-spectrum activities are known to disturb both pathogens and beneficial gut microbiota and cause many undesired side effects, prompting increased interest in developing therapies that specifically eliminate pathogenic bacteria without damaging gut resident flora. To achieve this goal, we developed a strategy utilizing bacterial conjugation to deliver CRISPR-Cas13a programmed to specifically kill S. Typhimurium. This system produced pathogen-specific killing based on CRISPR RNA (crRNAs) targeting endogenous transcripts in pathogens and was shown to be effective in both in vitro and in vivo experiments. Additionally, the system can be readily delivered by conjugation and is adaptable for targeting different pathogens. With further optimization and improvement, the system has the potential to be used for biotherapy and microbial community modification.
Collapse
|
5
|
Petrova YD, Zhao J, Webster G, Mullins AJ, Williams K, Alswat AS, Challis GL, Bailey AM, Mahenthiralingam E. Cloning and expression of Burkholderia polyyne biosynthetic gene clusters in Paraburkholderia hosts provides a strategy for biopesticide development. Microb Biotechnol 2022; 15:2547-2561. [PMID: 35829647 PMCID: PMC9518984 DOI: 10.1111/1751-7915.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Burkholderia have potential as biocontrol agents because they encode diverse biosynthetic gene clusters (BGCs) for a range of antimicrobial metabolites. Given the opportunistic pathogenicity associated with Burkholderia species, heterologous BGC expression within non-pathogenic hosts is a strategy to construct safe biocontrol strains. We constructed a yeast-adapted Burkholderia-Escherichia shuttle vector (pMLBAD_yeast) with a yeast replication origin 2 μ and URA3 selection marker and optimised it for cloning BGCs using the in vivo recombination ability of Saccharomyces cerevisiae. Two Burkholderia polyyne BGCs, cepacin (13 kb) and caryoynencin (11 kb), were PCR-amplified as three overlapping fragments, cloned downstream of the pBAD arabinose promoter in pMLBAD_yeast and mobilised into Burkholderia and Paraburkholderia heterologous hosts. Paraburkholderia phytofirmans carrying the heterologous polyyne constructs displayed in vitro bioactivity against a variety of fungal and bacterial plant pathogens similar to the native polyyne producers. Thirteen Paraburkholderia strains with preferential growth at 30°C compared with 37°C were also identified, and four of these were amenable to genetic manipulation and heterologous expression of the caryoynencin construct. The cloning and successful heterologous expression of Burkholderia biosynthetic gene clusters within Paraburkholderia with restricted growth at 37°C opens avenues for engineering non-pathogenic biocontrol strains.
Collapse
Affiliation(s)
| | - Jinlian Zhao
- Department of Chemistry, University of Warwick, Coventry, UK
| | | | | | | | - Amal S Alswat
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
6
|
Matsumoto A, Schlüter T, Melkonian K, Takeda A, Nakagami H, Mine A. A versatile Tn 7 transposon-based bioluminescence tagging tool for quantitative and spatial detection of bacteria in plants. PLANT COMMUNICATIONS 2022; 3:100227. [PMID: 35059625 PMCID: PMC8760037 DOI: 10.1016/j.xplc.2021.100227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 06/14/2023]
Abstract
Investigation of plant-bacteria interactions requires quantification of in planta bacterial titers by means of cumbersome and time-consuming colony-counting assays. Here, we devised a broadly applicable tool for bioluminescence-based quantitative and spatial detection of bacteria in plants. We developed vectors that enable Tn7 transposon-mediated integration of the luxCDABE luciferase operon into a specific genomic location found ubiquitously across bacterial phyla. These vectors allowed for the generation of bioluminescent transformants of various plant pathogenic bacteria from the genera Pseudomonas, Rhizobium (Agrobacterium), and Ralstonia. Direct luminescence measurements of plant tissues inoculated with bioluminescent Pseudomonas syringae pv. tomato DC3000 (Pto-lux) reported bacterial titers as accurately as conventional colony-counting assays in Arabidopsis thaliana, Solanum lycopersicum, Nicotiana benthamiana, and Marchantia polymorpha. We further showed the usefulness of our vectors in converting previously generated Pto derivatives to isogenic bioluminescent strains. Importantly, quantitative bioluminescence assays using these Pto-lux strains accurately reported the effects of plant immunity and bacterial effectors on bacterial growth, with a dynamic range of four orders of magnitude. Moreover, macroscopic bioluminescence imaging illuminated the spatial patterns of Pto-lux growth in/on inoculated plant tissues. In conclusion, our vectors offer untapped opportunities to develop bioluminescence-based assays for a variety of plant-bacteria interactions.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Titus Schlüter
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Katharina Melkonian
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Akira Mine
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
- JST PRESTO, Kawaguchi-shi, Saitama 332-0012, Japan
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiol Mol Biol Rev 2021; 86:e0022220. [PMID: 34878299 DOI: 10.1128/mmbr.00222-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOBV family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity.
Collapse
|
8
|
Azubuike CC, Gatehouse AMR, Howard TP. pCAT vectors overcome inefficient electroporation of Cupriavidus necator H16. N Biotechnol 2021; 65:20-30. [PMID: 34333160 DOI: 10.1016/j.nbt.2021.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Cupriavidus necator H16 is a chemolithoautotroph with a range of industrial biotechnological applications. Advanced metabolic engineering in the bacterium, however, is impeded by low transformation efficiency, making it difficult to introduce and screen new genetic functions rapidly. This study systematically characterized the broad host range plasmids pBHR1, pBBR1MCS-2 and pKT230 used frequently for C. necator engineering. Kanamycin resistance cassette (KanR) and a truncated sequence of the replication origin (Rep) are contributing factors to C. necator low electroporation transformation efficiency. Consequently, a series of modular minimal plasmids, named pCAT, were constructed. pCAT vectors transform C. necator H16 with a > 3000-fold higher efficiency (up to 107 CFU/μg DNA) compared to control plasmids. Further, pCAT vectors are highly stable, expressing reporter proteins over several days of serial cultivation in the absence of selection pressure. Finally, they can be assembled rapidly from PCR or synthesized DNA fragments, and restriction-ligation reactions can be efficiently electroporated directly into C. necator, circumventing the requirement to use Escherichia coli for plasmid maintenance or propagation. This study demonstrates that an understanding of the behaviour of the constituent parts of plasmids in a host is key to efficient propagation of genetic information, while offering new methods for engineering a bacterium with desirable industrial biotechnological features.
Collapse
Affiliation(s)
- Christopher C Azubuike
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RX, United Kingdom; Department of Microbiology, Faculty of Science, University of Port Harcourt, East-West Road, P.M.B. 5323, Choba, Port Harcourt, Rivers State, Nigeria
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RX, United Kingdom
| | - Thomas P Howard
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RX, United Kingdom.
| |
Collapse
|
9
|
Wannier TM, Nyerges A, Kuchwara HM, Czikkely M, Balogh D, Filsinger GT, Borders NC, Gregg CJ, Lajoie MJ, Rios X, Pál C, Church GM. Improved bacterial recombineering by parallelized protein discovery. Proc Natl Acad Sci U S A 2020; 117:13689-13698. [PMID: 32467157 PMCID: PMC7306799 DOI: 10.1073/pnas.2001588117] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Exploiting bacteriophage-derived homologous recombination processes has enabled precise, multiplex editing of microbial genomes and the construction of billions of customized genetic variants in a single day. The techniques that enable this, multiplex automated genome engineering (MAGE) and directed evolution with random genomic mutations (DIvERGE), are however, currently limited to a handful of microorganisms for which single-stranded DNA-annealing proteins (SSAPs) that promote efficient recombineering have been identified. Thus, to enable genome-scale engineering in new hosts, efficient SSAPs must first be found. Here we introduce a high-throughput method for SSAP discovery that we call "serial enrichment for efficient recombineering" (SEER). By performing SEER in Escherichia coli to screen hundreds of putative SSAPs, we identify highly active variants PapRecT and CspRecT. CspRecT increases the efficiency of single-locus editing to as high as 50% and improves multiplex editing by 5- to 10-fold in E. coli, while PapRecT enables efficient recombineering in Pseudomonas aeruginosa, a concerning human pathogen. CspRecT and PapRecT are also active in other, clinically and biotechnologically relevant enterobacteria. We envision that the deployment of SEER in new species will pave the way toward pooled interrogation of genotype-to-phenotype relationships in previously intractable bacteria.
