1
|
Padhi C, Zhu L, Chen JY, Moreira R, van der Donk WA. Biosynthesis of Macrocyclic Peptides by Formation and Crosslinking of ortho -Tyrosines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647296. [PMID: 40291698 PMCID: PMC12026744 DOI: 10.1101/2025.04.04.647296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a growing class of natural products that possess many activities that are of potential translational interest. Multinuclear non-heme iron dependent oxidative enzymes (MNIOs), until recently termed domain of unknown function 692 (DUF692), have been gaining interest because of their involvement in a range of biochemical reactions that are remarkable from a chemical perspective. Over 13,500 putative MNIO-encoding biosynthetic gene clusters (BGCs) have been identified by sequence similarity networks (SSNs). In this study, we identified a set of precursor peptides containing a conserved FHAFRF-motif in MNIO-encoding BGCs. These BGCs follow a conserved synteny with genes encoding an MNIO, a RiPP recognition element (RRE)-containing partner protein, an arginase, and a B12-dependent radical SAM enzyme (rSAM). Using heterologous reconstitution of a representative BGC from Peribacillus simplex ( pbs cluster) in E. coli , we demonstrated that the MNIO in conjunction with the partner protein catalyzes ortho -hydroxylation of each of the phenylalanine residues in the conserved FRF-motif, the arginase forms an ornithine by deguanidination of the arginine in the motif, and the B12-rSAM crosslinks the ortho -Tyr side side chains by a C-C linkage forming a novel macrocyclic molecule. Substrate scope studies suggested tolerance of the MNIO and the B12-rSAM towards substituting the Phe residues with tyrosines in the conserved motif with the position of hydroxylation and crosslinking being maintained. Overall, this study expands the diverse array of posttranslational modifications catalyzed by MNIOs and B12-rSAM enzymes. TOC Graphic
Collapse
|
2
|
Deschner D, Voordouw MJ, Fernando C, Campbell J, Waldner CL, Hill JE. Identification of genetic markers of resistance to macrolide class antibiotics in Mannheimia haemolytica isolates from a Saskatchewan feedlot. Appl Environ Microbiol 2024; 90:e0050224. [PMID: 38864630 PMCID: PMC11267883 DOI: 10.1128/aem.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Mannheimia haemolytica is a major contributor to bovine respiratory disease (BRD), which causes substantial economic losses to the beef industry, and there is an urgent need for rapid and accurate diagnostic tests to provide evidence for treatment decisions and support antimicrobial stewardship. Diagnostic sequencing can provide information about antimicrobial resistance genes in M. haemolytica more rapidly than conventional diagnostics. Realizing the full potential of diagnostic sequencing requires a comprehensive understanding of the genetic markers of antimicrobial resistance. We identified genetic markers of resistance in M. haemolytica to macrolide class antibiotics commonly used for control of BRD. Genome sequences were determined for 99 M. haemolytica isolates with six different susceptibility phenotypes collected over 2 years from a feedlot in Saskatchewan, Canada. Known macrolide resistance genes estT, msr(E), and mph(E) were identified in most resistant isolates within predicted integrative and conjugative elements (ICEs). ICE sequences lacking antibiotic resistance genes were detected in 10 of 47 susceptible isolates. No resistance-associated polymorphisms were detected in ribosomal RNA genes, although previously unreported mutations in the L22 and L23 ribosomal proteins were identified in 12 and 27 resistant isolates, respectively. Pangenome analysis led to the identification of 79 genes associated with resistance to gamithromycin, of which 95% (75 of 79) had no functional annotation. Most of the observed phenotypic resistance was explained by previously identified antibiotic resistance genes, although resistance to the macrolides gamithromycin and tulathromycin was not explained in 39 of 47 isolates, demonstrating the need for continued surveillance for novel determinants of macrolide resistance.IMPORTANCEBovine respiratory disease is the costliest disease of beef cattle in North America and the most common reason for injectable antibiotic use in beef cattle. Metagenomic sequencing offers the potential to make economically significant reductions in turnaround time for diagnostic information for evidence-based selection of antibiotics for use in the feedlot. The success of diagnostic sequencing depends on a comprehensive catalog of antimicrobial resistance genes and other genome features associated with reduced susceptibility. We analyzed the genome sequences of isolates of Mannheimia haemolytica, a major bovine respiratory disease pathogen, and identified both previously known and novel genes associated with reduced susceptibility to macrolide class antimicrobials. These findings reinforce the need for ongoing surveillance for markers of antimicrobial resistance to support improved diagnostics and antimicrobial stewardship.
Collapse
Affiliation(s)
- Darien Deschner
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Maarten J. Voordouw
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Champika Fernando
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - John Campbell
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Cheryl L. Waldner
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
3
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
The Colorectal Cancer Microbiota Alter Their Transcriptome To Adapt to the Acidity, Reactive Oxygen Species, and Metabolite Availability of Gut Microenvironments. mSphere 2023; 8:e0062722. [PMID: 36847536 PMCID: PMC10117117 DOI: 10.1128/msphere.00627-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The gut microbiome is implicated in the pathology of colorectal cancer (CRC). However, the mechanisms by which the microbiota actively contribute to disease onset and progression remain elusive. In this pilot study, we sequenced fecal metatranscriptomes of 10 non-CRC and 10 CRC patient gut microbiomes and conducted differential gene expression analyses to assess any changed functionality in disease. We report that oxidative stress responses were the dominant activity across cohorts, an overlooked protective housekeeping role of the human gut microbiome. However, expression of hydrogen peroxide and nitric oxide-scavenging genes was diminished and augmented, respectively, positing that these regulated microbial responses have implications for CRC pathology. CRC microbes enhanced expression of genes for host colonization, biofilm formation, genetic exchange, virulence determinants, antibiotic, and acid resistances. Moreover, microbes promoted transcription of genes involved in metabolism of several beneficial metabolites, suggesting their contribution to patient metabolite deficiencies previously solely attributed to tumor cells. We showed in vitro that expression of genes involved in amino acid-dependent acid resistance mechanisms of meta-gut Escherichia coli responded differently to acid, salt, and oxidative pressures under aerobic conditions. These responses were mostly dictated by the host health status of origin of the microbiota, suggesting their exposure to fundamentally different gut conditions. These findings for the first time highlight mechanisms by which the gut microbiota can either protect against or drive colorectal cancer and provide insights into the cancerous gut environment that drives functional characteristics of the microbiome. IMPORTANCE The human gut microbiota has the genetic potential to drive colorectal cancer onset and progression; however, the expression of this genetic potential during the disease has not been investigated. We found that microbial expression of genes that detoxify DNA-damaging reactive oxygen species, which drive colorectal cancer, is compromised in cancer. We observed a greater activation of expression of genes involved in virulence, host colonization, exchange of genetic material, metabolite utilization, defense against antibiotics, and environmental pressures. Culturing gut Escherichia coli of cancerous and noncancerous metamicrobiota revealed different regulatory responses of amino acid-dependent acid resistance mechanisms in a health-dependent manner under environmental acid, oxidative, and osmotic pressures. Here, for the first time, we demonstrate that the activity of microbial genomes is regulated by the health status of the gut in vivo and in vitro and provides new insights for shifts in microbial gene expression in colorectal cancer.
Collapse
|
5
|
Marković KG, Grujović MŽ, Koraćević MG, Nikodijević DD, Milutinović MG, Semedo-Lemsaddek T, Djilas MD. Colicins and Microcins Produced by Enterobacteriaceae: Characterization, Mode of Action, and Putative Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11825. [PMID: 36142096 PMCID: PMC9517006 DOI: 10.3390/ijerph191811825] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Enterobacteriaceae are widely present in many environments related to humans, including the human body and the food that they consume, from both plant or animal origin. Hence, they are considered relevant members of the gastrointestinal tract microbiota. On the other hand, these bacteria are also recognized as putative pathogens, able to impair human health and, in food, they are considered indicators for the microbiological quality and hygiene status of a production process. Nevertheless, beneficial properties have also been associated with Enterobacteriaceae, such as the ability to synthesize peptides and proteins, which can have a role in the structure of microbial communities. Among these antimicrobial molecules, those with higher molecular mass are called colicins, while those with lower molecular mass are named microcins. In recent years, some studies show an emphasis on molecules that can help control the development of pathogens. However, not enough data are available on this subject, especially related to microcins. Hence, this review gathers and summarizes current knowledge on colicins and microcins, potential usage in the treatment of pathogen-associated diseases and cancer, as well as putative applications in food biotechnology.
