1
|
Klaysubun C, Chaichana N, Suwannasin S, Singkhamanan K, Yaikhan T, Kantachote D, Pomwised R, Wonglapsuwan M, Surachat K. Genomic Insights and Comparative Analysis of Novel Rhodopseudomonas Species: A Purple Non-Sulfur Bacterium Isolated from Latex Rubber Sheet Wastewater. Life (Basel) 2025; 15:754. [PMID: 40430182 PMCID: PMC12113291 DOI: 10.3390/life15050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Rhodopseudomonas is recognized for its versatile metabolic capabilities that enable it to effectively degrade pollutants and survive various environmental stresses. In this study, we conducted a genome analysis of Rhodopseudomonas sp. P1 to investigate its genetic potential for wastewater treatment processes. Phylogenetic and genome-relatedness analyses confirmed that strain P1 is genetically distinct from other species within the Rhodopseudomonas genus, establishing it as a novel species. The genome sequences obtained and analyzed focused on genes related to carbon and nutrient removal, photosynthetic capabilities, nitrate and nitrite reduction, and the biodegradation of common wastewater pollutants. The identification of wastewater treatment-related genes followed an extensive review of the existing literature that helped in selecting genes involved in various wastewater treatment mechanisms. The genome of Rhodopseudomonas sp. P1 contains a diverse array of genes involved in carbon and nutrient cycling, pollutant biodegradation, and metal resistance, all of which are crucial for its survival in the complex wastewater environment. Specifically, the strain contains genes responsible for the denitrification, nitrogen fixation, sulfur cycling, and detoxification of toxic metals such as copper and arsenic. These findings highlight the potential application of Rhodopseudomonas sp. P1 in wastewater treatment, particularly in environments contaminated with organic pollutants and heavy metals. However, while the genomic features indicate significant promise, the practical implementation of Rhodopseudomonas sp. P1 in real-world wastewater treatment systems will require further investigation, optimization, and validation to fully harness its potential for sustainable and efficient wastewater treatment.
Collapse
Affiliation(s)
- Chollachai Klaysubun
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Nattarika Chaichana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (D.K.); (R.P.); (M.W.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (C.K.); (N.C.); (S.S.); (K.S.); (T.Y.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Hiralal A, Geelhoed JS, Neukirchen S, Meysman FJR. Comparative genomic analysis of nickel homeostasis in cable bacteria. BMC Genomics 2024; 25:692. [PMID: 39009997 PMCID: PMC11247825 DOI: 10.1186/s12864-024-10594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Cable bacteria are filamentous members of the Desulfobulbaceae family that are capable of performing centimetre‑scale electron transport in marine and freshwater sediments. This long‑distance electron transport is mediated by a network of parallel conductive fibres embedded in the cell envelope. This fibre network efficiently transports electrical currents along the entire length of the centimetre‑long filament. Recent analyses show that these fibres consist of metalloproteins that harbour a novel nickel‑containing cofactor, which indicates that cable bacteria have evolved a unique form of biological electron transport. This nickel‑dependent conduction mechanism suggests that cable bacteria are strongly dependent on nickel as a biosynthetic resource. Here, we performed a comprehensive comparative genomic analysis of the genes linked to nickel homeostasis. We compared the genome‑encoded adaptation to nickel of cable bacteria to related members of the Desulfobulbaceae family and other members of the Desulfobulbales order. RESULTS Presently, four closed genomes are available for the monophyletic cable bacteria clade that consists of the genera Candidatus Electrothrix and Candidatus Electronema. To increase the phylogenomic coverage, we additionally generated two closed genomes of cable bacteria: Candidatus Electrothrix gigas strain HY10‑6 and Candidatus Electrothrix antwerpensis strain GW3‑4, which are the first closed genomes of their respective species. Nickel homeostasis genes were identified in a database of 38 cable bacteria genomes (including 6 closed genomes). Gene prevalence was compared to 19 genomes of related strains, residing within the Desulfobulbales order but outside of the cable bacteria clade, revealing several genome‑encoded adaptations to nickel homeostasis in cable bacteria. Phylogenetic analysis indicates that nickel importers, nickel‑binding enzymes and nickel chaperones of cable bacteria are affiliated to organisms outside the Desulfobulbaceae family, with several proteins showing affiliation to organisms outside of the Desulfobacterota phylum. Conspicuously, cable bacteria encode a unique periplasmic nickel export protein RcnA, which possesses a putative cytoplasmic histidine‑rich loop that has been largely expanded compared to RcnA homologs in other organisms. CONCLUSION Cable bacteria genomes show a clear genetic adaptation for nickel utilization when compared to closely related genera. This fully aligns with the nickel‑dependent conduction mechanism that is uniquely found in cable bacteria.
Collapse
Affiliation(s)
- Anwar Hiralal
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | - Sinje Neukirchen
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | - Filip J R Meysman
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
3
|
Hernandez JA, Micus PS, Sunga SAL, Mazzei L, Ciurli S, Meloni G. Metal selectivity and translocation mechanism characterization in proteoliposomes of the transmembrane NiCoT transporter NixA from Helicobacter pylori. Chem Sci 2024; 15:651-665. [PMID: 38179545 PMCID: PMC10762997 DOI: 10.1039/d3sc05135h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Essential trace metals play key roles in the survival, replication, and virulence of bacterial pathogens. Helicobacter pylori (H. pylori), the main bacterial cause of gastric ulcers, requires Ni(ii) to colonize and persist in the acidic environment inside the stomach, exploiting the nickel-containing enzyme urease to catalyze the hydrolysis of urea to ammonia and bicarbonate and create a pH-buffered microenvironment. Urease utilizes Ni(ii) as a catalytic cofactor for its activity. In ureolytic bacteria, unique transmembrane (TM) transporters evolved to guarantee the selective uptake and efflux of Ni(ii) across cellular membranes to meet the cellular requirements. NixA is an essential Ni(ii) transporter expressed by H. pylori when the extracellular environment experiences a drop in pH. This Class I nickel-cobalt transporter of the NiCoT family catalyzes the uptake of Ni(ii) across the inner membrane from the periplasm. In this study, we characterized NixA using a platform whereby, for the first time on a NiCoT transporter, recombinantly expressed and purified NixA and key mutants in the translocation pathway have been reconstituted in artificial lipid bilayer vesicles (proteoliposomes). Fluorescent sensors responsive to Ni(ii) transport (Fluozin-3-Zn(ii)), luminal pH changes (pyranine), and membrane potential (oxonol VI) were encapsulated in the proteoliposomes lumen to monitor, in real-time, NixA transport properties and translocation mechanism. Kinetic transport analysis revealed that NixA is highly selective for Ni(ii) with no substrate promiscuity towards Co(ii), the other putative metal substrate of the NiCoT family, nor Zn(ii). NixA-mediated Ni(ii) transport exhibited a Michaelis-Menten-type saturable substrate concentration dependence, with an experimental KM, Ni(ii) = 31.0 ± 1.2 μM. Ni(ii) transport by NixA was demonstrated to be electrogenic, and metal translocation did not require a proton motive force, resulting in the generation of a positive-inside transmembrane potential in the proteoliposome lumen. Mutation analysis characterized key transmembrane residues for substrate recognition, binding, and/or transport, suggesting the presence of a three-step transmembrane translocation conduit. Taken together, these investigations reveal that NixA is a Ni(ii)-selective Class I NiCoT electrogenic uniporter. The work also provides an in vitro approach to characterize the transport properties of metal transporters responsible for Ni(ii) acquisition and extrusion in prokaryotes.