Collapse
Affiliation(s)
| | - Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary
| | | | - Márton Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary
| | - Dávid Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary
| | | | | | | | - Marc J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Xavier Rios
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
10
|
Alwis PA, Treerat P, Gong L, Deveson Lucas D, Allwood EM, Prescott M, Devenish RJ, Adler B, Boyce JD. Disruption of the Burkholderia pseudomallei two-component signal transduction system BbeR-BbeS leads to increased extracellular DNA secretion and altered biofilm formation. Vet Microbiol 2020; 242:108603. [PMID: 32122607 DOI: 10.1016/j.vetmic.2020.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Two-component signal transduction systems (TCSTS) are abundant among prokaryotes and regulate important functions, including drug resistance and virulence. The Gram-negative bacterium Burkholderia pseudomallei, which causes the severe infectious disease melioidosis, encodes 136 putative TCSTS components. In silico analyses of these TCSTS indicated that the predicted BbeR-BbeS system (BPSL1036-BPSL1037) displayed significant amino acid sequence similarity to the Shigella flexneri virulence-associated OmpR-EnvZ osmoregulator. To assess the function of the B. pseudomallei BbeR-BbeS system, we constructed by allelic exchange a ΔbbeRS double mutant strain lacking both genes, and single ΔbbeR and ΔbbeS mutants. All three mutant strains caused disease in the BALB/c acute melioidosis model at the same rate as the wild-type strain, displayed unchanged swarming motility on semi-solid medium, and were unaffected for viability on high-osmolarity media. However, when cultured at 37 °C for at least 14 days, ΔbbeS and ΔbbeR colonies developed a distinct, hypermucoid morphology absent in similarly-cultured wild-type colonies. At both 30 °C and 37 °C, these hypermucoid strains produced wild-type levels of type I capsule but released increased quantities of extracellular DNA (eDNA). Upon static growth in liquid medium, all B. pseudomallei strains produced pellicle biofilms that contained DNA in close association with bacterial cells; however, the ΔbbeS and ΔbbeR strains produced increased biofilms with altered microscopic architecture compared to the wild-type. Unusually, while the ΔbbeS and ΔbbeR single-deletion mutants displayed clear phenotypes, the ΔbbeRS double-deletion mutant was indistinguishable from the wild-type strain. We propose that BbeR-BbeS indirectly affects eDNA secretion and biofilm formation through cross-talk with one or more other TCSTS.
Collapse
Affiliation(s)
- Priyangi A Alwis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Puthayalai Treerat
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Lan Gong
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth M Allwood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Mark Prescott
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Rodney J Devenish
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Ben Adler
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - John D Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Evaluation of two transformation protocols and screening of positive plasmid introduction into Bacillus cereus EB2, a gram-positive bacterium using qualitative analyses. Braz J Microbiol 2020; 51:919-929. [PMID: 32078730 DOI: 10.1007/s42770-020-00241-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022] Open
Abstract
Both Gram-positive and Gram-negative bacteria can take up exogenous DNA when they are in a competent state either naturally or artificially. However, the thick peptidoglycan layer in Gram-positive bacteria's cell wall is considered as a possible barrier to DNA uptake. In the present work, two transformation techniques have been evaluated in assessing the protocol's ability to introduce foreign DNA, pBBRGFP-45 plasmid which harbors kanamycin resistance and green fluorescent protein (GFP) genes into a Gram-positive bacterium, Bacillus cereus EB2. B. cereus EB2 is an endophytic bacterium, isolated from oil palm roots. A Gram-negative bacterium, Pseudomonas aeruginosa EB35 was used as a control sample for both transformation protocols. The cells were made competent using respective chemical treatment to Gram-positive and Gram-negative bacteria, and kanamycin concentration in the selective medium was also optimized. Preliminary findings using qualitative analysis of colony polymerase chain reaction (PCR)-GFP indicated that the putative positive transformants for B. cereus EB2 were acquired using the second transformation protocol. The positive transformants were then verified using molecular techniques such as observation of putative colonies on specific media under UV light, plasmid extraction, and validation analyses, followed by fluorescence microscopy. Conversely, both transformation protocols were relatively effective for introduction of plasmid DNA into P. aeruginosa EB35. Therefore, this finding demonstrated the potential of chemically prepared competent cells and the crucial step of heat-shock in foreign DNA transformation process of Gram-positive bacterium namely B. cereus was required for successful transformation.
Collapse
|
12
|
Lee JH, Heo S, Jeong M, Jeong DW. Transfer of a mobile Staphylococcus saprophyticus plasmid isolated from fermented seafood that confers tetracycline resistance. PLoS One 2019; 14:e0213289. [PMID: 30818356 PMCID: PMC6395029 DOI: 10.1371/journal.pone.0213289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/18/2019] [Indexed: 01/25/2023] Open
Abstract
The complete nucleotide sequence of a tetracycline-resistance gene (tetK)-carrying plasmid from a Staphylococcus saprophyticus isolate from jeotgal, a Korean high-salt-fermented seafood, was determined. The plasmid, designated pSSTET1, was 4439 bp in length and encoded typical elements found in plasmids that replicate via a rolling-circle mechanism, including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and a counter-transcribed RNA sequence. Additionally, the plasmid recombination enzyme gene (pre), which may be involved in inter-plasmid recombination and conjugation, was found. Each gene exhibited >94% sequence identity with those harbored in other Staphylococcus species. pSSTET1 was conditionally transferred to Staphylococcus species in a host-dependent manner and transferred to an Enterococcus faecalis strain in vitro. Antibiotic susceptibility of the transconjugants was host-dependent and transconjugants maintained a tetracycline-resistant phenotype in the absence of selective pressure over 100 generations.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
| | - Miran Jeong
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Ciok A, Dziewit L. Exploring the genome of Arctic Psychrobacter sp. DAB_AL32B and construction of novel Psychrobacter-specific cloning vectors of an increased carrying capacity. Arch Microbiol 2018; 201:559-569. [PMID: 30448872 PMCID: PMC6579772 DOI: 10.1007/s00203-018-1595-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/03/2023]
Abstract
Cold-active bacteria are currently of great interest in biotechnology, and their genomic and physiological features have been extensively studied. One of the model psychrotolerant bacteria are Psychrobacter spp. Analysis of Arctic psychrophilic Psychrobacter sp. DAB_AL32B genome content provided an insight into its overall stress response, and genes conferring protection against various life-limiting factors (i.e., low temperature, increased ultraviolet radiation, oxidative stress and osmotic pressure) were recognized and described. Moreover, it was revealed that the strain carries a large plasmid pP32BP2. Its replication system was used for the construction of two novel shuttle vectors (pPS-NR-Psychrobacter-Escherichia coli-specific plasmid and pPS-BR-Psychrobacter-various Proteobacteria-specific plasmid) of an increased carrying capacity, which may be used for genetic engineering of Psychrobacter spp.