Collapse
Affiliation(s)
- Katarina G. Marković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Mirjana Ž. Grujović
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Maja G. Koraćević
- Innovation Center, University of Niš, 18000 Niš, Serbia
- Faculty of Medicine, Department of Pharmacy, University of Niš, 18000 Niš, Serbia
| | - Danijela D. Nikodijević
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milena G. Milutinović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Teresa Semedo-Lemsaddek
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Milan D. Djilas
- Institute for Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| |
Collapse
|
6
|
Vobruba S, Kadlcik S, Janata J, Kamenik Z. TldD/TldE peptidases and N-deacetylases: A structurally unique yet ubiquitous protein family in the microbial metabolism. Microbiol Res 2022; 265:127186. [PMID: 36155963 DOI: 10.1016/j.micres.2022.127186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Here we provide a review on TldD/TldE family proteins, summarizing current knowledge and outlining further research perspectives. Despite being widely distributed in bacteria and archaea, TldD/TldE proteins have been escaping attention for a long time until several recent reports pointed to their unique features. Specifically, TldD/TldE generally act as peptidases, though some of them turned out to be N-deacetylases. Biological function of TldD/TldE has been extensively described in bacterial specialized metabolism, in which they participate in the biosynthesis of lincosamide antibiotics (as N-deacetylases), and in the biosynthesis of ribosomally synthesized and post-translationally modified bioactive peptides (as peptidases). These enzymes possess special position in the relevant biosynthesis since they convert non-bioactive intermediates into bioactive metabolites. Further, based on a recent study of Escherichia coli TldD/TldE, these heterodimeric metallopeptidases possess a new protein fold exhibiting several structural features with no precedent in the Protein Data Bank. The most interesting ones are structural elements forming metal-containing active site on the inner surface of the catalytically active subunit TldD, in which substrates bind through β sheet interactions in the sequence-independent manner. It results in relaxed substrate specificity of TldD/TldE, which is counterbalanced by enclosing the active centre within the hollow core of the heterodimer and only appropriate substrates can entry through a narrow channel. Based on the published data, we hypothesize a yet unrecognized central metabolic function of TldD/TldE in the degradation of (partially) unfolded proteins, i.e., in protein quality control.
Collapse
Affiliation(s)
- Simon Vobruba
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic
| | - Stanislav Kadlcik
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic
| | - Jiri Janata
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic
| | - Zdenek Kamenik
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic.
| |
Collapse
|
7
|
Interaction between transcribing RNA polymerase and topoisomerase I prevents R-loop formation in E. coli. Nat Commun 2022; 13:4524. [PMID: 35927234 PMCID: PMC9352719 DOI: 10.1038/s41467-022-32106-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/15/2022] [Indexed: 12/30/2022] Open
Abstract
Bacterial topoisomerase I (TopoI) removes excessive negative supercoiling and is thought to relax DNA molecules during transcription, replication and other processes. Using ChIP-Seq, we show that TopoI of Escherichia coli (EcTopoI) is colocalized, genome-wide, with transcribing RNA polymerase (RNAP). Treatment with transcription elongation inhibitor rifampicin leads to EcTopoI relocation to promoter regions, where RNAP also accumulates. When a 14 kDa RNAP-binding EcTopoI C-terminal domain (CTD) is overexpressed, colocalization of EcTopoI and RNAP along the transcription units is reduced. Pull-down experiments directly show that the two enzymes interact in vivo. Using ChIP-Seq and Topo-Seq, we demonstrate that EcTopoI is enriched upstream (within up to 12-15 kb) of highly-active transcription units, indicating that EcTopoI relaxes negative supercoiling generated by transcription. Uncoupling of the RNAP:EcTopoI interaction by either overexpression of EcTopoI competitor (CTD or inactive EcTopoI Y319F mutant) or deletion of EcTopoI domains involved in the interaction is toxic for cells and leads to excessive negative plasmid supercoiling. Moreover, uncoupling of the RNAP:EcTopoI interaction leads to R-loops accumulation genome-wide, indicating that this interaction is required for prevention of R-loops formation. In E. coli, disruption of TopoI and RNAP interaction decreases cells viability and leads to hypernegative DNA supercoiling and R loops accumulation. TopoI and DNA gyrase bind around transcription units and TopoI recognizes cleavage sites by a specific motif and negative supercoiling.
Collapse
|
8
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
9
|
A biosynthetic pathway to aromatic amines that uses glycyl-tRNA as nitrogen donor. Nat Chem 2022; 14:71-77. [PMID: 34725492 PMCID: PMC8758506 DOI: 10.1038/s41557-021-00802-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/27/2021] [Indexed: 11/12/2022]
Abstract
Aromatic amines in nature are typically installed with Glu or Gln as the nitrogen donor. Here we report a pathway that features glycyl-tRNA instead. During the biosynthesis of pyrroloiminoquinone-type natural products such as ammosamides, peptide-aminoacyl tRNA ligases append amino acids to the C-terminus of a ribosomally synthesized peptide. First, [Formula: see text] adds Trp in a Trp-tRNA-dependent reaction and the flavoprotein AmmC1 then carries out three hydroxylations of the indole ring of Trp. After oxidation to the corresponding ortho-hydroxy para-quinone, [Formula: see text] attaches Gly to the indole ring in a Gly-tRNA dependent fashion. Subsequent decarboxylation and hydrolysis results in an amino-substituted indole. Similar transformations are catalysed by orthologous enzymes from Bacillus halodurans. This pathway features three previously unknown biochemical processes using a ribosomally synthesized peptide as scaffold for non-ribosomal peptide extension and chemical modification to generate an amino acid-derived natural product.
Collapse
|
10
|
De Smet J, Wagemans J, Boon M, Ceyssens PJ, Voet M, Noben JP, Andreeva J, Ghilarov D, Severinov K, Lavigne R. The bacteriophage LUZ24 "Igy" peptide inhibits the Pseudomonas DNA gyrase. Cell Rep 2021; 36:109567. [PMID: 34433028 DOI: 10.1016/j.celrep.2021.109567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
The bacterial DNA gyrase complex (GyrA/GyrB) plays a crucial role during DNA replication and serves as a target for multiple antibiotics, including the fluoroquinolones. Despite it being a valuable antibiotics target, resistance emergence by pathogens including Pseudomonas aeruginosa are proving problematic. Here, we describe Igy, a peptide inhibitor of gyrase, encoded by Pseudomonas bacteriophage LUZ24 and other members of the Bruynoghevirus genus. Igy (5.6 kDa) inhibits in vitro gyrase activity and interacts with the P. aeruginosa GyrB subunit, possibly by DNA mimicry, as indicated by a de novo model of the peptide and mutagenesis. In vivo, overproduction of Igy blocks DNA replication and leads to cell death also in fluoroquinolone-resistant bacterial isolates. These data highlight the potential of discovering phage-inspired leads for antibiotics development, supported by co-evolution, as Igy may serve as a scaffold for small molecule mimicry to target the DNA gyrase complex, without cross-resistance to existing molecules.
Collapse
Affiliation(s)
- Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Julia Andreeva
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Ghilarov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
Liu D, Ke X, Hu ZC, Zheng YG. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation. Enzyme Microb Technol 2020; 141:109670. [PMID: 33051020 DOI: 10.1016/j.enzmictec.2020.109670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
6-(N-hydroxyethyl)-amino-6-deoxy-l-sorbofuranose (6NSL), a key precursor in the synthesis of miglitol, is produced from N-2-hydroxyethyl-glucamine (NHEG) by the regioselective oxidation of Gluconobacter oxydans. The limitation of PQQ biosynthesis became a bottleneck for improvement of PQQ-dependent D-sorbitol dehydrogenase (mSLDH) activity. Five expression plasmids were constructed for the co-expression of the pqqABCDE gene cluster and the tldD gene on the basis of pBBR1-gHp0169-sldAB in G. oxydans to increase the biosynthesis of PQQ. The G. oxydans/pGA004, in which pqqABCDE and tldD were expressed as a cluster under the control of gHp0169 promoter, showed the optimal performance. The intracellular PQQ concentration and specific activity of mSLDH in cells increased by 79.3 % and 53.7 %, respectively, compared to that in G. oxydans/pBBR-sldAB. Then, the repeated batch biotransformation of NHEG to 6NSL by G. oxydans/pGA004 was carried out. Up to 75.0 ± 3.0 g/L of 6NSL production with 94.5 ± 3.6 % of average conversion rate of NHEG to 6NSL was achieved after four cycles of run. These results indicated that G. oxydans/pGA004 with high productivity had great potential for 6NSL production in industrial bioprocess.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xia Ke
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
12
|
Vobruba S, Kamenik Z, Kadlcik S, Janata J. N-Deacetylation in Lincosamide Biosynthesis Is Catalyzed by a TldD/PmbA Family Protein. ACS Chem Biol 2020; 15:2048-2054. [PMID: 32786288 DOI: 10.1021/acschembio.0c00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lincosamides are clinically important antibiotics originally produced as microbial specialized metabolites. The complex biosynthesis of lincosamides is coupled to the metabolism of mycothiol as a sulfur donor. Here, we elucidated the N-deacetylation of the mycothiol-derived N-acetyl-l-cysteine residue of a lincosamide intermediate, which is comprised of an amino acid and an aminooctose connected via an amide bond. We purified this intermediate from the culture broth of a deletion mutant strain and tested it as a substrate of recombinant lincosamide biosynthetic proteins in the in vitro assays that were monitored via liquid chromatography-mass spectrometry. Our findings showed that the N-deacetylation reaction is catalyzed by CcbIH/CcbQ or LmbIH/LmbQ proteins in celesticetin and lincomycin biosynthesis, respectively. These are the first N-deacetylases from the TldD/PmbA protein family, from which otherwise only several proteases and peptidases were functionally characterized. Furthermore, we present a sequence similarity network of TldD/PmbA proteins, which suggests that the lincosamide N-deacetylases are unique among these widely distributed proteins.