Collapse
Affiliation(s)
- Jayoh A Hernandez
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Paul S Micus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sean Alec Lois Sunga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna Bologna I-40127 Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna Bologna I-40127 Italy
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
4
|
Adhikary A, Biswal S, Chatterjee D, Ghosh AS. A NiCoT family metal transporter of Mycobacterium tuberculosis (Rv2856/NicT) behaves as a drug efflux pump that facilitates cross-resistance to antibiotics. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36282241 DOI: 10.1099/mic.0.001260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metals often act as a facilitator in the proliferation and persistence of antibiotic resistance. Efflux pumps play key roles in the co-selection of metal and antibiotic resistance. Here, we report the ability of a putative nickel/cobalt transporter (NiCoT family), Rv2856 or NicT of Mycobacterium tuberculosis (Mtb), to transport metal and antibiotics and identified some key amino acid residues that are important for its function. Ectopic expression of NicT in Escherichia coli CS109 resulted in the increase of intracellular nickel uptake. Additionally, enhanced tolerance towards several antibiotics (norfloxacin, sparfloxacin, ofloxacin, gentamicin, nalidixic acid and isoniazid) was observed with NicT overexpression in E. coli and Mycobacterium smegmatis. A comparatively lower intracellular accumulation of norfloxacin upon NicT overexpression than that of the cells without NicT indicated the involvement of NicT in an active efflux process. Although expression of NicT did not alter the sensitivity towards kanamycin, doxycycline, tetracycline, apramycin, neomycin and ethambutol, the presence of a sub-inhibitory dose of Ni2+ resulted in the manifestation of low-level tolerance towards these drugs. Further, substitution of four residues (H77I, D82I, H83L and D227I) in the conserved regions of NicT by isoleucine and leucine resulted in reduced to nearly complete loss of the transport function for both metals and antimicrobials. Therefore, the study suggests that nickel transporter Rv2856/NicT may actively export different drugs and the presence of nickel might drive the cross-resistance to some of the antibiotics.
Collapse
Affiliation(s)
- Anwesha Adhikary
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Sarmistha Biswal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Debasmita Chatterjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
5
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
6
|
Yousef EN, Angel LA. Comparison of the pH-dependent formation of His and Cys heptapeptide complexes of nickel(II), copper(II), and zinc(II) as determined by ion mobility-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4489. [PMID: 31881105 DOI: 10.1002/jms.4489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The analog methanobactin (amb) peptide with the sequence ac-His1 -Cys2 -Gly3 -Pro4 -Tyr5 -His6 -Cys7 (amb5A ) will bind the metal ions of zinc, nickel, and copper. To further understand how amb5A binds these metals, we have undertaken a series of studies of structurally related heptapeptides where one or two of the potential His or Cys binding sites have been replaced by Gly, or the C-terminus has been blocked by amidation. The studies were designed to compare how these metals bind to these sequences in different pH solutions of pH 4.2 to 10 and utilized native electrospray ionization (ESI) with ion mobility-mass spectrometry (IM-MS) which allows for the quantitative analysis of the charged species produced during the reactions. The native ESI conditions were chosen to conserve as much of the solution-phase behavior of the amb peptides as possible and an analysis of how the IM-MS results compare with the expected solution-phase behavior is discussed. The oligopeptides studied here have applications for tag-based protein purification methods, as therapeutics for diseases caused by elevated metal ion levels or as inhibitors for metal-protein enzymes such as matrix metalloproteinases.
Collapse
Affiliation(s)
- Enas N Yousef
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, 75428, USA
| | - Laurence A Angel
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, 75428, USA
| |
Collapse
|
7
|
Finkenwirth F, Sippach M, Pecina SN, Gäde M, Ruta J, Ricke A, Bondarenko E, Klare JP, Zinke M, Lange S, Lange A, Steinhoff HJ, Eitinger T. Dynamic interactions of CbiN and CbiM trigger activity of a cobalt energy-coupling-factor transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183114. [PMID: 31666178 DOI: 10.1016/j.bbamem.2019.183114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
Energy-coupling factor (ECF) transporters for uptake of vitamins and transition-metal ions into prokaryotic cells share a common architecture consisting of a substrate-specific integral membrane protein (S), a transmembrane coupling protein (T) and two cytoplasmic ATP-binding-cassette-family ATPases. S components rotate within the membrane to expose their binding pockets alternately to the exterior and the cytoplasm. In contrast to vitamin transporters, metal-specific systems rely on additional proteins with essential but poorly understood functions. CbiN, a membrane protein composed of two transmembrane helices tethered by an extracytoplasmic loop of 37 amino-acid residues represents the auxiliary component that temporarily interacts with the CbiMQO2 Co2+ transporter. CbiN was previously shown to induce significant Co2+ transport activity in the absence of CbiQO2 in cells producing the S component CbiM plus CbiN or a Cbi(MN) fusion. Here we analyzed the mode of interaction between the two protein domains. Any deletion in the CbiN loop abolished transport activity. In silico predicted protein-protein contacts between segments of the CbiN loop and loops in CbiM were confirmed by cysteine-scanning mutagenesis and crosslinking. Likewise, an ordered structure of the CbiN loop was observed by electron paramagnetic resonance analysis after site-directed spin labeling. The N-terminal loop of CbiM containing three of four metal ligands was partially immobilized in wild-type Cbi(MN) but completely immobile in inactive variants with CbiN loop deletions. Decreased dynamics of the inactive form was also detected by solid-state nuclear magnetic resonance of isotope-labeled protein in proteoliposomes. In conclusion, CbiM-CbiN loop-loop interactions facilitate metal insertion into the binding pocket.