Collapse
Affiliation(s)
- Anna Ciok
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
14
|
Ishizaki Y, Shibuya Y, Hayashi C, Inoue K, Kirikae T, Tada T, Miyoshi-Akiyama T, Igarashi M. Instability of the 16S rRNA methyltransferase-encoding npmA gene: why have bacterial cells possessing npmA not spread despite their high and broad resistance to aminoglycosides? J Antibiot (Tokyo) 2018; 71:798-807. [PMID: 29884863 DOI: 10.1038/s41429-018-0070-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/05/2018] [Accepted: 04/26/2018] [Indexed: 11/09/2022]
Abstract
The NpmA bacterial 16S rRNA methyltransferase, which is identified from Escherichia coli strains, confers high resistance to many types of aminoglycoside upon its host cells. But despite its resistance-conferring ability, only two cases of its isolation from E. coli (14 years apart) have been reported to date. Here, we investigated the effect of the npmA gene on aminoglycoside resistance in Pseudomonas aeruginosa and Klebsiella pneumoniae and its stability in E. coli cells by comparing it with armA, another 16S rRNA methyltransferase gene currently spreading globally. As a result, we found that npmA conferred resistance to all types of aminoglycoside antibiotics we tested (except streptomycin) in both P. aeruginosa and K. pneumoniae, as well in E. coli. In addition, co-expression of armA and npmA resulted in an additive effect for the resistance. However, in return for the resistance, we also observed that the growth rates and the cell survivability of the strains transformed with the npmA-harboring plasmids were inferior than those of the control strains and that these plasmids were easily disrupted by IS10, IS1, and IS5 insertion sequences. We discuss these data in the context of the threat posed by pathogenic strains possessing npmA.
Collapse
Affiliation(s)
- Yoshimasa Ishizaki
- Laboratory of Microbiology, Institute of Microbial Chemistry, Tokyo, Japan.
| | - Yuko Shibuya
- Laboratory of Microbiology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Chigusa Hayashi
- Laboratory of Microbiology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Kunio Inoue
- Laboratory of Microbiology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Teruo Kirikae
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masayuki Igarashi
- Laboratory of Microbiology, Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
15
|
Zhang C, Parrello D, Brown PJB, Wall JD, Hu Z. A novel whole-cell biosensor of Pseudomonas aeruginosa to monitor the expression of quorum sensing genes. Appl Microbiol Biotechnol 2018; 102:6023-6038. [PMID: 29730766 DOI: 10.1007/s00253-018-9044-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
A novel whole-cell biosensor was developed to noninvasively and simultaneously monitor the in situ genetic activities of the four quorum sensing (QS) networks in Pseudomonas aeruginosa PAO1, including the las, rhl, pqs, and iqs systems. P. aeruginosa PAO1 is a model bacterium for studies of biofilm and pathogenesis while both processes are closely controlled by the QS systems. This biosensor worked well by selectively monitoring the expression of one representative gene from each network. In the biosensor, the promoter regions of lasI, rhlI, pqsA, and ambB (QS genes) controlled the fluorescent reporter genes of Turbo YFP, mTag BFP2, mNEON Green, and E2-Orange, respectively. The biosensor was successful in monitoring the impact of an important environmental factor, salt stress, on the genetic regulation of QS networks. High salt concentrations (≥ 20 g·L-1) significantly downregulated rhlI, pqsA, and ambB after the biosensor was incubated for 17 h to 18 h at 37 °C, resulting in slow bacterial growth.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, USA
| | - Damien Parrello
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Judy D Wall
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
16
|
Zrimec J, Lapanje A. DNA structure at the plasmid origin-of-transfer indicates its potential transfer range. Sci Rep 2018; 8:1820. [PMID: 29379098 PMCID: PMC5789077 DOI: 10.1038/s41598-018-20157-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/10/2018] [Indexed: 11/29/2022] Open
Abstract
Horizontal gene transfer via plasmid conjugation enables antimicrobial resistance (AMR) to spread among bacteria and is a major health concern. The range of potential transfer hosts of a particular conjugative plasmid is characterised by its mobility (MOB) group, which is currently determined based on the amino acid sequence of the plasmid-encoded relaxase. To facilitate prediction of plasmid MOB groups, we have developed a bioinformatic procedure based on analysis of the origin-of-transfer (oriT), a merely 230 bp long non-coding plasmid DNA region that is the enzymatic substrate for the relaxase. By computationally interpreting conformational and physicochemical properties of the oriT region, which facilitate relaxase-oriT recognition and initiation of nicking, MOB groups can be resolved with over 99% accuracy. We have shown that oriT structural properties are highly conserved and can be used to discriminate among MOB groups more efficiently than the oriT nucleotide sequence. The procedure for prediction of MOB groups and potential transfer range of plasmids was implemented using published data and is available at http://dnatools.eu/MOB/plasmid.html.
Collapse
Affiliation(s)
- Jan Zrimec
- Institute of Metagenomics and Microbial Technologies, 1000, Ljubljana, Slovenia. .,Faculty of Health Sciences, University of Primorska, 6320, Izola, Slovenia. .,Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| | - Aleš Lapanje
- Institute of Metagenomics and Microbial Technologies, 1000, Ljubljana, Slovenia. .,Department of Nanotechnology, Saratov State University, 410012, Saratov, Russian Federation. .,Department of Environmental Sciences, Institute Jožef Štefan, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance. Proc Natl Acad Sci U S A 2017; 114:E6526-E6535. [PMID: 28739894 DOI: 10.1073/pnas.1702971114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOBV family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterized histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOBV histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.
Collapse
|
18
|
PhaR, a Negative Regulator of PhaP, Modulates the Colonization of a Burkholderia Gut Symbiont in the Midgut of the Host Insect, Riptortus pedestris. Appl Environ Microbiol 2017; 83:AEM.00459-17. [PMID: 28341680 DOI: 10.1128/aem.00459-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Five genes encoding PhaP family proteins and one phaR gene have been identified in the genome of Burkholderia symbiont strain RPE75. PhaP proteins function as the surface proteins of polyhydroxyalkanoate (PHA) granules, and the PhaR protein acts as a negative regulator of PhaP biosynthesis. Recently, we characterized one phaP gene to understand the molecular cross talk between Riptortus insects and Burkholderia gut symbionts. In this study, we constructed four other phaP gene-depleted mutants (ΔphaP1, ΔphaP2, ΔphaP3, and ΔphaP4 mutants), one phaR gene-depleted mutant, and a phaR-complemented mutant (ΔphaR/phaR mutant). To address the biological roles of four phaP family genes and the phaR gene during insect-gut symbiont interaction, these Burkholderia mutants were fed to the second-instar nymphs, and colonization ability and fitness parameters were examined. In vitro, the ΔphaP3 and ΔphaR mutants cannot make a PHA granule normally in a stressful environment. Furthermore, the ΔphaR mutation decreased the colonization ability in the host midgut and negatively affected the host insect's fitness compared with wild-type Burkholderia-infected insects. However, other phaP family gene-depleted mutants colonized well in the midgut of the fifth-instar nymph insects. However, in the case of females, the colonization rate of the ΔphaP3 mutant was decreased and the host's fitness parameters were decreased compared with the wild-type-infected host, suggesting that the environment of the female midgut may be more hostile than that of the male midgut. These results demonstrate that PhaR plays an important role in the biosynthesis of PHA granules and that it is significantly related to the colonization of the Burkholderia gut symbiont in the host insects' midgut.IMPORTANCE Bacterial polyhydroxyalkanoate (PHA) biosynthesis is a complex process requiring several enzymes. The biological roles of PHA granule synthesis enzymes and the surface proteins of PHA granules during host-gut symbiont interactions are not fully understood. Here, we report the effects on colonization ability in the host midguts and the fitness of host insects after feeding Burkholderia mutant cells (four phaP-depleted mutants and one phaR-depleted mutant) to the host insects. Analyses of both synthesized PHA granule amounts and CFU numbers suggest that the phaR gene is closely related to synthesis of the PHA granule and the colonization of the Burkholderia gut symbiont in the host insect's midgut. Like our previous report, this study also supports the idea that the environment of the host midgut may not be favorable to symbiotic Burkholderia cells and that PHA granules may be required to adapt in the host midgut.