Collapse
Affiliation(s)
- Simon Vobruba
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Stanislav Kadlcik
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Evolutionary genetic analysis of unassigned peptidase clan-associated microbial virulence and pathogenesis. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00529-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Baquero F, Lanza VF, Baquero MR, Del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front Microbiol 2019; 10:2261. [PMID: 31649628 PMCID: PMC6795089 DOI: 10.3389/fmicb.2019.02261] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Microcins are low-molecular-weight, ribosomally produced, highly stable, bacterial-inhibitory molecules involved in competitive, and amensalistic interactions between Enterobacteriaceae in the intestine. These interactions take place in a highly complex chemical landscape, the intestinal eco-active chemosphere, composed of chemical substances that positively or negatively influence bacterial growth, including those originated from nutrient uptake, and those produced by the action of the human or animal host and the intestinal microbiome. The contribution of bacteria results from their effect on the host generated molecules, on food and digested food, and organic substances from microbial origin, including from bacterial degradation. Here, we comprehensively review the main chemical substances present in the human intestinal chemosphere, particularly of those having inhibitory effects on microorganisms. With this background, and focusing on Enterobacteriaceae, the most relevant human pathogens from the intestinal microbiota, the microcin’s history and classification, mechanisms of action, and mechanisms involved in microcin’s immunity (in microcin producers) and resistance (non-producers) are reviewed. Products from the chemosphere likely modulate the ecological effects of microcin activity. Several cross-resistance mechanisms are shared by microcins, colicins, bacteriophages, and some conventional antibiotics, which are expected to produce cross-effects. Double-microcin-producing strains (such as microcins MccM and MccH47) have been successfully used for decades in the control of pathogenic gut organisms. Microcins are associated with successful gut colonization, facilitating translocation and invasion, leading to bacteremia, and urinary tract infections. In fact, Escherichia coli strains from the more invasive phylogroups (e.g., B2) are frequently microcinogenic. A publicly accessible APD3 database http://aps.unmc.edu/AP/ shows particular genes encoding microcins in 34.1% of E. coli strains (mostly MccV, MccM, MccH47, and MccI47), and much less in Shigella and Salmonella (<2%). Some 4.65% of Klebsiella pneumoniae are microcinogenic (mostly with MccE492), and even less in Enterobacter or Citrobacter (mostly MccS). The high frequency and variety of microcins in some Enterobacteriaceae indicate key ecological functions, a notion supported by their dominance in the intestinal microbiota of biosynthetic gene clusters involved in the synthesis of post-translationally modified peptide microcins.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Maria-Rosario Baquero
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Daniel A Bravo-Vázquez
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| |
Collapse
|
15
|
Collin F, Maxwell A. The Microbial Toxin Microcin B17: Prospects for the Development of New Antibacterial Agents. J Mol Biol 2019; 431:3400-3426. [PMID: 31181289 PMCID: PMC6722960 DOI: 10.1016/j.jmb.2019.05.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023]
Abstract
Microcin B17 (MccB17) is an antibacterial peptide produced by strains of Escherichia coli harboring the plasmid-borne mccB17 operon. MccB17 possesses many notable features. It is able to stabilize the transient DNA gyrase-DNA cleavage complex, a very efficient mode of action shared with the highly successful fluoroquinolone drugs. MccB17 stabilizes this complex by a distinct mechanism making it potentially valuable in the fight against bacterial antibiotic resistance. MccB17 was the first compound discovered from the thiazole/oxazole-modified microcins family and the linear azole-containing peptides; these ribosomal peptides are post-translationally modified to convert serine and cysteine residues into oxazole and thiazole rings. These chemical moieties are found in many other bioactive compounds like the vitamin thiamine, the anti-cancer drug bleomycin, the antibacterial sulfathiazole and the antiviral nitazoxanide. Therefore, the biosynthetic machinery that produces these azole rings is noteworthy as a general method to create bioactive compounds. Our knowledge of MccB17 now extends to many aspects of antibacterial-bacteria interactions: production, transport, interaction with its target, and resistance mechanisms; this knowledge has wide potential applicability. After a long time with limited progress on MccB17, recent publications have addressed critical aspects of MccB17 biosynthesis as well as an explosion in the discovery of new related compounds in the thiazole/oxazole-modified microcins/linear azole-containing peptides family. It is therefore timely to summarize the evidence gathered over more than 40 years about this still enigmatic molecule and place it in the wider context of antibacterials.
Collapse
Affiliation(s)
- Frederic Collin
- Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
16
|
Parnasa R, Sendersky E, Simkovsky R, Waldman Ben-Asher H, Golden SS, Schwarz R. A microcin processing peptidase-like protein of the cyanobacterium Synechococcus elongatus is essential for secretion of biofilm-promoting proteins. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:456-463. [PMID: 30868754 DOI: 10.1111/1758-2229.12751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 10/01/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Small secreted compounds, e.g. microcins, are characterized by a double-glycine (GG) secretion motif that is cleaved off upon maturation. Genomic analysis suggests that small proteins that possess a GG motif are widespread in cyanobacteria; however, the roles of these proteins are largely unknown. Using a biofilm-proficient mutant of the cyanobacterium Synechococcus elongatus PCC 7942 in which the constitutive biofilm self-suppression mechanism is inactivated, we previously demonstrated that four small proteins, Enable biofilm formation with a GG motif (EbfG1-4), each with a GG motif, enable biofilm formation. Furthermore, a peptidase belonging to the C39 family, Peptidase transporter enabling Biofilm (PteB), is required for secretion of these proteins. Here, we show that the microcin processing peptidase-like protein encoded by gene Synpcc7942_1127 is also required for biofilm development - inactivation of this gene in the biofilm-proficient mutant abrogates biofilm development. Additionally, this peptidase-like protein (denoted EbfE - enables biofilm formation peptidase) is required for secretion of the EbfG biofilm-promoting small proteins. Given their protein-domain characteristics, we suggest that PteB and EbfE take part in a maturation-secretion system, with PteB being located to the cell membrane while EbfE is directed to the periplasmic space via its secretion signal.
Collapse
Affiliation(s)
- Rami Parnasa
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ryan Simkovsky
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Susan S Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
17
|
Hou B, Zhu X, Kang Y, Wang R, Wu H, Ye J, Zhang H. LmbU, a Cluster-Situated Regulator for Lincomycin, Consists of a DNA-Binding Domain, an Auto-Inhibitory Domain, and Forms Homodimer. Front Microbiol 2019; 10. [DOI: doi.org/10.3389/fmicb.2019.00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
18
|
Hou B, Zhu X, Kang Y, Wang R, Wu H, Ye J, Zhang H. LmbU, a Cluster-Situated Regulator for Lincomycin, Consists of a DNA-Binding Domain, an Auto-Inhibitory Domain, and Forms Homodimer. Front Microbiol 2019; 10:989. [PMID: 31130942 PMCID: PMC6510168 DOI: 10.3389/fmicb.2019.00989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
Few studies were reported about the regulatory mechanism of lincomycin biosynthesis since it was found in 1962. Although we have proved that a cluster-situated regulator (CSR) LmbU (GenBank Accession No. ABX00623.1) positively modulates lincomycin biosynthesis in Streptomyces lincolnensis NRRL 2936, the molecular mechanism of LmbU regulation is still unclear. In this study, we demonstrated that LmbU binds to the target lmbAp by a central DNA-binding domain (DBD), which interacts with the binding sites through the helix-turn-helix (HTH) motif. N-terminal of LmbU includes an auto-inhibitory domain (AID), inhibiting the DNA-binding activity of LmbU. Without the AID, LmbU variant can bind to its own promoter. Interestingly, compared to other LmbU homologs, the homologs within the biosynthetic gene clusters (BGCs) of known antibiotics generally contain N-terminal AIDs, which offer them the abilities to play complex regulatory functions. In addition, cysteine 12 (C12) has been proved to be mainly responsible for LmbU homodimer formation in vitro. In conclusion, LmbU homologs naturally exist in hundreds of actinomycetes, and belong to a new regulatory family, LmbU family. The present study reveals the DBD, AID and dimerization of LmbU, and sheds new light on the regulatory mechanism of LmbU and its homologs.