Collapse
Affiliation(s)
- Friedrich Finkenwirth
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Michael Sippach
- Fachbereich Physik, Universität Osnabrück, 49076 Osnabrück, Germany
| | - Sinah N Pecina
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Mario Gäde
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Julia Ruta
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Adrian Ricke
- Fachbereich Physik, Universität Osnabrück, 49076 Osnabrück, Germany
| | - Elena Bondarenko
- Fachbereich Physik, Universität Osnabrück, 49076 Osnabrück, Germany
| | - Johann P Klare
- Fachbereich Physik, Universität Osnabrück, 49076 Osnabrück, Germany
| | - Maximilian Zinke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | | | - Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.
| |
Collapse
|
8
|
Metzner R, Nomura T, Kitaoka N, Ando A, Ogawa J, Kato Y. Cobalt-dependent inhibition of nitrite oxidation in Nitrobacter winogradskyi. J Biosci Bioeng 2019; 128:463-467. [PMID: 31029538 DOI: 10.1016/j.jbiosc.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 10/26/2022]
Abstract
Nitrobacter winogradskyi is an abundant, intensively studied autotrophic nitrite-oxidizing bacterium, which is frequently used as a model strain in the two-step nitrification of ammonia (NH3) to nitrate (NO3-) via nitrite (NO2-), either in activated sludge, agricultural field studies or more recently in artificial microbial consortia for organic hydroponics. We observed a hitherto unknown cobalt ion-dependent inhibition of cell growth and NO2- oxidation activity of N. winogradskyi in a mineral medium, which strongly depended on accompanying Ca2+ and Mg2+ concentrations. This inhibition was bacteriostatic, but susceptible to natural chelators. l-Histidine effectively restored cell growth and NO2- oxidation activity of N. winogradskyi in mineral media containing Co2+ with >90% recovery. Our results suggest that Co2+ competed with alkaline earth metals during uptake and that its toxicity was significantly reduced by complexation.
Collapse
Affiliation(s)
- Richard Metzner
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoki Kitaoka
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
9
|
Rowińska-Żyrek M. Periplasmic HupE region-Ni 2+ interactions: Thermodynamics, binding mode and competition with Cu 2+ and Zn 2+. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Gao R, Wang Y, Zhang Y, Tong J, Dai W. Cobalt(II) bioaccumulation and distribution in Rhodopseudomonas palustris. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1292148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Rui Gao
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, China
| | - Yiming Wang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Chengdu, China
| | - Yefei Zhang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, China
| | - Jin Tong
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Chengdu, China
| | - Wei Dai
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
11
|
Chen JL, Steele TWJ, Stuckey DC. Stimulation and Inhibition of Anaerobic Digestion by Nickel and Cobalt: A Rapid Assessment Using the Resazurin Reduction Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11154-11163. [PMID: 27690408 DOI: 10.1021/acs.est.6b03522] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stimulation of anaerobic digestion by essential trace metals is beneficial from a practical point of view to enhance the biodegradability and degradation rate of wastes. Hence, a quick method to determine which metal species, and at what concentration, can optimize anaerobic digestion is of great interest to both researchers and operators. In this present study, we investigated the effect of nickel(II), cobalt(II), and their mixture, on the anaerobic digestion of synthetic municipal wastewater. Using a volumetric method, that is, measuring methane production over time, revealed that anaerobic digestion was stimulated by the addition of 5 mg L-1 nickel(II), and cobalt(II), and their mixture in day(s). However, using a novel resazurin reduction assay, and based on its change in rate over time, we evaluated both inhibition at 250 mg L-1 nickel(II) and cobalt(II), and also the stimulatory effect of 5 mg L-1 nickel(II), and cobalt(II), and their mixture, in just 6 h. By investigating the dynamic distribution of these metals in the liquid phase of the anaerobic system and kinetics of resazurin reduction by nickel spiked anaerobic sludge, the concentration of nickel(II) on anaerobic digestion performance was profiled. Three critical concentrations were determined; stimulation starting (around 1 mg L-1), stimulation ending (around 100 mg L-1) and stimulation maximizing (around 10 mg L-1). Hence, we propose that the resazurin reduction assay is a novel and quick protocol for studying the stimulation of anaerobic bioprocesses by bioavailable essential trace metals.
Collapse
Affiliation(s)
- Jian Lin Chen
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University , Singapore 637141
| | - Terry W J Steele
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University , Singapore 637141
| | - David C Stuckey
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University , Singapore 637141
- Department of Chemical Engineering, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
12
|
Manzoor I, Shafeeq S, Kloosterman TG, Kuipers OP. Co(2+)-dependent gene expression in Streptococcus pneumoniae: opposite effect of Mn(2+) and Co(2+) on the expression of the virulence genes psaBCA, pcpA, and prtA. Front Microbiol 2015; 6:748. [PMID: 26257722 PMCID: PMC4513243 DOI: 10.3389/fmicb.2015.00748] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/08/2015] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn(2+))-, zinc (Zn(2+))- and copper (Cu(2+)) play significant roles in transcriptional gene regulation, physiology, and virulence of Streptococcus pneumoniae. So far, the effect of the important transition metal ion cobalt (Co(2+)) on gene expression of S. pneumoniae has not yet been explored. Here, we study the impact of Co(2+) stress on the transcriptome of S. pneumoniae strain D39. BLAST searches revealed that the genome of S. pneumoniae encodes a putative Co(2+)-transport operon (cbi operon), the expression of which we show here to be induced by a high Co(2+) concentration. Furthermore, we found that Co(2+), as has been shown previously for Zn(2+), can cause derepression of the genes of the PsaR virulence regulon, encoding the Mn(2+)-uptake system PsaBCA, the choline binding protein PcpA and the cell-wall associated serine protease PrtA. Interestingly, although Mn(2+) represses expression of the PsaR regulon and Co(2+) leads to derepression, both metal ions stimulate interaction of PsaR with its target promoters. These data will be discussed in the light of previous studies on similar metal-responsive transcriptional regulators.
Collapse
Affiliation(s)
- Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands ; Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands ; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm Sweden
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
13
|
Albareda M, Rodrigue A, Brito B, Ruiz-Argüeso T, Imperial J, Mandrand-Berthelot MA, Palacios J. Rhizobium leguminosarum HupE is a highly-specific diffusion facilitator for nickel uptake. Metallomics 2015; 7:691-701. [DOI: 10.1039/c4mt00298a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Functional and topological analysis ofRhizobium leguminosarumHupE, the founding member of the HupE/UreJ family of nickel permeases, provides new hints on how bacteria manage nickel provision for metalloenzyme synthesis.
Collapse
Affiliation(s)
- Marta Albareda
- Departamento de Biotecnología
- Escuela Técnica Superior de Ingenieros Agrónomos and Centro de Biotecnología y Genómica de Plantas (C.B.G.P.)
- Universidad Politécnica de Madrid
- Campus de Montegancedo
- 28223 Pozuelo de Alarcón, Spain
| | - Agnès Rodrigue
- Microbiologie
- Adaptation et Pathogénie
- F-69622 Villeurbanne Cedex, France
| | - Belén Brito
- Departamento de Biotecnología
- Escuela Técnica Superior de Ingenieros Agrónomos and Centro de Biotecnología y Genómica de Plantas (C.B.G.P.)