Collapse
|
19
|
Jang HA, Seo ES, Seong MY, Lee BL. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:97-106. [PMID: 27825951 DOI: 10.1016/j.dci.2016.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Riptortus pedestris, a common pest in soybean fields, harbors a symbiont Burkholderia in a specialized posterior midgut region of insects. Every generation of second nymphs acquires new Burkholderia cells from the environment. We compared in vitro cultured Burkholderia with newly in vivo colonized Burkholderia in the host midgut using biochemical approaches. The bacterial cell envelope of in vitro cultured and in vivo Burkholderia differed in structure, as in vivo bacteria lacked lipopolysaccharide (LPS) O-antigen. The LPS O-antigen deficient bacteria had a reduced colonization rate in the host midgut compared with that of the wild-type Burkholderia. To determine why LPS O-antigen-deficient bacteria are less able to colonize the host midgut, we examined in vitro survival rates of three LPS O-antigen-deficient Burkholderia mutants and lysates of five different midgut regions. The LPS O-antigen-deficient mutants were highly susceptible when cultured with the lysate of a specific first midgut region (M1), indicating that the M1 lysate contains unidentified substance(s) capable of killing LPS O-antigen-deficient mutants. We identified a 17 kDa protein from the M1 lysate, which was enriched in the active fractions. The N-terminal sequence of the protein was determined to be a soybean Kunitz-type trypsin inhibitor. These data suggest that the 17 kDa protein, which was originated from a main soybean source of the R. pedestris host, has antibacterial activity against the LPS O-antigen deficient (rough-type) Burkholderia.
Collapse
Affiliation(s)
- Ho Am Jang
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Eun Sil Seo
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Min Young Seong
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
20
|
Grohmann E, Goessweiner-Mohr N, Brantl S. DNA-Binding Proteins Regulating pIP501 Transfer and Replication. Front Mol Biosci 2016; 3:42. [PMID: 27563645 PMCID: PMC4981023 DOI: 10.3389/fmolb.2016.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling protein) and the VirB4-like ATPase, TraE. Both proteins are actively involved in conjugative DNA transport. Moreover, the operon encodes TraN, a small cytoplasmic protein, whose specific binding to a sequence upstream of the oriT nic-site was demonstrated. TraN seems to be an effective repressor of pIP501 transfer, as conjugative transfer rates were significantly increased in an E. faecalis pIP501ΔtraN mutant.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center FreiburgFreiburg im Breisgau, Germany; Life Sciences and Technology, Beuth University of Applied Sciences BerlinBerlin, Germany
| | - Nikolaus Goessweiner-Mohr
- Center for Structural System Biology, University Medical Center Hamburg-EppendorfHamburg, Germany; Deutsches Elektronen-SynchrotronHamburg, Germany; Institute of Molecular Biotechnology, Austrian Academy of SciencesVienna, Austria; Research Institute of Molecular PathologyVienna, Austria
| | - Sabine Brantl
- Lehrstuhl für Genetik, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena Jena, Germany
| |
Collapse
|
21
|
Calero P, Jensen SI, Nielsen AT. Broad-Host-Range ProUSER Vectors Enable Fast Characterization of Inducible Promoters and Optimization of p-Coumaric Acid Production in Pseudomonas putida KT2440. ACS Synth Biol 2016; 5:741-53. [PMID: 27092814 DOI: 10.1021/acssynbio.6b00081] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pseudomonas putida KT2440 has gained increasing interest as a host for the production of biochemicals. Because of the lack of a systematic characterization of inducible promoters in this strain, we generated ProUSER broad-host-expression plasmids that facilitate fast uracil-based cloning. A set of ProUSER-reporter vectors was further created to characterize different inducible promoters. The PrhaB and Pm promoters were orthogonal and showed titratable, high, and homogeneous expression. To optimize the production of p-coumaric acid, P. putida was engineered to prevent degradation of tyrosine and p-coumaric acid. Pm and PrhaB were used to control the expression of a tyrosine ammonia lyase or AroG* and TyrA* involved in tyrosine production, respectively. Pathway expression was optimized by modulating inductions, resulting in small-scale p-coumaric acid production of 1.2 mM, the highest achieved in Pseudomonads under comparable conditions. With broad-host-range compatibility, the ProUSER vectors will serve as useful tools for optimizing gene expression in a variety of bacteria.
Collapse
Affiliation(s)
- Patricia Calero
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, 2970 Hørsholm, Denmark
| | - Sheila I. Jensen
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, 2970 Hørsholm, Denmark
| | - Alex T. Nielsen
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, 2970 Hørsholm, Denmark
| |
Collapse
|
22
|
Lazar Adler NR, Allwood EM, Deveson Lucas D, Harrison P, Watts S, Dimitropoulos A, Treerat P, Alwis P, Devenish RJ, Prescott M, Govan B, Adler B, Harper M, Boyce JD. Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei. BMC Genomics 2016; 17:331. [PMID: 27147217 PMCID: PMC4855414 DOI: 10.1186/s12864-016-2668-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/26/2016] [Indexed: 02/08/2023] Open
Abstract
Background Burkholderia pseudomallei is the causative agent of melioidosis, a severe invasive disease of humans and animals. Initial screening of a B. pseudomallei signature-tagged mutagenesis library identified an attenuated mutant with a transposon insertion in a gene encoding the sensor component of an uncharacterised two-component signal transduction system (TCSTS), which we designated BprRS. Results Single gene inactivation of either the response regulator gene (bprR) or the sensor histidine kinase gene (bprS) resulted in mutants with reduced swarming motility and reduced virulence in mice. However, a bprRS double mutant was not attenuated for virulence and displayed wild-type levels of motility. The transcriptomes of the bprS, bprR and bprRS mutants were compared with the transcriptome of the parent strain K96243. Inactivation of the entire BprRS TCSTS (bprRS double mutant) resulted in altered expression of only nine genes, including both bprR and bprS, five phage-related genes and bpss0686, encoding a putative 5, 10-methylene tetrahydromethanopterin reductase involved in one carbon metabolism. In contrast, the transcriptomes of each of the bprR and bprS single gene mutants revealed more than 70 differentially expressed genes common to both mutants, including regulatory genes and those required for flagella assembly and for the biosynthesis of the cytotoxic polyketide, malleilactone. Conclusions Inactivation of the entire BprRS TCSTS did not alter virulence or motility and very few genes were differentially expressed indicating that the definitive BprRS regulon is relatively small. However, loss of a single component, either the sensor histidine kinase BprS or its cognate response regulator BprR, resulted in significant transcriptomic and phenotypic differences from the wild-type strain. We hypothesize that the dramatically altered phenotypes of these single mutants are the result of cross-regulation with one or more other TCSTSs and concomitant dysregulation of other key regulatory genes.
Collapse
Affiliation(s)
- Natalie R Lazar Adler
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800, Australia.,Core Biotechnology Services, University of Leicester, Leicester, LE1 9HN, UK
| | - Elizabeth M Allwood
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800, Australia
| | - Deanna Deveson Lucas
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Paul Harrison
- Victorian Bioinformatics Platform, Monash University, Victoria, Australia
| | - Stephen Watts
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800, Australia
| | - Alexandra Dimitropoulos
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Puthayalai Treerat
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800, Australia.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Priyangi Alwis
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800, Australia.,Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Rodney J Devenish
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Mark Prescott
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Brenda Govan
- Department of Microbiology and Immunology, James Cook University, Townsville, Queensland, Australia
| | - Ben Adler
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - John D Boyce
- Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria, 3800, Australia. .,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia.
| |
Collapse
|
23
|
The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE. PLoS One 2015; 10:e0143916. [PMID: 26624293 PMCID: PMC4666416 DOI: 10.1371/journal.pone.0143916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness.