Collapse
Affiliation(s)
- Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoyu Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Crystal Structure of a Putative Modulator of Gyrase (TldE) from Thermococcus kodakarensis. CRYSTALS 2019. [DOI: 10.3390/cryst9020107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TldD and TldE proteins interact and form a complex to degrade unfolded peptides. The gene Tk0499 from Thermococcus kodakarensis encoded a putative modulator of gyrase (TkTldE). Although TldE genes were common in bacteria and archaea, the structural basis on the evolution of proteins remained largely unknown. Here, the three-dimensional structure of TkTldE was determined by X-ray diffraction. Crystals were acquired by the sitting-drop vapor-diffusion method. X-ray diffraction data from crystals were collected at 2.35 Å. The space group and unit-cell parameters suggested that there were two molecules in the asymmetric unit. Our results showed that TkTldE forms a homodimer, which contained anti-parallel β-strands and a pair of α-helices. Comparison of the structures of TldE and TldD showed that despite their high sequence similarity, TldE lacked the conserved HExxxH and GxC motif in which two His and a Cys residues bound a metal ion. Taken together, these results provided insight into the structural information of this class of TldE/TldD.
Collapse
|
20
|
Ghilarov D, Stevenson CEM, Travin DY, Piskunova J, Serebryakova M, Maxwell A, Lawson DM, Severinov K. Architecture of Microcin B17 Synthetase: An Octameric Protein Complex Converting a Ribosomally Synthesized Peptide into a DNA Gyrase Poison. Mol Cell 2019; 73:749-762.e5. [PMID: 30661981 PMCID: PMC6395948 DOI: 10.1016/j.molcel.2018.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
The introduction of azole heterocycles into a peptide backbone is the principal step in the biosynthesis of numerous compounds with therapeutic potential. One of them is microcin B17, a bacterial topoisomerase inhibitor whose activity depends on the conversion of selected serine and cysteine residues of the precursor peptide to oxazoles and thiazoles by the McbBCD synthetase complex. Crystal structures of McbBCD reveal an octameric B4C2D2 complex with two bound substrate peptides. Each McbB dimer clamps the N-terminal recognition sequence, while the C-terminal heterocycle of the modified peptide is trapped in the active site of McbC. The McbD and McbC active sites are distant from each other, which necessitates alternate shuttling of the peptide substrate between them, while remaining tethered to the McbB dimer. An atomic-level view of the azole synthetase is a starting point for deeper understanding and control of biosynthesis of a large group of ribosomally synthesized natural products. Azole synthetase McbBCD is co-crystallized with its product, microcin B17 Crystal structure of McbBCD reveals an octameric assembly of B4C2D2 Two McbB subunits within each asymmetric unit interact to recognize a peptide Formation of each azole ring requires shuttling of peptide between two active centers
Collapse
Affiliation(s)
- Dmitry Ghilarov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland
| | | | - Dmitrii Y Travin
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Julia Piskunova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina Serebryakova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, NR4 7UH Norwich, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, NR4 7UH Norwich, UK.
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
21
|
Sikandar A, Koehnke J. The role of protein–protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2019; 36:1576-1588. [DOI: 10.1039/c8np00064f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the role of protein–protein complexes in the biosynthesis of selected ribosomally synthesized and post-translationally modified peptide (RiPP) classes.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| |
Collapse
|
22
|
Klein S, Pipes S, Lovell CR. Occurrence and significance of pathogenicity and fitness islands in environmental vibrios. AMB Express 2018; 8:177. [PMID: 30377851 PMCID: PMC6207609 DOI: 10.1186/s13568-018-0704-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022] Open
Abstract
Pathogenicity islands (PAIs) are large genomic regions that contain virulence genes, which aid pathogens in establishing infections. While PAIs in clinical strains (strains isolated from a human infection) are well-studied, less is known about the occurrence of PAIs in strains isolated from the environment. In this study we describe three PAIs found in environmental Vibrio vulnificus and Vibrio parahaemolyticus strains, as well as a genomic fitness island found in a Vibrio diabolicus strain. All four islands had markedly different GC profiles than the rest of the genome, indicating that all of these islands were acquired via lateral gene transfer. Genes on the PAIs and fitness island were characterized. The PAI found in V. parahaemolyticus contained the tdh gene, a collagenase gene, and genes involved in the type 3 secretion system II (T3SS2). A V. vulnificus environmental strain contained two PAIs, a small 25 kbp PAI and a larger 143 kbp PAI. Both PAIs contained virulence genes. Toxin-antitoxin (TA) genes were found in all three species: on the V. diabolicus fitness island, and on the V. parahaemolyticus and V. vulnificus PAIs.
Collapse
Affiliation(s)
- Savannah Klein
- Department of Biological Sciences, University of South Carolina, 715 Sumter St, Room 401, Columbia, SC 29208 USA
| | - Shannon Pipes
- Department of Biological Sciences, University of South Carolina, 715 Sumter St, Room 401, Columbia, SC 29208 USA
| | - Charles R. Lovell
- Department of Biological Sciences, University of South Carolina, 715 Sumter St, Room 401, Columbia, SC 29208 USA
| |
Collapse
|
23
|
Rodríguez Hernáez J, Cerón Cucchi ME, Cravero S, Martinez MC, Gonzalez S, Puebla A, Dopazo J, Farber M, Paniego N, Rivarola M. The first complete genomic structure of Butyrivibrio fibrisolvens and its chromid. Microb Genom 2018; 4. [PMID: 30216146 PMCID: PMC6249431 DOI: 10.1099/mgen.0.000216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Butyrivibrio fibrisolvens forms part of the gastrointestinal microbiome of ruminants and other mammals, including humans. Indeed, it is one of the most common bacteria found in the rumen and plays an important role in ruminal fermentation of polysaccharides, yet, to date, there is no closed reference genome published for this species in any ruminant animal. We successfully assembled the nearly complete genome sequence of B. fibrisolvens strain INBov1 isolated from cow rumen using Illumina paired-end reads, 454 Roche single-end and mate pair sequencing technology. Additionally, we constructed an optical restriction map of this strain to aid in scaffold ordering and positioning, and completed the first genomic structure of this species. Moreover, we identified and assembled the first chromid of this species (pINBov266). The INBov1 genome encodes a large set of genes involved in the cellulolytic process but lacks key genes. This seems to indicate that B. fibrisolvens plays an important role in ruminal cellulolytic processes, but does not have autonomous cellulolytic capacity. When searching for genes involved in the biohydrogenation of unsaturated fatty acids, no linoleate isomerase gene was found in this strain. INBov1 does encode oleate hydratase genes known to participate in the hydrogenation of oleic acids. Furthermore, INBov1 contains an enolase gene, which has been recently determined to participate in the synthesis of conjugated linoleic acids. This work confirms the presence of a novel chromid in B. fibrisolvens and provides a new potential reference genome sequence for this species, providing new insight into its role in biohydrogenation and carbohydrate degradation.