- Universidad Politécnica de Madrid
- Campus de Montegancedo
- 28223 Pozuelo de Alarcón, Spain
| | - Tomás Ruiz-Argüeso
- Departamento de Biotecnología
- Escuela Técnica Superior de Ingenieros Agrónomos and Centro de Biotecnología y Genómica de Plantas (C.B.G.P.)
- Universidad Politécnica de Madrid
- Campus de Montegancedo
- 28223 Pozuelo de Alarcón, Spain
| | - Juan Imperial
- Departamento de Biotecnología
- Escuela Técnica Superior de Ingenieros Agrónomos and Centro de Biotecnología y Genómica de Plantas (C.B.G.P.)
- Universidad Politécnica de Madrid
- Campus de Montegancedo
- 28223 Pozuelo de Alarcón, Spain
| | | | - Jose Palacios
- Departamento de Biotecnología
- Escuela Técnica Superior de Ingenieros Agrónomos and Centro de Biotecnología y Genómica de Plantas (C.B.G.P.)
- Universidad Politécnica de Madrid
- Campus de Montegancedo
- 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
14
|
Chivers PT. Cobalt and Nickel. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cobalt and nickel play key roles in biological systems as cofactors in a small number of important enzymes. The majority of these are found in microbes. Evidence for direct roles for Ni(II) and Co(II) enzymes in higher organisms is limited, with the exception of the well-known requirement for the cobalt-containing vitamin B12 cofactor and the Ni-dependent urease in plants. Nonetheless, nickel in particular plays a key role in human health because of its essential role in microbes that inhabit various growth niches within the body. These roles can be beneficial, as can be seen with the anaerobic production and consumption of H2 in the digestive tract by bacteria and archaea that results in increased yields of short-chain fatty acids. In other cases, nickel has an established role in the establishment of pathogenic infection (Helicobacter pylori urease and colonization of the stomach). The synthesis of Co- and Ni-containing enzymes requires metal import from the extracellular milieu followed by the targeting of these metals to the appropriate protein and enzymes involved in metallocluster or cofactor biosynthesis. These metals are toxic in excess so their levels must be regulated carefully. This complex pathway of metalloenzyme synthesis and intracellular homeostasis requires proteins that can specifically recognize these metals in a hierarchical manner. This chapter focuses on quantitative and structural details of the cobalt and nickel binding sites in transport, trafficking and regulatory proteins involved in cobalt and nickel metabolism in microbes.
Collapse
Affiliation(s)
- Peter T. Chivers
- Department of Chemistry, School of Biological and Biomedical Sciences, and Biophysical Sciences Institute, Durham University Durham UK
| |
Collapse
|
15
|
Abstract
Urease in Cryptococcus neoformans plays an important role in fungal dissemination to the brain and causing meningoencephalitis. Although urea is not required for synthesis of apourease encoded by URE1, the available nitrogen source affected the expression of URE1 as well as the level of the enzyme activity. Activation of the apoenzyme requires three accessory proteins, Ure4, Ure6, and Ure7, which are homologs of the bacterial urease accessory proteins UreD, UreF, and UreG, respectively. A yeast two-hybrid assay showed positive interaction of Ure1 with the three accessory proteins encoded by URE4, URE6, and URE7. Metalloproteomic analysis of cryptococcal lysates using inductively coupled plasma mass spectrometry (ICP-MS) and a biochemical assay of urease activity showed that, as in many other organisms, urease is a metallocentric enzyme that requires nickel transported by Nic1 for its catalytic activity. The Ure7 accessory protein (bacterial UreG homolog) binds nickel likely via its conserved histidine-rich domain and appears to be responsible for the incorporation of Ni2+ into the apourease. Although the cryptococcal genome lacks the bacterial UreE homolog, Ure7 appears to combine the functions of bacterial UreE and UreG, thus making this pathogen more similar to that seen with the plant system. Brain invasion by the ure1, ure7, and nic1 mutant strains that lack urease activity was significantly less effective in a mouse model. This indicated that an activated urease and not the Ure1 protein was responsible for enhancement of brain invasion and that the factors required for urease activation in C. neoformans resemble those of plants more than those of bacteria. Cryptococcus neoformans is the major fungal agent of meningoencephalitis in humans. Although urease is an important factor for cryptococcal brain invasion, the enzyme activation system has not been studied. We show that urease is a nickel-requiring enzyme whose activity level is influenced by the type of available nitrogen source. C. neoformans contains all the bacterial urease accessory protein homologs and nickel transporters except UreE, a nickel chaperone. Cryptococcal Ure7 (a homolog of UreG) apparently functions as both the bacterial UreG and UreE in activating the Ure1 apoenzyme. The cryptococcal urease accessory proteins Ure4, Ure6, and Ure7 interacted with Ure1 in a yeast two-hybrid assay, and deletion of any one of these not only inactivated the enzyme but also reduced the efficacy of brain invasion. This is the first study showing a holistic picture of urease in fungi, clarifying that urease activity, and not Ure1 protein, contributes to pathogenesis in C. neoformans
Collapse
|
16
|
Deng X, He J, He N. Comparative study on Ni(2+)-affinity transport of nickel/cobalt permeases (NiCoTs) and the potential of recombinant Escherichia coli for Ni(2+) bioaccumulation. BIORESOURCE TECHNOLOGY 2013; 130:69-74. [PMID: 23306112 DOI: 10.1016/j.biortech.2012.11.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/22/2012] [Accepted: 11/28/2012] [Indexed: 06/01/2023]
Abstract
Comparative evaluation on Ni(2+)-uptake of two nickel-affinity transmembrane proteins (NiCoTs) respectively from Helocobacter pylori (NixA) and Staphylococcus aureus (NisA) was performed. Expression of NiCoTs alone did not promote Ni(2+) uptake of the recombinant strains and made the growth susceptible to Ni(2+). However, recombinant strains expressing both NiCoTs and Metallothionein (MT) showed enhanced tolerance to Ni(2+) and Ni(2+) uptake. The maximum Ni(2+)-uptake capacity of recombinant strain N1c expressing NixA+MT reached 83.33mgg(-1), higher than 45.45mgg(-1) of recombinant strain N1d expressing NisA+MT. N1c exhibited more effective Ni(2+) accumulation than N1d in the presence of Na(+), Co(2+) and Cd(2+). NiCoTs promoted intracellular Ni(2+) uptake of the recombinant strains. Phosphate groups dominated Ni(2+) binding of wild type Escherichia coli, but carboxyl groups contributed more for N1c and N1d. The result suggested that NixA has a higher specificity in Ni(2+) binding than NisA, and both NiCoTs and MT are important for Ni(2+) bioaccumulation.