Collapse
|
24
|
Zhang R, Xu X, Chen W, Huang Q. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl Microbiol Biotechnol 2015; 100:1987-1997. [PMID: 26521245 DOI: 10.1007/s00253-015-7099-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022]
Abstract
A multifunctional Pseudomonas putida X3 strain was successfully engineered by introducing methyl parathion (MP)-degrading gene and enhanced green fluorescent protein (EGFP) gene in P. putida X4 (CCTCC: 209319). In liquid cultures, the engineered X3 strain utilized MP as sole carbon source for growth and degraded 100 mg L(-1) of MP within 24 h; however, this strain did not further metabolize p-nitrophenol (PNP), an intermediate metabolite of MP. No discrepancy in minimum inhibitory concentrations (MICs) to cadmium (Cd), copper (Cu), zinc (Zn), and cobalt (Co) was observed between the engineered X3 strain and its host strain. The inoculated X3 strain accelerated MP degradation in different polluted soil microcosms with 100 mg MP kg(-1) dry soil and/or 5 mg Cd kg(-1) dry soil; MP was completely eliminated within 40 h. However, the presence of Cd in the early stage of remediation slightly delayed MP degradation. The application of X3 strain in Cd-contaminated soil strongly affected the distribution of Cd fractions and immobilized Cd by reducing bioavailable Cd concentrations with lower soluble/exchangeable Cd and organic-bound Cd. The inoculated X3 strain also colonized and proliferated in various contaminated microcosms. Our results suggested that the engineered X3 strain is a potential bioremediation agent showing competitive advantage in complex contaminated environments.
Collapse
Affiliation(s)
- Rong Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingjian Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Ohbayashi T, Takeshita K, Kitagawa W, Nikoh N, Koga R, Meng XY, Tago K, Hori T, Hayatsu M, Asano K, Kamagata Y, Lee BL, Fukatsu T, Kikuchi Y. Insect's intestinal organ for symbiont sorting. Proc Natl Acad Sci U S A 2015; 112:E5179-88. [PMID: 26324935 PMCID: PMC4577176 DOI: 10.1073/pnas.1511454112] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Symbiosis has significantly contributed to organismal adaptation and diversification. For establishment and maintenance of such host-symbiont associations, host organisms must have evolved mechanisms for selective incorporation, accommodation, and maintenance of their specific microbial partners. Here we report the discovery of a previously unrecognized type of animal organ for symbiont sorting. In the bean bug Riptortus pedestris, the posterior midgut is morphologically differentiated for harboring specific symbiotic bacteria of a beneficial nature. The sorting organ lies in the middle of the intestine as a constricted region, which partitions the midgut into an anterior nonsymbiotic region and a posterior symbiotic region. Oral administration of GFP-labeled Burkholderia symbionts to nymphal stinkbugs showed that the symbionts pass through the constricted region and colonize the posterior midgut. However, administration of food colorings revealed that food fluid enters neither the constricted region nor the posterior midgut, indicating selective symbiont passage at the constricted region and functional isolation of the posterior midgut for symbiosis. Coadministration of the GFP-labeled symbiont and red fluorescent protein-labeled Escherichia coli unveiled selective passage of the symbiont and blockage of E. coli at the constricted region, demonstrating the organ's ability to discriminate the specific bacterial symbiont from nonsymbiotic bacteria. Transposon mutagenesis and screening revealed that symbiont mutants in flagella-related genes fail to pass through the constricted region, highlighting that both host's control and symbiont's motility are involved in the sorting process. The blocking of food flow at the constricted region is conserved among diverse stinkbug groups, suggesting the evolutionary origin of the intestinal organ in their common ancestor.
Collapse
Affiliation(s)
- Tsubasa Ohbayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kazutaka Takeshita
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | - Wataru Kitagawa
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Kanako Tago
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan
| | - Masahito Hayatsu
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan
| | - Kozo Asano
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, Korea
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan;
| |
Collapse
|
26
|
Chen F, Cao Y, Wei S, Li Y, Li X, Wang Q, Wang G. Regulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp. HAL1. Front Microbiol 2015; 6:923. [PMID: 26441863 PMCID: PMC4563254 DOI: 10.3389/fmicb.2015.00923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/21/2015] [Indexed: 01/25/2023] Open
Abstract
Previously, the expression of arsenite [As(III)] oxidase genes aioBA was reported to be regulated by a three-component regulatory system, AioXSR, in a number of As(III)-oxidizing bacterial strains. However, the regulation mechanism is still unknown when aioXSR genes are absent in some As(III)-oxidizing bacterial genomes, such as in Halomonas sp. HAL1. In this study, transposon mutagenesis and gene knock-out mutation were performed, and two mutants, HAL1-phoR931 and HAL1-▵phoB, were obtained in strain HAL1. The phoR and phoB constitute a two-component system which is responsible for phosphate (Pi) acquisition and assimilation. Both of the mutants showed negative As(III)-oxidation phenotypes in low Pi condition (0.1 mM) but not under normal Pi condition (1 mM). The phoBR complementation strain HAL1-▵phoB-C reversed the mutants' null phenotypes back to wild type status. Meanwhile, lacZ reporter fusions using pCM-lacZ showed that the expression of phoBR and aioBA were both induced by As(III) but were not induced in HAL1-phoR931 and HAL1-▵phoB. Using 15 consensus Pho box sequences, a putative Pho box was found in the aioBA regulation region. PhoB was able to bind to the putative Pho box in vivo (bacterial one-hybrid detection) and in vitro (electrophoretic mobility gel shift assay), and an 18-bp binding sequence containing nine conserved bases were determined. This study provided the evidence that PhoBR regulates the expression of aioBA in Halomonas sp. HAL1 under low Pi condition. The new regulation model further implies the close metabolic connection between As and Pi.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Yajing Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Sha Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Yanzhi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Xiangyang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Qian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
27
|
Lee JB, Byeon JH, Jang HA, Kim JK, Yoo JW, Kikuchi Y, Lee BL. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut. FEBS Lett 2015; 589:2784-90. [PMID: 26318755 DOI: 10.1016/j.febslet.2015.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont.
Collapse
Affiliation(s)
- Jun Beom Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Jin Hee Byeon
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Ho Am Jang
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, Kosin University College of Medicine, Busan 602-703, South Korea
| | - Jin Wook Yoo
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea.
| |
Collapse
|
28
|
Li H, Liao JC. A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16. ACS Synth Biol 2015; 4:101-6. [PMID: 24702232 DOI: 10.1021/sb4001189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Controllable gene expression systems that are orthogonal to the host's native gene regulation network are invaluable tools for synthetic biology. In Ralstonia eutropha H16, such systems are extremely limited despite the importance of this organism in microbiological research and biotechnological application. Here we developed an anhydrotetracycline (aTc)-inducible gene expression system, which is composed of a synthetic promoter containing the operator tetO, the repressor TetR, and the inducer aTc. Using a reporter-activity based promoter library screen, we first identified the active hybrids between the tetO operators and the R. eutropha native rrsC promoter (PrrsC). Next, we showed that the hybrid promoters are repressable by TetR. To optimize the dynamic range of the system, a high-throughput screening of 300 mutants of R. eutropha phaC1 promoter was conducted to identify suitable promoters to tune the tetR expression level. The final controllable expression system contains the modified PrrsC with two copies of the tetO1 operator integrated and the tetR driven by the mutated PphaC1. The system has decreased basal expression level and can be tuned by different aTc concentrations with greater than 10-fold dynamic range. The system was used to alleviate cellular toxicity caused by AlsS overexpression, which impeded our metabolic engineering work on isobutanol and 3-methyl-1-butanol production in R. eutropha H16.
Collapse
Affiliation(s)
- Han Li
- Department of Chemical and Biomolecular Engineering, ‡The Molecular Biology Institute, §Department of Chemistry & Biochemistry, ∥Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, ‡The Molecular Biology Institute, §Department of Chemistry & Biochemistry, ∥Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Going beyond E. coli: autotransporter based surface display on alternative host organisms. N Biotechnol 2015; 32:644-50. [PMID: 25579193 DOI: 10.1016/j.nbt.2014.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
Abstract
Autotransporters represent one of the most popular anchoring motifs used to display peptides, proteins or enzymes on the cell surface of a Gram-negative bacterium. Applications range from vaccine delivery to library screenings to biocatalysis and bioremediation. Although the underlying secretion mechanism is supposed to be available in most, if not all, Gram-negative bacteria, autotransporters have to date almost exclusively been used for surface display on Escherichia coli. However, for their utilisation beyond a laboratory scale, in particular for biocatalysis, host bacteria with specific features and industrial applicability are required. A few groups have addressed this issue and demonstrated that bacteria other than E. coli can also be used for autotransporter based surface display. We summarise these studies and discuss opportunities and challenges that arise from surface display of recombinant proteins using the autotransporter pathway in alternative hosts.