Collapse
Affiliation(s)
- Javier Rodríguez Hernáez
- 3Skoklab - Department of Pathology, NYU Langone Health, New York, USA.,1Biotechnology Institute, CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina.,2Fundación Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Maria Esperanza Cerón Cucchi
- 1Biotechnology Institute, CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina
| | - Silvio Cravero
- 1Biotechnology Institute, CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina
| | - Maria Carolina Martinez
- 1Biotechnology Institute, CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina
| | - Sergio Gonzalez
- 1Biotechnology Institute, CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina
| | - Andrea Puebla
- 1Biotechnology Institute, CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina
| | - Joaquin Dopazo
- 4Clinical Bioinformatics Research Area, Fundación Progreso y Salud, Hospital Virgen del Rocío, Sevilla, Spain
| | - Marisa Farber
- 1Biotechnology Institute, CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina.,5CONICET, Buenos Aires, Argentina
| | - Norma Paniego
- 1Biotechnology Institute, CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina.,5CONICET, Buenos Aires, Argentina
| | - Máximo Rivarola
- 1Biotechnology Institute, CICVyA-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina.,2Fundación Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina.,5CONICET, Buenos Aires, Argentina
| |
Collapse
|
24
|
Kang JG, Lee HW, Ko S, Chae JS. Comparative proteomic analysis of outer membrane protein 43 ( omp43)-deficient Bartonella henselae. J Vet Sci 2018; 19:59-70. [PMID: 28693313 PMCID: PMC5799401 DOI: 10.4142/jvs.2018.19.1.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/09/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022] Open
Abstract
Outer membrane proteins (OMPs) of Gram-negative bacteria constitute the first line of defense protecting cells against environmental stresses including chemical, biophysical, and biological attacks. Although the 43-kDa OMP (OMP43) is major porin protein among Bartonella henselae-derived OMPs, its function remains unreported. In this study, OMP43-deficient mutant B. henselae (Δomp43) was generated to investigate OMP43 function. Interestingly, Δomp43 exhibited weaker proliferative ability than that of wild-type (WT) B. henselae. To study the differences in proteomic expression between WT and Δomp43, two-dimensional gel electrophoresis-based proteomic analysis was performed. Based on Clusters of Orthologus Groups functional assignments, 12 proteins were associated with metabolism, 7 proteins associated with information storage and processing, and 3 proteins associated with cellular processing and signaling. By semi-quantitative reverse transcriptase polymerase chain reaction, increases in tldD, efp, ntrX, pdhA, purB, and ATPA mRNA expression and decreases in Rho and yfeA mRNA expression were confirmed in Δomp43. In conclusion, this is the first report showing that a loss of OMP43 expression in B. henselae leads to retarded proliferation. Furthermore, our proteomic data provide useful information for the further investigation of mechanisms related to the growth of B. henselae.
Collapse
Affiliation(s)
- Jun-Gu Kang
- Laboratory of Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hee-Woo Lee
- Laboratory of Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sungjin Ko
- Laboratory of Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
25
|
Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen 2018; 7:e00677. [PMID: 29911322 PMCID: PMC6182564 DOI: 10.1002/mbo3.677] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Interests in the impact of the gastrointestinal microbiota on health and wellbeing have extended from humans to that of companion animals. While relatively fewer studies to date have examined canine and feline gut microbiomes, analysis of the metagenomic DNA from fecal communities using next‐generation sequencing technologies have provided insights into the microbes that are present, their function, and potential to contribute to overall host nutrition and health. As carnivores, healthy dogs and cats possess fecal microbiomes that reflect the generally higher concentrations of protein and fat in their diets, relative to omnivores and herbivores. The phyla Firmicutes and Bacteroidetes are highly abundant, and Fusobacteria, Actinobacteria, and Proteobacteria also feature prominently. Proteobacteria is the most diverse bacterial phylum and commonly features in the fecal microbiota of healthy dogs and cats, although its reputation is often sullied as its members include a number of well‐known opportunistic pathogens, such as Escherichia coli, Salmonella, and Campylobacter, which may impact the health of the host and its owner. Furthermore, in other host species, high abundances of Proteobacteria have been associated with dysbiosis in hosts with metabolic or inflammatory disorders. In this review, we seek to gain further insight into the prevalence and roles of the Proteobacteria within the gastrointestinal microbiomes of healthy dogs and cats. We draw upon the growing number of metagenomic DNA sequence‐based studies which now allow us take a culture‐independent approach to examine the functions that this more minor, yet important, group contribute to normal microbiome function. The fecal microbiomes of healthy dogs and cats often include Proteobacteria at varying abundances. This phylum can have a sullied reputation as it contains a number of well‐known pathogenic members. We explored the functions of the Proteobacteria in fecal shotgun metagenome datasets from healthy dogs and cats. The Proteobacteria appeared to be enriched for functions that are consistent with a role in helping to maintain the anaerobic environment of the gut for normal microbiome function.
Collapse
Affiliation(s)
- Christina D Moon
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Paul H Maclean
- AgResearch, Lincoln Research Centre, Lincoln, New Zealand
| | - Adrian L Cookson
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Emma N Bermingham
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,High-Value Nutrition, National Science Challenge, Auckland, New Zealand
| |
Collapse
|
26
|
Travin DY, Metelev M, Serebryakova M, Komarova ES, Osterman IA, Ghilarov D, Severinov K. Biosynthesis of Translation Inhibitor Klebsazolicin Proceeds through Heterocyclization and N-Terminal Amidine Formation Catalyzed by a Single YcaO Enzyme. J Am Chem Soc 2018; 140:5625-5633. [PMID: 29601195 DOI: 10.1021/jacs.8b02277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Klebsazolicin (KLB) is a recently discovered Klebsiella pneumonia peptide antibiotic targeting the exit tunnel of bacterial ribosome. KLB contains an N-terminal amidine ring and four azole heterocycles installed into a ribosomally synthesized precursor by dedicated maturation machinery. Using an in vitro system for KLB production, we show that the YcaO-domain KlpD maturation enzyme is a bifunctional cyclodehydratase required for the formation of both the core heterocycles and the N-terminal amidine ring. We further demonstrate that the amidine ring is formed concomitantly with proteolytic cleavage of azole-containing pro-KLB by a cellular protease TldD/E. Members of the YcaO family are diverse enzymes known to activate peptide carbonyls during natural product biosynthesis leading to the formation of azoline, macroamidine, and thioamide moieties. The ability of KlpD to simultaneously perform two distinct types of modifications is unprecedented for known YcaO proteins. The versatility of KlpD opens up possibilities for rational introduction of modifications into various peptide backbones.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Mikhail Metelev
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Marina Serebryakova
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia
| | - Ekaterina S Komarova
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Translational Biomedicine , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Dmitry Ghilarov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Konstantin Severinov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia.,Waksman Institute for Microbiology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
27
|
Tsibulskaya D, Mokina O, Kulikovsky A, Piskunova J, Severinov K, Serebryakova M, Dubiley S. The Product of Yersinia pseudotuberculosis mcc Operon Is a Peptide-Cytidine Antibiotic Activated Inside Producing Cells by the TldD/E Protease. J Am Chem Soc 2017; 139:16178-16187. [PMID: 29045133 DOI: 10.1021/jacs.7b07118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcin C is a heptapeptide-adenylate antibiotic produced by some strains of Escherichia coli. Its peptide part is responsible for facilitated transport inside sensitive cells where it is proteolyzed with release of a toxic warhead-a nonhydrolyzable aspartamidyl-adenylate, which inhibits aspartyl-tRNA synthetase. Recently, a microcin C homologue from Bacillus amyloliquefaciens containing a longer peptide part modified with carboxymethyl-cytosine instead of adenosine was described, but no biological activity of this compound was revealed. Here, we characterize modified peptide-cytidylate from Yersinia pseudotuberculosis. As reported for B. amyloliquefaciens homologue, the initially synthesized compound contains a long peptide that is biologically inactive. This compound is subjected to endoproteolytic processing inside producing cells by the evolutionary conserved TldD/E protease. As a result, an 11-amino acid long peptide with C-terminal modified cytosine residue is produced. This compound is exported outside the producing cell and is bioactive, inhibiting sensitive cells in the same way as E. coli microcin C. Proteolytic processing inside producing cells is a novel strategy of peptide-nucleotide antibiotics biosynthesis that may help control production levels and avoid toxicity to the producer.