Collapse
Affiliation(s)
- Xu Deng
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Abstract
Biological trace metals are needed in small quantities, but used by all living organisms. They are employed in key cellular functions in a variety of biological processes, resulting in the various degree of dependence of organisms on metals. Most effort in the field has been placed on experimental studies of metal utilization pathways and metal-dependent proteins. On the other hand, systemic level analyses of metalloproteomes (or metallomes) have been limited for most metals. In this chapter, we focus on the recent advances in comparative genomics, which provides many insights into evolution and function of metal utilization. These studies suggested that iron and zinc are widely used in biology (presumably by all organisms), whereas some other metals such as copper, molybdenum, nickel, and cobalt, show scattered occurrence in various groups of organisms. For these metals, most user proteins are well characterized and their dependence on a specific element is evolutionarily conserved. We also discuss evolutionary dynamics of the dependence of user proteins on different metals. Overall, comparative genomics analysis of metallomes provides a foundation for the systemic level understanding of metal utilization as well as for investigating the general features, functions, and evolutionary dynamics of metal use in the three domains of life.
Collapse
|
20
|
Higgins KA, Carr CE, Maroney MJ. Specific metal recognition in nickel trafficking. Biochemistry 2012; 51:7816-32. [PMID: 22970729 DOI: 10.1021/bi300981m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering, and incorporating the metal into target enzymes and controlling the levels of nickel in cells to prevent toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.g., Escherichia coli transports nickel for hydrogenases made under anaerobic conditions, and Helicobacter pylori requires nickel for hydrogenase and urease that are essential for acid viability), the "traffic pattern" for nickel is relatively simple, and nickel trafficking therefore presents an opportunity to examine a system for the mechanisms that are used to distinguish nickel from other metals. In this review, we describe the details known for examples of uptake permeases, metallochaperones and proteins involved in metallocenter assembly, and nickel metalloregulators. We also illustrate a variety of mechanisms, including molecular recognition in the case of NikA protein and examples of allosteric regulation for HypA, NikR, and RcnR, employed to generate specific biological responses to nickel ions.
Collapse
Affiliation(s)
- Khadine A Higgins
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
21
|
Witkowska D, Rowinska-Zyrek M, Valensin G, Kozlowski H. Specific poly-histidyl and poly-cysteil protein sites involved in Ni2+ homeostasis in Helicobacter pylori. Impact of Bi3+ ions on Ni2+ binding to proteins. Structural and thermodynamic aspects. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Bacterial outer membrane channel for divalent metal ion acquisition. Proc Natl Acad Sci U S A 2011; 108:15390-5. [PMID: 21880957 DOI: 10.1073/pnas.1110137108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The prevailing model of bacterial membrane function predicts that the outer membrane is permeable to most small solutes because of pores with limited selectivity based primarily on size. Here, we identified mnoP in the Gram-negative bacterium Bradyrhizobium japonicum as a gene coregulated with the inner membrane Mn(2+) transporter gene mntH. MnoP is an outer membrane protein expressed specifically under manganese limitation. MnoP acts as a channel to facilitate the tranlocation of Mn(2+), but not Co(2+) or Cu(2+), into reconstituted proteoliposomes. An mnoP mutant is defective in high-affinity Mn(2+) transport into cells and has a severe growth phenotype under manganese limitation. We suggest that the outer membrane is a barrier to divalent metal ions that requires a selective channel to meet the nutritional needs of the cell.
Collapse
|
23
|
RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli. J Bacteriol 2011; 193:3785-93. [PMID: 21665978 DOI: 10.1128/jb.05032-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nickel and cobalt are both essential trace elements that are toxic when present in excess. The main resistance mechanism that bacteria use to overcome this toxicity is the efflux of these cations out of the cytoplasm. RND (resistance-nodulation-cell division)- and MFS (major facilitator superfamily)-type efflux systems are known to export either nickel or cobalt. The RcnA efflux pump, which belongs to a unique family, is responsible for the detoxification of Ni and Co in Escherichia coli. In this work, the role of the gene yohN, which is located downstream of rcnA, is investigated. yohN is cotranscribed with rcnA, and its expression is induced by Ni and Co. Surprisingly, in contrast to the effect of deleting rcnA, deletion of yohN conferred enhanced resistance to Ni and Co in E. coli, accompanied by decreased metal accumulation. We show that YohN is localized to the periplasm and does not bind Ni or Co ions directly. Physiological and genetic experiments demonstrate that YohN is not involved in Ni import. YohN is conserved among proteobacteria and belongs to a new family of proteins; consequently, yohN has been renamed rcnB. We show that the enhanced resistance of rcnB mutants to Ni and Co and their decreased Ni and Co intracellular accumulation are linked to the greater efflux of these ions in the absence of rcnB. Taken together, these results suggest that RcnB is required to maintain metal ion homeostasis, in conjunction with the efflux pump RcnA, presumably by modulating RcnA-mediated export of Ni and Co to avoid excess efflux of Ni and Co ions via an unknown novel mechanism.
Collapse
|
24
|
Siche S, Neubauer O, Hebbeln P, Eitinger T. A bipartite S unit of an ECF-type cobalt transporter. Res Microbiol 2010; 161:824-9. [PMID: 20868747 DOI: 10.1016/j.resmic.2010.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/31/2010] [Indexed: 11/25/2022]
Abstract
ECF-class transporters comprise abundant importers for micronutrients such as vitamins and transition-metal ions, and for intermediates of salvage pathways in bacteria and archaea. They are composed of ABC ATPases (A units), a conserved transmembrane protein (T unit) and a substrate-specific transmembrane protein (S unit or core transporter). Here we analyzed the function of an ECF-type Co(2+) transporter (CbiMNQO) and, in particular, the derived bipartite S unit CbiMN. CbiMN was characterized as the minimal unit that functions as a Co(2+) transporter. Neither the solitary CbiM nor a tripartite CbiMQO complex was active, indicating an essential role for CbiN. CbiN was loosely bound in CbiMNQO and CbiMN complexes, and did not copurify with its partners. Generating a contiguous reading frame resulted in a Cbi(MN) fusion protein that displayed Co(2+)-transport activity and interacted with CbiQO in vivo. Sixteen variants of Cbi(MN) with modifications in the strongly conserved N-terminal stretch of ten amino-acid residues were constructed and analyzed for transport activity. The results indicate that the length and sequence of this region are critical for functioning of the core transporter. Specifically, they point to essential roles of His₂ and the distance of His₂ to the amino group of the peptide chain in metal recognition.