Collapse
|
30
|
Mobilizable Rolling-Circle Replicating Plasmids from Gram-Positive Bacteria: A Low-Cost Conjugative Transfer. Microbiol Spectr 2014; 2:8. [PMID: 25606350 DOI: 10.1128/microbiolspec.plas-0008-2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Conjugation is a key mechanism for horizontal gene transfer in bacteria. Some plasmids are not self-transmissible but can be mobilized by functions encoded in trans provided by other auxiliary conjugative elements. Although the transfer efficiency of mobilizable plasmids is usually lower than that of conjugative elements, mobilizable plasmidsare more frequently found in nature. In this sense, replication and mobilization can be considered as important mechanisms influencing plasmid promiscuity. Here we review the present available information on two families of small mobilizable plasmids from Gram-positive bacteria that replicate via the rolling-circle mechanism. One of these families, represented by the streptococcal plasmid pMV158, is an interesting model since it contains a specific mobilization module (MOBV) that is widely distributed among mobilizable plasmids. We discuss a mechanism in which the promiscuity of the pMV158 replicon is based on the presence of two origins of lagging strand synthesis. The current strategies to assess plasmid transfer efficiency as well as to inhibit conjugative plasmid transfer are presented. Some applications of these plasmids as biotechnological tools are also reviewed.
Collapse
|
31
|
Lorenzo-Díaz F, Fernández-López C, Garcillán-Barcia MP, Espinosa M. Bringing them together: plasmid pMV158 rolling circle replication and conjugation under an evolutionary perspective. Plasmid 2014; 74:15-31. [PMID: 24942190 PMCID: PMC7103276 DOI: 10.1016/j.plasmid.2014.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/29/2022]
Abstract
Rolling circle-replicating plasmids constitute a vast family that is particularly abundant in, but not exclusive of, Gram-positive bacteria. These plasmids are constructed as cassettes that harbor genes involved in replication and its control, mobilization, resistance determinants and one or two origins of lagging strand synthesis. Any given plasmid may contain all, some, or just only the replication cassette. We discuss here the family of the promiscuous streptococcal plasmid pMV158, with emphasis on its mobilization functions: the product of the mobM gene, prototype of the MOBV relaxase family, and its cognate origin of transfer, oriT. Amongst the subfamily of MOBV1 plasmids, three groups of oriT sequences, represented by plasmids pMV158, pT181, and p1414 were identified. In the same subfamily, we found four types of single-strand origins, namely ssoA, ssoU, ssoW, and ssoT. We found that plasmids of the rolling-circle Rep_2 family (to which pMV158 belongs) are more frequently found in Lactobacillales than in any other bacterial order, whereas Rep_1 initiators seemed to prefer hosts included in the Bacillales order. In parallel, MOBV1 relaxases associated with Rep_2 initiators tended to cluster separately from those linked to Rep_1 plasmids. The updated inventory of MOBV1 plasmids still contains exclusively mobilizable elements, since no genes associated with conjugative transfer (other than the relaxase) were detected. These plasmids proved to have a great plasticity at using a wide variety of conjugative apparatuses. The promiscuous recognition of non-cognate oriT sequences and the role of replication origins for lagging-strand origin in the host range of these plasmids are also discussed.
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria and Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| | - Cris Fernández-López
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - CSIC-SODERCAN, Santander, Cantabria, Spain.
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| |
Collapse
|
32
|
Purine biosynthesis, biofilm formation, and persistence of an insect-microbe gut symbiosis. Appl Environ Microbiol 2014; 80:4374-82. [PMID: 24814787 DOI: 10.1128/aem.00739-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Riptortus-Burkholderia symbiotic system is an experimental model system for studying the molecular mechanisms of an insect-microbe gut symbiosis. When the symbiotic midgut of Riptortus pedestris was investigated by light and transmission electron microscopy, the lumens of the midgut crypts that harbor colonizing Burkholderia symbionts were occupied by an extracellular matrix consisting of polysaccharides. This observation prompted us to search for symbiont genes involved in the induction of biofilm formation and to examine whether the biofilms are necessary for the symbiont to establish a successful symbiotic association with the host. To answer these questions, we focused on purN and purT, which independently catalyze the same step of bacterial purine biosynthesis. When we disrupted purN and purT in the Burkholderia symbiont, the ΔpurN and ΔpurT mutants grew normally, and only the ΔpurT mutant failed to form biofilms. Notably, the ΔpurT mutant exhibited a significantly lower level of cyclic-di-GMP (c-di-GMP) than the wild type and the ΔpurN mutant, suggesting involvement of the secondary messenger c-di-GMP in the defect of biofilm formation in the ΔpurT mutant, which might operate via impaired purine biosynthesis. The host insects infected with the ΔpurT mutant exhibited a lower infection density, slower growth, and lighter body weight than the host insects infected with the wild type and the ΔpurN mutant. These results show that the function of purT of the gut symbiont is important for the persistence of the insect gut symbiont, suggesting the intricate biological relevance of purine biosynthesis, biofilm formation, and symbiosis.
Collapse
|
33
|
Jain A, Srivastava P. Broad host range plasmids. FEMS Microbiol Lett 2013; 348:87-96. [DOI: 10.1111/1574-6968.12241] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/09/2013] [Accepted: 08/20/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Aayushi Jain
- Department of Biochemical Engineering and Biotechnology; Indian Institute of Technology; New Delhi India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology; Indian Institute of Technology; New Delhi India
| |
Collapse
|
34
|
Wang P, Zhang C, Zhu Y, Deng Y, Guo S, Peng D, Ruan L, Sun M. The resolution and regeneration of a cointegrate plasmid reveals a model for plasmid evolution mediated by conjugation and oriT site-specific recombination. Environ Microbiol 2013; 15:3305-18. [PMID: 23826996 DOI: 10.1111/1462-2920.12177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/26/2013] [Accepted: 06/01/2013] [Indexed: 11/30/2022]
Abstract
Cointegrate plasmids are useful models for the study of plasmid evolution if their evolutionary processes can be replicated under laboratory conditions. pBMB0228, a 17 706 bp native plasmid originally isolated from Bacillus thuringiensis strain YBT-1518, carries two nematicidal crystal protein genes, cry6Aa and cry55Aa. In this study, we show that pBMB0228 is in fact a cointegrate of two plasmids and contains two functional replication regions and two functional mobilization regions. Upon introduction into B. thuringiensis strain BMB171, pBMB0228 spontaneously resolves into two constituent plasmids via recombination at its oriT1 and oriT2 sites. The resolution does not require conjugation but can be promoted by conjugation. We further confirm that the resolution is mediated by oriT site-specific recombination requiring Mob02281 or Mob02282. Additionally, the two constituent plasmids of pBMB0228 are mobilizable, and can fuse back via oriT site-specific integration after entering into the same cell by conjugation. Our study confirms that native plasmid can reversibly interconvert between a cointegrate structure and its constituent plasmids. This study provides insight into the evolution of cointegrate plasmids, linking plasmid evolution with conjugation and the oriT site-specific recombination function of relaxase.
Collapse
Affiliation(s)
- Pengxia Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fernández-López C, Lorenzo-Díaz F, Pérez-Luque R, Rodríguez-González L, Boer R, Lurz R, Bravo A, Coll M, Espinosa M. Nicking activity of the pMV158 MobM relaxase on cognate and heterologous origins of transfer. Plasmid 2013; 70:120-30. [DOI: 10.1016/j.plasmid.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
|
36
|
Bacterial cell wall synthesis gene uppP is required for Burkholderia colonization of the Stinkbug Gut. Appl Environ Microbiol 2013; 79:4879-86. [PMID: 23747704 DOI: 10.1128/aem.01269-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ΔuppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ΔuppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ΔuppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ΔuppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont.