Collapse
Affiliation(s)
- Darya Tsibulskaya
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Olga Mokina
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Alexey Kulikovsky
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia.,Department of Biochemistry, University of Illinois at Urbana-Champaign , 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Julia Piskunova
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Konstantin Severinov
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia.,Waksman Institute for Microbiology , 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020, United States
| | - Marina Serebryakova
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskie Gory 1, Bldg. 40, Moscow 119991, Russia
| | - Svetlana Dubiley
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| |
Collapse
|
28
|
Ghilarov D, Serebryakova M, Stevenson CEM, Hearnshaw SJ, Volkov DS, Maxwell A, Lawson DM, Severinov K. The Origins of Specificity in the Microcin-Processing Protease TldD/E. Structure 2017; 25:1549-1561.e5. [PMID: 28943336 PMCID: PMC5810440 DOI: 10.1016/j.str.2017.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022]
Abstract
TldD and TldE proteins are involved in the biosynthesis of microcin B17 (MccB17), an Escherichia coli thiazole/oxazole-modified peptide toxin targeting DNA gyrase. Using a combination of biochemical and crystallographic methods we show that E. coli TldD and TldE interact to form a heterodimeric metalloprotease. TldD/E cleaves the N-terminal leader sequence from the modified MccB17 precursor peptide, to yield mature antibiotic, while it has no effect on the unmodified peptide. Both proteins are essential for the activity; however, only the TldD subunit forms a novel metal-containing active site within the hollow core of the heterodimer. Peptide substrates are bound in a sequence-independent manner through β sheet interactions with TldD and are likely cleaved via a thermolysin-type mechanism. We suggest that TldD/E acts as a “molecular pencil sharpener”: unfolded polypeptides are fed through a narrow channel into the active site and processively truncated through the cleavage of short peptides from the N-terminal end. E. coli proteins TldD and TldE form a heterodimeric metalloprotease Binding of peptides within the active-site cleft is not sequence-specific Specificity is controlled through the access of substrates via a narrow channel Peptides enter the channel N-terminus first and are processively digested
Collapse
Affiliation(s)
- Dmitry Ghilarov
- Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Marina Serebryakova
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Lomonosov Moscow State University, Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stephen J Hearnshaw
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dmitry S Volkov
- Lomonosov Moscow State University, Department of Chemistry, Analytical Chemistry Division, 119991 Moscow, Russia
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Konstantin Severinov
- Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Bionano Institute, Peter the Great Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia; Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
29
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
30
|
Haq IU, Dini-Andreote F, van Elsas JD. Transcriptional Responses of the Bacterium Burkholderia terrae BS001 to the Fungal Host Lyophyllum sp. Strain Karsten under Soil-Mimicking Conditions. MICROBIAL ECOLOGY 2017; 73:236-252. [PMID: 27844108 PMCID: PMC5209427 DOI: 10.1007/s00248-016-0885-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/24/2016] [Indexed: 05/05/2023]
Abstract
In this study, the mycosphere isolate Burkholderia terrae BS001 was confronted with the soil fungus Lyophyllum sp. strain Karsten on soil extract agar plates in order to examine its transcriptional responses over time. At the initial stages of the experiment (T1-day 3; T2-day 5), contact between both partner organisms was absent, whereas in the final stage (T3-day 8), the two populations made intimate physical contact. Overall, a strong modulation of the strain BS001 gene expression patterns was found. First, the stationary-phase sigma factor RpoS, and numerous genes under its control, were strongly expressed as a response to the soil extract agar, and this extended over the whole temporal regime. In the system, B. terrae BS001 apparently perceived the presence of the fungal hyphae already at the early experimental stages (T1, T2), by strongly upregulating a suite of chemotaxis and flagellar motility genes. With respect to specific metabolism and energy generation, a picture of differential involvement in different metabolic routes was obtained. Initial (T1, T2) up- or downregulation of ethanolamine and mandelate uptake and utilization pathways was substituted by a strong investment, in the presence of the fungus, in the expression of putative metabolic gene clusters (T3). Specifically at T3, five clustered genes that are potentially involved in energy generation coupled to an oxidative stress response, and two genes encoding short-chain dehydrogenases/oxidoreductases (SDR), were highly upregulated. In contrast, the dnaE2 gene (related to general stress response; encoding error-prone DNA polymerase) was transcriptionally downregulated at this stage. This study revealed that B. terrae BS001, from a stress-induced state, resulting from the soil extract agar milieu, responds positively to fungal hyphae that encroach upon it, in a temporally dynamic manner. The response is characterized by phases in which the modulation of (1) chemotaxis, (2) metabolic activity, and (3) oxidative stress responses are key mechanisms.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Microbial Ecology Group, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Francisco Dini-Andreote
- Microbial Ecology Group, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology Group, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
31
|
Overexpression of pyrroloquinoline quinone biosynthetic genes affects l -sorbose production in Gluconobacter oxydans WSH-003. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:5938289. [PMID: 27274708 PMCID: PMC4870337 DOI: 10.1155/2016/5938289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/07/2016] [Indexed: 12/25/2022]
Abstract
The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis.
Collapse
|
33
|
Alcaraz LD, Martínez-Sánchez S, Torres I, Ibarra-Laclette E, Herrera-Estrella L. The Metagenome of Utricularia gibba's Traps: Into the Microbial Input to a Carnivorous Plant. PLoS One 2016; 11:e0148979. [PMID: 26859489 PMCID: PMC4747601 DOI: 10.1371/journal.pone.0148979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 02/01/2023] Open
Abstract
The genome and transcriptome sequences of the aquatic, rootless, and carnivorous plant Utricularia gibba L. (Lentibulariaceae), were recently determined. Traps are necessary for U. gibba because they help the plant to survive in nutrient-deprived environments. The U. gibba's traps (Ugt) are specialized structures that have been proposed to selectively filter microbial inhabitants. To determine whether the traps indeed have a microbiome that differs, in composition or abundance, from the microbiome in the surrounding environment, we used whole-genome shotgun (WGS) metagenomics to describe both the taxonomic and functional diversity of the Ugt microbiome. We collected U. gibba plants from their natural habitat and directly sequenced the metagenome of the Ugt microbiome and its surrounding water. The total predicted number of species in the Ugt was more than 1,100. Using pan-genome fragment recruitment analysis, we were able to identify to the species level of some key Ugt players, such as Pseudomonas monteilii. Functional analysis of the Ugt metagenome suggests that the trap microbiome plays an important role in nutrient scavenging and assimilation while complementing the hydrolytic functions of the plant.
Collapse
Affiliation(s)
- Luis David Alcaraz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70–275, 04510, Ciudad Universitaria, Ciudad de México, México
| | - Shamayim Martínez-Sánchez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70–275, 04510, Ciudad Universitaria, Ciudad de México, México
| | - Ignacio Torres
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, 58190, Morelia, Michoacán, México
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C, 91070, Carretera antigua a Coatepec 351, El Haya Xalapa, Veracruz, México
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Carretera Irapuato-León, 36821, Irapuato, Guanajuato, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Carretera Irapuato-León, 36821, Irapuato, Guanajuato, México
| |
Collapse
|
34
|
Janata J, Kadlcik S, Koberska M, Ulanova D, Kamenik Z, Novak P, Kopecky J, Novotna J, Radojevic B, Plhackova K, Gazak R, Najmanova L. Lincosamide synthetase--a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism. PLoS One 2015; 10:e0118850. [PMID: 25741696 PMCID: PMC4351081 DOI: 10.1371/journal.pone.0118850] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
In the biosynthesis of lincosamide antibiotics lincomycin and celesticetin, the amino acid and amino sugar units are linked by an amide bond. The respective condensing enzyme lincosamide synthetase (LS) is expected to be an unusual system combining nonribosomal peptide synthetase (NRPS) components with so far unknown amino sugar related activities. The biosynthetic gene cluster of celesticetin was sequenced and compared to the lincomycin one revealing putative LS coding ORFs shared in both clusters. Based on a bioassay and production profiles of S. lincolnensis strains with individually deleted putative LS coding genes, the proteins LmbC, D, E, F and V were assigned to LS function. Moreover, the newly recognized N-terminal domain of LmbN (LmbN-CP) was also assigned to LS as a NRPS carrier protein (CP). Surprisingly, the homologous CP coding sequence in celesticetin cluster is part of ccbZ gene adjacent to ccbN, the counterpart of lmbN, suggesting the gene rearrangement, evident also from still active internal translation start in lmbN, and indicating the direction of lincosamide biosynthesis evolution. The in vitro test with LmbN-CP, LmbC and the newly identified S. lincolnensis phosphopantetheinyl transferase Slp, confirmed the cooperation of the previously characterized NRPS A-domain LmbC with a holo-LmbN-CP in activation of a 4-propyl-L-proline precursor of lincomycin. This result completed the functional characterization of LS subunits resembling NRPS initiation module. Two of the four remaining putative LS subunits, LmbE/CcbE and LmbV/CcbV, exhibit low but significant homology to enzymes from the metabolism of mycothiol, the NRPS-independent system processing the amino sugar and amino acid units. The functions of particular LS subunits as well as cooperation of both NRPS-based and NRPS-independent LS blocks are discussed. The described condensing enzyme represents a unique hybrid system with overall composition quite dissimilar to any other known enzyme system.
Collapse
Affiliation(s)
- Jiri Janata
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- * E-mail:
| | - Stanislav Kadlcik
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Marketa Koberska
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Dana Ulanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Oceanography Section, Science Research Center, Kochi University, IMT-MEXT, Kohasu, Oko-cho, Nankoku, Kochi, 783–8505, Japan
| | - Zdenek Kamenik
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Petr Novak
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jan Kopecky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jitka Novotna
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Bojana Radojevic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Kamila Plhackova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Radek Gazak
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Lucie Najmanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| |
Collapse
|
35
|
Metelev MV, Ghilarov DA. Structure, function, and biosynthesis of thiazole/oxazole-modified microcins. Mol Biol 2014. [DOI: 10.1134/s0026893314010105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
The C-terminal part of microcin B is crucial for DNA gyrase inhibition and antibiotic uptake by sensitive cells. J Bacteriol 2014; 196:1759-67. [PMID: 24563033 DOI: 10.1128/jb.00015-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcin B (McB) is a ribosomally synthesized antibacterial peptide. It contains up to nine oxazole and thiazole heterocycles that are introduced posttranslationally and are required for activity. McB inhibits the DNA gyrase, a validated drug target. Previous structure-activity analyses indicated that two fused heterocycles located in the central part of McB are important for antibacterial action and gyrase inhibition. Here, we used site-specific mutagenesis of the McB precursor gene to assess the functional significance of the C-terminal part of McB that is located past the second fused heterocycle and contains two single heterocycles as well as an unmodified four-amino-acid C-terminal tail. We found that removal of unmodified C-terminal amino acids of McB, while having no effect on fused heterocycles, has a very strong negative effect on activity in vivo and in vitro. In fact, even nonconservative point substitutions in the last McB amino acid have a very strong effect by simultaneously decreasing uptake and ability to inhibit the gyrase. The results highlight the importance of unmodified McB amino acids for function and open the way for creation of recombinant McB derivatives with an altered or expanded spectrum of antibacterial action.