Collapse
Affiliation(s)
- Stefanie Siche
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestraße 117, 10115 Berlin, Germany.
| | | | | | | |
Collapse
|
25
|
von Rozycki T, Nies DH, Saier MH. Genomic analyses of transport proteins in Ralstonia metallidurans. Comp Funct Genomics 2010; 6:17-56. [PMID: 18629293 PMCID: PMC2448597 DOI: 10.1002/cfg.454] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 12/14/2004] [Accepted: 12/15/2004] [Indexed: 11/06/2022] Open
Abstract
Ralstonia (Wautersia, Cupriavidus) metallidurans (Rme) is better able to withstand
high concentrations of heavy metals than any other well-studied organism. This fact
renders it a potential agent of bioremediation as well as an ideal model organism for
understanding metal resistance phenotypes. We have analysed the genome of Rme
for genes encoding homologues of established and putative transport proteins; 13%
of all genes in Rme encode such homologues. Nearly one-third of the transporters
identified (32%) appear to function in inorganic ion transport with three-quarters
of these acting on cations. Transporters specific for amino acids outnumber sugar
transporters nearly 3 : 1, and this fact plus the large number of uptake systems for
organic acids indicates the heterotrophic preferences of these bacteria. Putative drug
efflux pumps comprise 10% of the encoded transporters, but numerous efflux pumps
for heavy metals, metabolites and macromolecules were also identified. The results
presented should facilitate genetic manipulation and mechanistic studies of transport
in this remarkable bacterium.
Collapse
Affiliation(s)
- Torsten von Rozycki
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | |
Collapse
|
26
|
Brito B, Prieto RI, Cabrera E, Mandrand-Berthelot MA, Imperial J, Ruiz-Argüeso T, Palacios JM. Rhizobium leguminosarum hupE encodes a nickel transporter required for hydrogenase activity. J Bacteriol 2010; 192:925-35. [PMID: 20023036 PMCID: PMC2812973 DOI: 10.1128/jb.01045-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 12/07/2009] [Indexed: 02/04/2023] Open
Abstract
Synthesis of the hydrogen uptake (Hup) system in Rhizobium leguminosarum bv. viciae requires the function of an 18-gene cluster (hupSLCDEFGHIJK-hypABFCDEX). Among them, the hupE gene encodes a protein showing six transmembrane domains for which a potential role as a nickel permease has been proposed. In this paper, we further characterize the nickel transport capacity of HupE and that of the translated product of hupE2, a hydrogenase-unlinked gene identified in the R. leguminosarum genome. HupE2 is a potential membrane protein that shows 48% amino acid sequence identity with HupE. Expression of both genes in the Escherichia coli nikABCDE mutant strain HYD723 restored hydrogenase activity and nickel transport. However, nickel transport assays revealed that HupE and HupE2 displayed different levels of nickel uptake. Site-directed mutagenesis of histidine residues in HupE revealed two motifs (HX(5)DH and FHGX[AV]HGXE) that are required for HupE functionality. An R. leguminosarum double mutant, SPF22A (hupE hupE2), exhibited reduced levels of hydrogenase activity in free-living cells, and this phenotype was complemented by nickel supplementation. Low levels of symbiotic hydrogenase activity were also observed in SPF22A bacteroid cells from lentil (Lens culinaris L.) root nodules but not in pea (Pisum sativum L.) bacteroids. Moreover, heterologous expression of the R. leguminosarum hup system in bacteroid cells of Rhizobium tropici and Mesorhizobium loti displayed reduced levels of hydrogen uptake in the absence of hupE. These data support the role of R. leguminosarum HupE as a nickel permease required for hydrogen uptake under both free-living and symbiotic conditions.
Collapse
Affiliation(s)
- Belén Brito
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Rosa-Isabel Prieto
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Ezequiel Cabrera
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Marie-Andrée Mandrand-Berthelot
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Juan Imperial
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Tomás Ruiz-Argüeso
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - José-Manuel Palacios
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, km 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain, Université Lyon, F-69622 Lyon, Université Lyon 1, Villeurbanne, INSA de Lyon, F-69621 Villeurbanne, and CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Lyon, France, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
27
|
Zhang Y, Gladyshev VN. General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se. J Biol Chem 2009; 285:3393-405. [PMID: 19887375 DOI: 10.1074/jbc.m109.071746] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trace elements are used by all organisms and provide proteins with unique coordination and catalytic and electron transfer properties. Although many trace element-containing proteins are well characterized, little is known about the general trends in trace element utilization. We carried out comparative genomic analyses of copper, molybdenum, nickel, cobalt (in the form of vitamin B(12)), and selenium (in the form of selenocysteine) in 747 sequenced organisms at the following levels: (i) transporters and transport-related proteins, (ii) cofactor biosynthesis traits, and (iii) trace element-dependent proteins. Few organisms were found to utilize all five trace elements, whereas many symbionts, parasites, and yeasts used only one or none of these elements. Investigation of metalloproteomes and selenoproteomes revealed examples of increased utilization of proteins that use copper in land plants, cobalt in Dehalococcoides and Dictyostelium, and selenium in fish and algae, whereas nematodes were found to have great diversity of copper transporters. These analyses also characterized trace element metabolism in common model organisms and suggested new model organisms for experimental studies of individual trace elements. Mismatches in the occurrence of user proteins and corresponding transport systems revealed deficiencies in our understanding of trace element biology. Biological interactions among some trace elements were observed; however, such links were limited, and trace elements generally had unique utilization patterns. Finally, environmental factors, such as oxygen requirement and habitat, correlated with the utilization of certain trace elements. These data provide insights into the general features of utilization and evolution of trace elements in the three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
28
|
Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Chem Rev 2009; 109:4644-81. [PMID: 19788177 PMCID: PMC2783614 DOI: 10.1021/cr900077w] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Ma
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128 USA
| | - Faith E. Jacobsen
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| |
Collapse
|
29
|
Affiliation(s)
- Yanjie Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
30
|
Zhang Y, Gladyshev VN. Comparative Genomics of Trace Elements: Emerging Dynamic View of Trace Element Utilization and Function. Chem Rev 2009; 109:4828-61. [DOI: 10.1021/cr800557s] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Zhang
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664
| | - Vadim N. Gladyshev
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664
| |
Collapse
|
31
|
Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics 2009; 10:78. [PMID: 19208259 PMCID: PMC2667541 DOI: 10.1186/1471-2164-10-78] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 02/10/2009] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Nickel (Ni) and cobalt (Co) are trace elements required for a variety of biological processes. Ni is directly coordinated by proteins, whereas Co is mainly used as a component of vitamin B12. Although a number of Ni and Co-dependent enzymes have been characterized, systematic evolutionary analyses of utilization of these metals are limited. RESULTS We carried out comparative genomic analyses to examine occurrence and evolutionary dynamics of the use of Ni and Co at the level of (i) transport systems, and (ii) metalloproteomes. Our data show that both metals are widely used in bacteria and archaea. Cbi/NikMNQO is the most common prokaryotic Ni/Co transporter, while Ni-dependent urease and Ni-Fe hydrogenase, and B12-dependent methionine synthase (MetH), ribonucleotide reductase and methylmalonyl-CoA mutase are the most widespread metalloproteins for Ni and Co, respectively. Occurrence of other metalloenzymes showed a mosaic distribution and a new B12-dependent protein family was predicted. Deltaproteobacteria and Methanosarcina generally have larger Ni- and Co-dependent proteomes. On the other hand, utilization of these two metals is limited in eukaryotes, and very few of these organisms utilize both of them. The Ni-utilizing eukaryotes are mostly fungi (except saccharomycotina) and plants, whereas most B12-utilizing organisms are animals. The NiCoT transporter family is the most widespread eukaryotic Ni transporter, and eukaryotic urease and MetH are the most common Ni- and B12-dependent enzymes, respectively. Finally, investigation of environmental and other conditions and identity of organisms that show dependence on Ni or Co revealed that host-associated organisms (particularly obligate intracellular parasites and endosymbionts) have a tendency for loss of Ni/Co utilization. CONCLUSION Our data provide information on the evolutionary dynamics of Ni and Co utilization and highlight widespread use of these metals in the three domains of life, yet only a limited number of user proteins.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588-0664, USA.