Collapse
|
37
|
Dziewit L, Pyzik A, Matlakowska R, Baj J, Szuplewska M, Bartosik D. Characterization of Halomonas sp. ZM3 isolated from the Zelazny Most post-flotation waste reservoir, with a special focus on its mobile DNA. BMC Microbiol 2013; 13:59. [PMID: 23497212 PMCID: PMC3606827 DOI: 10.1186/1471-2180-13-59] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/08/2013] [Indexed: 11/10/2022] Open
Abstract
Background Halomonas sp. ZM3 was isolated from Zelazny Most post-flotation mineral waste repository (Poland), which is highly contaminated with heavy metals and various organic compounds. Mobile DNA of the strain (i.e. plasmids and transposons) were analyzed in order to identify genetic information enabling adaptation of the bacterium to the harsh environmental conditions. Results The analysis revealed that ZM3 carries plasmid pZM3H1 (31,370 bp), whose replication system may be considered as an archetype of a novel subgroup of IncU-like replicons. pZM3H1 is a narrow host range, mobilizable plasmid (encodes a relaxase of the MOBV family) containing mercury resistance operon (mer) and czcD genes (mediate resistance to zinc and cobalt), which are part of a large truncated Tn3 family transposon. Further analysis demonstrated that the phenotypes determined by the pZM3H1 resistance cassette are highly dependent on the host strain. In another strand of the study, the trap plasmid pMAT1 was employed to identify functional transposable elements of Halomonas sp. ZM3. Using the sacB positive selection strategy two insertion sequences were identified: ISHsp1 - representing IS5 group of IS5 family and ISHsp2 - a distinct member of the IS630 family. Conclusions This study provides the first detailed description of mobile DNA in a member of the family Halomonadaceae. The identified IncU plasmid pZM3H1 confers resistance phenotypes enabling adaptation of the host strain to the Zelazny Most environment. The extended comparative analysis has shed light on the distribution of related IncU plasmids among bacteria, which, in many cases, reflects the frequency and direction of horizontal gene transfer events. Our results also identify plasmid-encoded modules, which may form the basis of novel shuttle vectors, specific for this group of halophilic bacteria.
Collapse
Affiliation(s)
- Lukasz Dziewit
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, Warsaw, 02-096, Poland
| | | | | | | | | | | |
Collapse
|
38
|
Dziewit L, Cegielski A, Romaniuk K, Uhrynowski W, Szych A, Niesiobedzki P, Zmuda-Baranowska MJ, Zdanowski MK, Bartosik D. Plasmid diversity in arctic strains of Psychrobacter spp. Extremophiles 2013; 17:433-44. [PMID: 23479249 PMCID: PMC3632715 DOI: 10.1007/s00792-013-0521-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/14/2013] [Indexed: 12/05/2022]
Abstract
Six strains of Psychrobacter spp. isolated from guano of little auks collected on Spitsbergen island (Arctic) carried nine plasmids that were fully sequenced. These replicons (ranging in size from 2917 to 14924 bp) contained either repA (ColE2-type) or repB (iteron-type) replication systems of a relatively narrow host range, limited to Psychrobacter spp. All but one of the plasmids carried predicted mobilization for conjugal transfer systems, encoding relaxases of the MOBQ, MOBV or MOBP families. The plasmids also contained diverse additional genetic load, including a type II restriction-modification system and a gene encoding a putative subunit C of alkyl hydroperoxide reductase (AhpC)—an antioxidant enzyme and major scavenger of reactive oxygen species. Detailed comparative sequence analyses, extended to all plasmids identified so far in psychrophilic bacteria, distinguished groups of the most ubiquitous replicons, which play a key role in horizontal gene transfer in cold environments.
Collapse
Affiliation(s)
- Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de Las Heras A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de Lorenzo V. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 2012. [PMID: 23180763 PMCID: PMC3531073 DOI: 10.1093/nar/gks1119] [Citation(s) in RCA: 453] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ‘Standard European Vector Architecture’ database (SEVA-DB, http://seva.cnb.csic.es) was conceived as a user-friendly, web-based resource and a material clone repository to assist in the choice of optimal plasmid vectors for de-constructing and re-constructing complex prokaryotic phenotypes. The SEVA-DB adopts simple design concepts that facilitate the swapping of functional modules and the extension of genome engineering options to microorganisms beyond typical laboratory strains. Under the SEVA standard, every DNA portion of the plasmid vectors is minimized, edited for flaws in their sequence and/or functionality, and endowed with physical connectivity through three inter-segment insulators that are flanked by fixed, rare restriction sites. Such a scaffold enables the exchangeability of multiple origins of replication and diverse antibiotic selection markers to shape a frame for their further combination with a large variety of cargo modules that can be used for varied end-applications. The core collection of constructs that are available at the SEVA-DB has been produced as a starting point for the further expansion of the formatted vector platform. We argue that adoption of the SEVA format can become a shortcut to fill the phenomenal gap between the existing power of DNA synthesis and the actual engineering of predictable and efficacious bacteria.
Collapse
Affiliation(s)
- Rafael Silva-Rocha
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Biondo R, da Silva FA, Vicente EJ, Souza Sarkis JE, Schenberg ACG. Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8325-8332. [PMID: 22794785 DOI: 10.1021/es3006207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter β-domain of the Neisseria gonorrhoeae IgA protease precursor (IgAβ), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane. The expression of the SS-EC20sp-IgAβ gene fusion was driven by a modified version of the Bacillus subtilis mrgA promoter showing high level basal gene expression that is further enhanced by metal presence in C. metallidurans. The recombinant strain showed increased ability to immobilize Pb(2+), Zn(2+), Cu(2+), Cd(2+), Mn(2+), and Ni(2+) ions from the external medium when compared to the control strain. To ensure plasmid stability and biological containment, the MOB region of the plasmid was replaced by the E. coli hok/sok coding sequence.
Collapse
Affiliation(s)
- Ronaldo Biondo
- Centro de Pesquisas em Biotecnologia, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Cidade Universitária, 05508-900 - São Paulo, SP, Brasil.
| | | | | | | | | |
Collapse
|
41
|
Autoregulation of the synthesis of the MobM relaxase encoded by the promiscuous plasmid pMV158. J Bacteriol 2012; 194:1789-99. [PMID: 22287528 DOI: 10.1128/jb.06827-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The streptococcal promiscuous plasmid pMV158 (5,540 bp) replicates by the rolling-circle mechanism and can be mobilized among a wide number of Gram-positive and -negative bacteria. The plasmid region involved in its conjugative transfer includes the mobM gene, which encodes the MobM relaxase, and the cis-acting origin of transfer (oriT). MobM initiates transfer by cleavage of supercoiled pMV158 DNA at a specific dinucleotide within oriT. In the present work, we have performed a detailed transcriptional analysis to assess the role of MobM in the control of its own gene expression. By in vivo and in vitro approaches, we demonstrated that mobM transcription in Escherichia coli was mostly initiated from a promoter (Pmob2) different from the one (Pmob1) used in Lactococcus lactis. Whereas promoter Pmob1 was embedded within the oriT sequence, promoter Pmob2 was placed apart from but adjacent to oriT. Further, MobM was able to repress the expression of its own gene from both promoters. Given the promiscuity of pMV158, the organization of the mobM promoter region suggests a strategy of the plasmid to cope with different transcription machineries of the hosts it colonizes.