Collapse
|
37
|
Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action. J Bacteriol 2013; 195:4129-37. [PMID: 23852863 DOI: 10.1128/jb.00665-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli microcin B (Ec-McB) is a posttranslationally modified antibacterial peptide containing multiple oxazole and thiazole heterocycles and targeting the DNA gyrase. We have found operons homologous to the Ec-McB biosynthesis-immunity operon mcb in recently sequenced genomes of several pathovars of the plant pathogen Pseudomonas syringae, and we produced two variants of P. syringae microcin B (Ps-McB) in E. coli by heterologous expression. Like Ec-McB, both versions of Ps-McB target the DNA gyrase, but unlike Ec-McB, they are active against various species of the Pseudomonas genus, including human pathogen P. aeruginosa. Through analysis of Ec-McB/Ps-McB chimeras, we demonstrate that three centrally located unmodified amino acids of Ps-McB are sufficient to determine activity against Pseudomonas, likely by allowing specific recognition by a transport system that remains to be identified. The results open the way for construction of McB-based antibacterial molecules with extended spectra of biological activity.
Collapse
|
38
|
The role of bacterial membrane proteins in the internalization of microcin MccJ25 and MccB17. Biochem Soc Trans 2013; 40:1539-43. [PMID: 23176513 DOI: 10.1042/bst20120176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microcins are gene-encoded antibacterial peptides of low molecular mass (<10 kDa), produced by Enterobactericeae. They are produced and secreted under conditions of limited essential nutrients and are active against related species. Bacterial strains under starvation conditions can produce and release microcins that can kill microcin-sensitive cells and therefore have more nutrients for survival. The outer-membrane protein OmpF and FhuA TonB-dependent pathways facilitate the internalization of the MccB17 and MccJ25 microcins into the target cell respectively. The inner-membrane protein SbmA transports the microcins through the inner membrane to the cytoplasmic face. Inside the cell, MccB17 targets DNA gyrase, whereas MccJ25 inhibits the bacterial RNA polymerase.
Collapse
|
39
|
An archaeal protein evolutionarily conserved in prokaryotes is a zinc-dependent metalloprotease. Biosci Rep 2013; 32:609-18. [PMID: 22950735 PMCID: PMC3497727 DOI: 10.1042/bsr20120074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A putative protease gene (tldD) was previously identified from studying tolerance of letD encoding the CcdB toxin of a toxin–antidote system of the F plasmid in Escherichia coli. While this gene is evolutionarily conserved in archaea and bacteria, the proteolytic activity of encoded proteins remained to be demonstrated experimentally. Here we studied Sso0660, an archaeal TldD homologue encoded in Sulfolobus solfataricus by overexpression of the recombinant protein and characterization of the purified enzyme. We found that the enzyme is active in degrading azocasein and FITC–BSA substrates. Protease inhibitor studies showed that EDTA and o-phenanthroline, two well-known metalloprotease inhibitors, either abolished completely or strongly inhibited the enzyme activity, and flame spectrometric analysis showed that a zinc ion is a cofactor of the protease. Furthermore, the protein forms disulfide bond via the Cys416 residue, yielding protein dimer that is the active form of the enzyme. These results establish for the first time that tidD genes encode zinc-containing proteases, classifying them as a family in the metalloprotease class.
Collapse
|
40
|
Characterization of the phd-doc and ccd toxin-antitoxin cassettes from Vibrio superintegrons. J Bacteriol 2013; 195:2270-83. [PMID: 23475970 DOI: 10.1128/jb.01389-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Toxin-antitoxin (TA) systems have been reported in the genomes of most bacterial species, and their role when located on the chromosome is still debated. TA systems are particularly abundant in the massive cassette arrays associated with chromosomal superintegrons (SI). Here, we describe the characterization of two superintegron cassettes encoding putative TA systems. The first is the phd-doc(SI) system identified in Vibrio cholerae N16961. We determined its distribution in 36 V. cholerae strains and among five V. metschnikovii strains. We show that this cassette, which is in position 72 of the V. cholerae N16961 cassette array, is functional, carries its own promoter, and is expressed from this location. Interestingly, the phd-doc(SI) system is unable to control its own expression, most likely due to the absence of any DNA-binding domain on the antitoxin. In addition, this SI system is able to cross talk with the canonical P1 phage system. The second cassette that we characterized is the ccd(Vfi) cassette found in the V. fischeri superintegron. We demonstrate that CcdB(Vfi) targets DNA-gyrase, as the canonical CcB(F) toxin, and that ccd(Vfi) regulates its expression in a fashion similar to the ccd(F) operon of the conjugative plasmid F. We also establish that this cassette is functional and expressed in its chromosomal context in V. fischeri CIP 103206T. We tested its functional interactions with the ccdAB(F) system and found that CcdA(Vfi) is specific for its associated CcdB(Vfi) and cannot prevent CcdB(F) toxicity. Based on these results, we discuss the possible biological functions of these TA systems in superintegrons.
Collapse
|
41
|
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108-60. [PMID: 23165928 DOI: 10.1039/c2np20085f] [Citation(s) in RCA: 1552] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Collapse
Affiliation(s)
- Paul G Arnison
- Prairie Plant Systems Inc, Botanical Alternatives Inc, Suite 176, 8B-3110 8th Street E, Saskatoon, SK, S7H 0W2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
De Jonge N, Simic M, Buts L, Haesaerts S, Roelants K, Garcia-Pino A, Sterckx Y, De Greve H, Lah J, Loris R. Alternative interactions define gyrase specificity in the CcdB family. Mol Microbiol 2012; 84:965-78. [DOI: 10.1111/j.1365-2958.2012.08069.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Ghilarov D, Serebryakova M, Shkundina I, Severinov K. A major portion of DNA gyrase inhibitor microcin B17 undergoes an N,O-peptidyl shift during synthesis. J Biol Chem 2011; 286:26308-18. [PMID: 21628468 PMCID: PMC3143593 DOI: 10.1074/jbc.m111.241315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/12/2011] [Indexed: 11/06/2022] Open
Abstract
Microcin B17 (McB) is a 43-amino acid antibacterial peptide targeting the DNA gyrase. The McB precursor is ribosomally produced and then post-translationally modified by the McbBCD synthase. Active mature McB contains eight oxazole and thiazole heterocycles. Here, we show that a major portion of mature McB contains an additional unusual modification, a backbone ester bond connecting McB residues 51 and 52. The modification results from an N → O shift of the Ser(52) residue located immediately downstream of one of McB thiazole heterocycles. We speculate that the N,O-peptidyl shift undergone by Ser(52) is an intermediate of post-translational modification reactions catalyzed by the McbBCD synthase that normally lead to formation of McB heterocycles.
Collapse
Affiliation(s)
- Dmitry Ghilarov
- From the Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina Serebryakova
- From the Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- the Institute of Physicochemical Medicine Federal Medico-Biological Agency, Moscow, 119992 Russia, Russia
| | - Irina Shkundina
- From the Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- the Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Konstantin Severinov
- From the Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- the Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
- the Waksman Institute of Microbiology, Piscataway, New Jersey 08854, and
- the Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
44
|
McIntosh JA, Schmidt EW. Marine molecular machines: heterocyclization in cyanobactin biosynthesis. Chembiochem 2010; 11:1413-21. [PMID: 20540059 DOI: 10.1002/cbic.201000196] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Natural products that contain amino-acid-derived (Cys, Ser, Thr) heterocycles are ubiquitous in nature, yet key aspects of their biosynthesis remain undefined. Cyanobactins are heterocyclic ribosomal peptide natural products from cyanobacteria, including symbiotic bacteria living with marine ascidians. In contrast to other ribosomal peptide heterocyclases that have been studied, the cyanobactin heterocyclase is a single protein that does not require an oxidase enzyme. Using this simplifying condition, we provide new evidence to support the hypothesis that these enzymes are molecular machines that use ATP in a product binding or orientation cycle. Further, we show that both protease inhibitors and ATP analogues inhibit heterocyclization and define the order of biochemical steps in the cyanobactin biosynthetic pathway. The cyanobactin pathway enzymes, PatD and TruD, are thiazoline and oxazoline synthetases.