| | | | | | | |
Collapse
|
32
|
Gikas P. Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: a review. JOURNAL OF HAZARDOUS MATERIALS 2008; 159:187-203. [PMID: 18394791 DOI: 10.1016/j.jhazmat.2008.02.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 02/16/2008] [Accepted: 02/19/2008] [Indexed: 05/14/2023]
Abstract
Nickel (N(II)) and cobalt (Co(II)) are often encountered in wastewaters. As conventional wastewater treatment may only partially remove nickel and cobalt, a large fraction of the above metals is released to the aquatic environment. Both metals have been identified as micronutrients, at trace concentrations; however, they are both microbial growth inhibitors, at relatively high concentrations. On the other hand, the combined effects (e.g.: growth stimulation or toxicity) of the above metals have been found to differ from the summation of the effects which occur when the metals are applied individually. Moreover, a number of environmental factors (e.g.: pH, biomedium composition, biomass concentration, presence of other heavy metals) can affect the microbial toxicity of the above metallic species. The present review discusses, in a systematic way, the individual and joint effects of the above heavy metals to the growth of microorganisms grown under aerobic conditions, with focus on the growth of activated sludge. Data on multi-metal toxicity are particularly useful in establishing criteria for heavy metal tolerance levels in the environment.
Collapse
Affiliation(s)
- Petros Gikas
- Ministry of Environmental Planning and Public Works, General Secretariat of Public Works, Special Service of Public Works for Greater Athens Sewerage and Sewage Treatment, and Central Water Agency, Varvaki 12, Athens 11474, Greece.
| |
Collapse
|
33
|
Raghu G, Balaji V, Venkateswaran G, Rodrigue A, Maruthi Mohan P. Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes. Appl Microbiol Biotechnol 2008; 81:571-8. [PMID: 18949474 DOI: 10.1007/s00253-008-1741-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/26/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
Removal of radioactive cobalt at trace levels (approximately nM) in the presence of large excess (10(6)-fold) of corrosion product ions of complexed Fe, Cr, and Ni in spent chemical decontamination formulations (simulated effluent) of nuclear reactors is currently done by using synthetic organic ion exchangers. A large volume of solid waste is generated due to the nonspecific nature of ion sorption. Our earlier work using various fungi and bacteria, with the aim of nuclear waste volume reduction, realized up to 30% of Co removal with specific capacities calculated up to 1 microg/g in 6-24 h. In the present study using engineered Escherichia coli expressing NiCoT genes from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), we report a significant increase in the specific capacity for Co removal (12 microg/g) in 1-h exposure to simulated effluent. About 85% of Co removal was achieved in a two-cycle treatment with the cloned bacteria. Expression of NiCoT genes in the E. coli knockout mutant of NiCoT efflux gene (rcnA) was more efficient as compared to expression in wild-type E. coli MC4100, JM109 and BL21 (DE3) hosts. The viability of the E. coli strains in the formulation as well as at different doses of gamma rays exposure and the effect of gamma dose on their cobalt removal capacity are determined. The potential application scheme of the above process of bioremediation of cobalt from nuclear power reactor chemical decontamination effluents is discussed.
Collapse
Affiliation(s)
- G Raghu
- Department of Biochemistry, Osmania University, Hyderabad, 500 007, India
| | | | | | | | | |
Collapse
|
34
|
Gikas P. Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): An isobolographic approach. JOURNAL OF HAZARDOUS MATERIALS 2007; 143:246-56. [PMID: 17045395 DOI: 10.1016/j.jhazmat.2006.09.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/02/2006] [Accepted: 09/07/2006] [Indexed: 05/12/2023]
Abstract
The effects of Ni(II) and Co(II) on the activated sludge growth rate have been assessed for a batch growth system, for a range of concentrations between 0 and 320 mg L(-1). The activated sludge was not acclimatized to the above metallic species, while a synthetic rich growth medium was used as substrate throughout out the experimental trials. Ni(II) and Co(II) have been found to stimulate microbial growth at concentrations approximately below 27 and 19 mg L(-1), with maximum stimulation concentrations 10 and 5 mg L(-1), respectively. The lethal concentrations (zero growth) for both species have been found to lie between 160 and 320 mg L(-1), with Co(II) identified as more potent growth inhibitor compared to Ni(II). The behaviour of activated sludge was also tested at the presence of three Ni(II) and Co(II) quotas, at various concentrations (75%Ni-25%Co (w/w), 50%Ni-50%Co (w/w) and 25%Ni-75%Co (w/w)). All the mixtures stimulated more drastically the activated sludge growth at relatively small concentrations, compared with the stimulation of equal concentrations of single species, whilst they also acted as more potent inhibitors at relatively high concentrations. Based on the isobole method, the data indicated that Ni(II) and Co(II) acted synergistically at the increasing stimulation and at the intoxication zones, whilst an antagonistic relation determined at the decreasing stimulation zone. Under the light of the present study, it is obvious that interactions (particularly synergism) between different metallic species should be taken into account in the methodologies used to establish criteria for tolerance levels in the environment.