Collapse
|
42
|
Lin L, Guo W, Xing Y, Zhang X, Li Z, Hu C, Li S, Li Y, An Q. The actinobacterium Microbacterium sp. 16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N2 associated with micropropagated sugarcane plants. Appl Microbiol Biotechnol 2011; 93:1185-95. [DOI: 10.1007/s00253-011-3618-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/07/2011] [Accepted: 09/29/2011] [Indexed: 11/28/2022]
|
43
|
Suzuki H, Umekage S, Tanaka T, Kikuchi Y. Artificial RNA aptamer production by the marine bacterium Rhodovulum sulfidophilum: improvement of the aptamer yield using a mutated transcriptional promoter. J Biosci Bioeng 2011; 112:458-61. [PMID: 21903467 DOI: 10.1016/j.jbiosc.2011.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/01/2011] [Accepted: 07/19/2011] [Indexed: 01/23/2023]
Abstract
Noncoding small RNAs and artificial RNA aptamers are now expected to be potential candidates for RNA therapeutic agents. We previously proposed a unique method for economical production of these RNAs using the marine phototrophic bacterium Rhodovulum sulfidophilum. This bacterium does not produce any ribonucleases but does produce extracellular nucleic acids in the culture medium in nature. Using this bacterium and an engineered plasmid containing the rrn promoter for the RNA expression, we developed a method for production of the streptavidin RNA aptamer in the culture medium. However, the yield of this RNA product in the culture medium by this method was not enough for practical use. In the present paper, we improved the yield of this product by modification of the -35 region of the rrn promoter so as to escape from the Fis protein control and the use of a new vector plasmid. Using this system, the extracellular RNA aptamer of approximately 200 ng and the total RNA aptamer (both extra- and intracellular form) of about 20 μg from 1 L culture were accomplished by constitutive expression of the gene.
Collapse
Affiliation(s)
- Hiromichi Suzuki
- Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | | | | | | |
Collapse
|
44
|
Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence. Infect Immun 2011; 79:3659-64. [PMID: 21768285 DOI: 10.1128/iai.01351-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei, the causal agent of melioidosis, employs a number of virulence factors during its infection of mammalian cells. One such factor is the type three secretion system (TTSS), which is proposed to mediate the transport and secretion of bacterial effector molecules directly into host cells. The B. pseudomallei genome contains three TTSS gene clusters (designated TTSS1, TTSS2, and TTSS3). Previous research has indicated that neither TTSS1 nor TTSS2 is involved in B. pseudomallei virulence in a hamster infection model. We have characterized a B. pseudomallei mutant lacking expression of the predicted TTSS1 ATPase encoded by bpscN. This mutant was significantly attenuated for virulence in a respiratory melioidosis mouse model of infection. In addition, analyses in vitro showed diminished survival and replication in RAW264.7 cells and an increased level of colocalization with the autophagy marker protein LC3 but an unhindered ability to escape from phagosomes. Taken together, these data provide evidence that the TTSS1 bpscN gene product plays an important role in the intracellular survival of B. pseudomallei and the pathogenesis of murine infection.
Collapse
|
45
|
Lorenzo-Díaz F, Dostál L, Coll M, Schildbach JF, Menéndez M, Espinosa M. The MobM relaxase domain of plasmid pMV158: thermal stability and activity upon Mn2+ and specific DNA binding. Nucleic Acids Res 2011; 39:4315-29. [PMID: 21296755 PMCID: PMC3105389 DOI: 10.1093/nar/gkr049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein MobM, the relaxase involved in conjugative transfer of the streptococcal plasmid pMV158, is the prototype of the MOBV superfamily of relaxases. To characterize the DNA-binding and nicking domain of MobM, a truncated version of the protein (MobMN199) encompassing its N-terminal region was designed and the protein was purified. MobMN199 was monomeric in contrast to the dimeric form of the full-length protein, but it kept its nicking activity on pMV158 DNA. The optimal relaxase activity was dependent on Mn2+ or Mg2+ cations in a dosage-dependent manner. However, whereas Mn2+ strongly stabilized MobMN199 against thermal denaturation, no protective effect was observed for Mg2+. Furthermore, MobMN199 exhibited a high affinity binding for Mn2+ but not for Mg2+. We also examined the binding-specificity and affinity of MobMN199 for several substrates of single-stranded DNA encompassing the pMV158 origin of transfer (oriT). The minimal oriT was delimited to a stretch of 26 nt which included an inverted repeat located eight bases upstream of the nick site. The structure of MobMN199 was strongly stabilized by binding to the defined target DNA, indicating the formation of a tight protein–DNA complex. We demonstrate that the oriT recognition by MobMN199 was highly specific and suggest that this protein most probably employs Mn2+ during pMV158 transfer.
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Prior JE, Lynch MD, Gill RT. Broad-host-range vectors for protein expression across gram negative hosts. Biotechnol Bioeng 2010; 106:326-32. [PMID: 20148414 DOI: 10.1002/bit.22695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of recombinant proteins across a range of different host organisms is often necessary in metabolic engineering applications. Doing so can be facilitated by the use of vectors having origins of replication with a broad-host-range, the option for antibiotic resistance cassettes that are compatible with a particular host, in addition to sequences allowing for the effective transcription and translation of target proteins. We have created a modular set of broad-host-range expression vectors for protein expression in Gram negative bacteria. These vectors use the broad-host-range pBBR1 replicon as well as the arabinose-inducible P(BAD) promoter and are available with six different antibiotic resistance cassettes. We have demonstrated the use of these vectors in Escherichia coli, Pseudomonas putida, and Burkholderia cepacia.
Collapse
Affiliation(s)
- Jamie E Prior
- Department of Chemical and Biological Engineering, University of Colorado, ECCH 111/UCB 424, Boulder, CO 80309, USA
| | | | | |
Collapse
|
47
|
de la Cruz F, Frost LS, Meyer RJ, Zechner EL. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 2010; 34:18-40. [PMID: 19919603 DOI: 10.1111/j.1574-6976.2009.00195.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process.
Collapse
|
48
|
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775-808. [PMID: 19946141 PMCID: PMC2786583 DOI: 10.1128/mmbr.00023-09] [Citation(s) in RCA: 533] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
Collapse
Affiliation(s)
- Cristina E. Alvarez-Martinez
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| |
Collapse
|
49
|
Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 2009; 33:657-87. [PMID: 19396961 DOI: 10.1111/j.1574-6976.2009.00168.x] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacterial conjugation is an efficient and sophisticated mechanism of DNA transfer among bacteria. While mobilizable plasmids only encode a minimal MOB machinery that allows them to be transported by other plasmids, conjugative plasmids encode a complete set of transfer genes (MOB1T4SS). The only essential ingredient of the MOB machinery is the relaxase, the protein that initiates and terminates conjugative DNA processing. In this review we compared the sequences and properties of the relaxase proteins contained in gene sequence databases. Proteins were arranged in families and phylogenetic trees constructed from the family alignments. This allowed the classification of conjugative transfer systems in six MOB families:MOB(F), MOB(H), MOB(Q), MOB(C), MOB(P) and MOB(V). The main characteristics of each family were reviewed. The phylogenetic relationships of the coupling proteins were also analysed and resulted in phylogenies congruent to those of the cognate relaxases. We propose that the sequences of plasmid relaxases can be used for plasmid classification. We hope our effort will provide researchers with a useful tool for further mining and analysing the plasmid universe both experimentally and in silico.
Collapse
Affiliation(s)
- María Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | | | | |
Collapse
|
50
|
Thanbichler M, Iniesta AA, Shapiro L. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 2007; 35:e137. [PMID: 17959646 PMCID: PMC2175322 DOI: 10.1093/nar/gkm818] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caulobacter crescentus is widely used as a powerful model system for the study of prokaryotic cell biology and development. Analysis of this organism is complicated by a limited selection of tools for genetic manipulation and inducible gene expression. This study reports the identification and functional characterization of a vanillate-regulated promoter (Pvan) which meets all requirements for application as a multi-purpose expression system in Caulobacter, thus complementing the established xylose-inducible system (Pxyl). Furthermore, we introduce a newly constructed set of integrating and replicating shuttle vectors that considerably facilitate cell biological and physiological studies in Caulobacter. Based on different narrow and broad-host range replicons, they offer a wide choice of promoters, resistance genes, and fusion partners for the construction of fluorescently or affinity-tagged proteins. Since many of these constructs are also suitable for use in other bacteria, this work provides a comprehensive collection of tools that will enrich many areas of microbiological research.
Collapse
Affiliation(s)
- Martin Thanbichler
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany.
| | | | | |
Collapse
|