Collapse
Affiliation(s)
- John A McIntosh
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112 USA
| | | |
Collapse
|
45
|
McIntosh JA, Donia MS, Schmidt EW. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 2009; 26:537-59. [PMID: 19642421 PMCID: PMC2975598 DOI: 10.1039/b714132g] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Ribosomally synthesized bacterial natural products rival the nonribosomal peptides in their structural and functional diversity. The last decade has seen substantial progress in the identification and characterization of biosynthetic pathways leading to ribosomal peptide natural products with new and unusual structural motifs. In some of these cases, the motifs are similar to those found in nonribosomal peptides, and many are constructed by convergent or even paralogous enzymes. Here, we summarize the major structural and biosynthetic categories of ribosomally synthesized bacterial natural products and, where applicable, compare them to their homologs from nonribosomal biosynthesis.
Collapse
Affiliation(s)
- John A. McIntosh
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Mohamed S. Donia
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| |
Collapse
|
46
|
Cermák L, Novotná J, Ságova-Marecková M, Kopecký J, Najmanová L, Janata J. Hybridization analysis and mapping of the celesticetin gene cluster revealed genes shared with lincomycin biosynthesis. Folia Microbiol (Praha) 2008; 52:457-62. [PMID: 18298041 DOI: 10.1007/bf02932104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The first insight into celesticetin biosynthetic gene cluster of S. caelestis is presented. The genomic DNA of producing strain was digested, digoxigenin-labeled and hybridized with a set of probes designed according to S. lincolnensis gene sequences. Genes with high homology to the lincomycin biosynthetic genes coding for the predicted common parts of the pathway were identified in S. caelestis. Then, genomic DNA of S. caelestis treated by a multiple digestion was hybridized with five digoxigenin-labeled probes to construct a rough restriction map. Two consecutive islands formed by the genes with a putative function in biosynthesis of the shared saccharide moiety revealed an organization similar to the lincomycin biosynthetic gene cluster. The celesticetin cluster was mapped and essential information was obtained for subsequent steps, i.e. isolation and sequence analysis of the cluster.
Collapse
Affiliation(s)
- L Cermák
- Institute of Microbiology, 142 20 Prague, Czechia.
| | | | | | | | | | | |
Collapse
|
47
|
Jolivet K, Grenier E, Bouchet JP, Esquibet M, Kerlan MC, Caromel B, Mugniéry D, Lefebvre V. Identification of plant genes regulated in resistant potato Solanum sparsipilum during the early stages of infection by Globodera pallida. Genome 2007; 50:422-7. [PMID: 17546100 DOI: 10.1139/g07-015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a complementary (c)DNA-amplified fragment length polymorphism (AFLP) approach, we investigated differential gene expression linked to resistance mechanisms during the incompatible potato - Globodera pallida interaction. Expression was compared between a resistant and a susceptible potato clone, inoculated or not inoculated with G. pallida. These clones were issued from a cross between the resistant Solanum sparsipilum spl329.18 accession and the susceptible dihaploid S. tuberosum Caspar H3, and carried, respectively, resistant and susceptible alleles at the resistance quantitative trait loci (QTLs). Analysis was done on root fragments picked up at 4 time points, during a period of 6 days after infection, from penetration of the nematode in the root to degradation of the feeding site in resistant plants. A total of 2560 transcript-derived fragments (TDFs) were analyzed, resulting in the detection of 46 TDFs that were up- or downregulated. The number of TDFs that were up- or downregulated increased with time after inoculation. The majority of TDFs were upregulated at only 1 or 2 time points in response to infection. After isolation and sequencing of the TDFs of interest, a subset of 36 sequences were identified, among which 22 matched plant sequences and 2 matched nematode sequences. Some of the TDFs that matched plant genes showed clear homologies to genes involved in cell-cycle regulation, transcription regulation, resistance downstream signalling pathways, and defense mechanisms. Other sequences with homologies to plant genes of unknown function or without any significant similarity to known proteins were also found. Although not exhaustive, these results represent the most extensive list of genes with altered RNA levels after the incompatible G. pallida-potato interaction that has been published to date. The function of these genes could provide insight into resistance or plant defense mechanisms during incompatible potato-cyst nematode interactions.
Collapse
Affiliation(s)
- Katell Jolivet
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, BP 94, F-84140 Montfavet, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS. Low-molecular-weight post-translationally modified microcins. Mol Microbiol 2007; 65:1380-94. [PMID: 17711420 DOI: 10.1111/j.1365-2958.2007.05874.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcins are a class of ribosomally synthesized antibacterial peptides produced by Enterobacteriaceae and active against closely related bacterial species. While some microcins are active as unmodified peptides, others are heavily modified by dedicated maturation enzymes. Low-molecular-weight microcins from the post-translationally modified group target essential molecular machines inside the cells. In this review, available structural and functional data about three such microcins--microcin J25, microcin B17 and microcin C7-C51--are discussed. While all three low-molecular-weight post-translationally modified microcins are produced by Escherichia coli, inferences based on sequence and structural similarities with peptides encoded or produced by phylogenetically diverse bacteria are made whenever possible to put these compounds into a larger perspective.
Collapse
Affiliation(s)
- Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
49
|
Salzano AM, Febbraio F, Farias T, Cetrangolo GP, Nucci R, Scaloni A, Manco G. Redox stress proteins are involved in adaptation response of the hyperthermoacidophilic archaeon Sulfolobus solfataricus to nickel challenge. Microb Cell Fact 2007; 6:25. [PMID: 17692131 PMCID: PMC1995220 DOI: 10.1186/1475-2859-6-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 08/12/2007] [Indexed: 11/21/2022] Open
Abstract
Background Exposure to nickel (Ni) and its chemical derivatives has been associated with severe health effects in human. On the contrary, poor knowledge has been acquired on target physiological processes or molecular mechanisms of this metal in model organisms, including Bacteria and Archaea. In this study, we describe an analysis focused at identifying proteins involved in the recovery of the archaeon Sulfolobus solfataricus strain MT4 from Ni-induced stress. Results To this purpose, Sulfolobus solfataricus was grown in the presence of the highest nickel sulphate concentration still allowing cells to survive; crude extracts from treated and untreated cells were compared at the proteome level by using a bi-dimensional chromatography approach. We identified several proteins specifically repressed or induced as result of Ni treatment. Observed up-regulated proteins were largely endowed with the ability to trigger recovery from oxidative and osmotic stress in other biological systems. It is noteworthy that most of the proteins induced following Ni treatment perform similar functions and a few have eukaryal homologue counterparts. Conclusion These findings suggest a series of preferential gene expression pathways activated in adaptation response to metal challenge.
Collapse
Affiliation(s)
- Anna M Salzano
- Laboratorio di Proteomica e Spettrometria di Massa, ISPAAM, Consiglio Nazionale delle Ricerche, 80147 Napoli, Italy
| | - Ferdinando Febbraio
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Tiziana Farias
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni P Cetrangolo
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Roberto Nucci
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Andrea Scaloni
- Laboratorio di Proteomica e Spettrometria di Massa, ISPAAM, Consiglio Nazionale delle Ricerche, 80147 Napoli, Italy
| | - Giuseppe Manco
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
50
|
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 2007; 24:708-34. [PMID: 17653356 DOI: 10.1039/b516237h] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microcins are gene-encoded antibacterial peptides, with molecular masses below 10 kDa, produced by enterobacteria. They are secreted under conditions of nutrient depletion and exert potent antibacterial activity against closely related species. Typical gene clusters encoding the microcin precursor, the self-immunity factor, the secretion proteins and frequently the post-translational modification enzymes are located either on plasmids or on the chromosome. In contrast to most of the antibiotics of microbial origin, which are non-ribosomally synthesized by multimodular enzymes termed peptide synthetases, microcins are ribosomally synthesized as precursors, which are further modified enzymatically. They form a restricted class of potent antibacterial peptides. Fourteen microcins have been reported so far, among which only seven have been isolated and characterized. Despite the low number of known representatives, microcins exhibit a diversity of structures and antibacterial mechanisms. This review provides an updated overview of microcin structures, antibacterial activities, genetic systems and biosyntheses, as well as of their mechanisms of action.
Collapse
Affiliation(s)
- Sophie Duquesne
- Laboratory of Chemistry and Biochemistry of Natural Substances, UMR 5154 CNRS, Department of Regulations, Development and Molecular Diversity, National Museum of Natural History, CP 54, 57 rue Cuvier, 75005, Paris, France
| | | | | | | |
Collapse
|