Collapse
Affiliation(s)
- Petros Gikas
- Ministry of Environmental Planning and Public Works, General Secretariat of Public Works, Special Service of Public Works for Greater Athens Sewerage and Sewage Treatment, Varvaki 12, Athens 11474, Greece.
| |
Collapse
|
35
|
Eitinger T, Suhr J, Moore L, Smith JAC. Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 2006; 18:399-405. [PMID: 16158232 DOI: 10.1007/s10534-005-3714-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nickel/cobalt transporters (NiCoTs), a family of secondary metal transporters in prokaryotes and fungi, are characterized by an eight-transmembrane-domain (TMD) architecture and mediate high-affinity uptake of cobalt and/or nickel ions into the cells. One of the strongly conserved regions within the NiCoTs is the signature sequence RHA(V/F)DADHI within TMD II. This stretch of amino acid residues plays an important role in the affinity, velocity and specificity of metal transport. Some relatives of the NiCoTs, named HupE, UreJ and UreH, contain a similar signature sequence and are encoded within or adjacent to [NiFe] hydrogenase or urease operons, or elsewhere in the genome of many prokaryotes. HupE and UreH from Rhodopseudomonas palustris CGA009 and UreJ from Cupriavidus necator H16 were shown to mediate Ni(2+) transport upon heterologous production in E. coli. Other variants of NiCoTs are found in many marine cyanobacteria and in plants. The cyanobacterial proteins are encoded by a segment adjacent to the genes for [Ni] superoxide dismutase and a corresponding putative maturation peptidase. The plant proteins contain N-terminal sequences resembling bipartite transit peptides of thylakoid lumenal and thylakoid integral membrane precursor proteins; expression of a YFP-fusion protein in transfected leaf cells is consistent with targeting of this protein to the plastid, but the function of the plant gene product has yet to be demonstrated.
Collapse
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Germany.
| | | | | | | |
Collapse
|
36
|
Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 2006; 188:317-27. [PMID: 16352848 PMCID: PMC1317602 DOI: 10.1128/jb.188.1.317-327.2006] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transition metals nickel and cobalt, essential components of many enzymes, are taken up by specific transport systems of several different types. We integrated in silico and in vivo methods for the analysis of various protein families containing both nickel and cobalt transport systems in prokaryotes. For functional annotation of genes, we used two comparative genomic approaches: identification of regulatory signals and analysis of the genomic positions of genes encoding candidate nickel/cobalt transporters. The nickel-responsive repressor NikR regulates many nickel uptake systems, though the NikR-binding signal is divergent in various taxonomic groups of bacteria and archaea. B(12) riboswitches regulate most of the candidate cobalt transporters in bacteria. The nickel/cobalt transporter genes are often colocalized with genes for nickel-dependent or coenzyme B(12) biosynthesis enzymes. Nickel/cobalt transporters of different families, including the previously known NiCoT, UreH, and HupE/UreJ families of secondary systems and the NikABCDE ABC-type transporters, showed a mosaic distribution in prokaryotic genomes. In silico analyses identified CbiMNQO and NikMNQO as the most widespread groups of microbial transporters for cobalt and nickel ions. These unusual uptake systems contain an ABC protein (CbiO or NikO) but lack an extracytoplasmic solute-binding protein. Experimental analysis confirmed metal transport activity for three members of this family and demonstrated significant activity for a basic module (CbiMN) of the Salmonella enterica serovar Typhimurium transporter.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
37
|
Silver S, Phung LT. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 2005; 32:587-605. [PMID: 16133099 DOI: 10.1007/s10295-005-0019-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.
Collapse
Affiliation(s)
- Simon Silver
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA.
| | | |
Collapse
|
38
|
Cameron RA, Sayed M, Cowan DA. Molecular analysis of the nitrile catabolism operon of the thermophile Bacillus pallidus RAPc8. Biochim Biophys Acta Gen Subj 2005; 1725:35-46. [PMID: 15955632 DOI: 10.1016/j.bbagen.2005.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 03/24/2005] [Accepted: 03/28/2005] [Indexed: 11/19/2022]
Abstract
The gene cluster containing the nitrile hydratase (NHase) and amidase genes of a moderate thermophile, B. pallidus RAPc8 has been cloned and sequenced. The (5.9 kb) section of cloned DNA contained eight complete open reading frames, encoding (in order), amidase (belonging to the nitrilase related aliphatic amidase family), nitrile hydratase beta and alpha subunits (of the cobalt containing class), a 122-amino acid accessory protein, designated P14K, a homologue of the 2Fe-2S class of ferredoxins and three putative proteins with distinct homology to the cobalt uptake proteins cbiM, cbiN and cbiQ of the S. typhimurium LT2 cobalamin biosynthesis pathway. The amidase and nitrile hydratase genes were subcloned and inducibly expressed in Escherichia coli, to levels of approximately 37 U/mg and 49 U/mg, respectively, without the co-expression of additional flanking genes. However, co-expression of P14K with the NHase structural genes significantly enhanced the specific activity of the recombinant NHase. This is the first description of an accessory protein involved in thermostable NHase expression. Modelling of the P14K protein structure has suggested that this protein functions as a subunit-specific chaperone, aiding in the folding of the NHase alpha subunit prior to alpha-beta subunit association and the formation of alpha(2)beta(2) NHase holoenzyme.
Collapse
Affiliation(s)
- Rory A Cameron
- Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | | | | |
Collapse
|
39
|
Eitinger T. In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidase. J Bacteriol 2004; 186:7821-5. [PMID: 15516600 PMCID: PMC524918 DOI: 10.1128/jb.186.22.7821-7825.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal-dependent superoxide dismutases (SODs) with a specific requirement for a manganese or iron ion for catalytic activity and copper- and zinc-dependent enzymes are essential for detoxification of superoxide anion radicals. Genome sequence analyses predict the existence of a nickel-dependent enzyme (NiSOD) as the unique SOD in oxygen-evolving marine cyanobacteria. NiSOD activity was observed in Escherichia coli when sodN and sodX (encoding a putative peptidase) from Prochlorococcus marinus MIT9313 were coexpressed.
Collapse
Affiliation(s)
- Thomas Eitinger
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany.
| |
Collapse
|
40
|
Bruggraber SFA, French G, Thompson RPH, Powell JJ. Selective and effective bactericidal activity of the cobalt (II) cation against Helicobacter pylori. Helicobacter 2004; 9:422-8. [PMID: 15361081 DOI: 10.1111/j.1083-4389.2004.00264.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Although the anti-Helicobacter pylori activity of bismuth is well established, the therapeutic potential of other metal ions against the organism is not known. MATERIALS AND METHODS We measured the minimum inhibitory concentrations of a series of metal ions, including several cobalt (II) compounds against four type strains and seven clinical isolates of H. pylori using three standard broth culture media and a defined medium. Other intestinal bacteria were also investigated for specificity of action. RESULTS Cobalt chloride had marked activity against H. pylori (minimum inhibitory concentration range was 0.03-1.0 mg/l). The effect was specific because other transition metals had no effect and other intestinal bacteria were not affected by cobalt chloride. Activity was attributable to free cobalt ions as ligands inhibited activity in proportion to their affinity for the ions. Inhibition of cobalt activity was also observed in the presence of nickel, in a dose dependent fashion. However, cobalt activity was not directed towards the nickel-dependent urease enzyme because its effect was similar in wild-type and urease negative mutant strains of H. pylori. Finally, the viability of H. pylori was reduced at the same rate with 2 mg/l cobalt as with 1 mg/l amoxicillin. CONCLUSIONS Cobalt competes for nickel in its acquisition by H. pylori, but mediates toxicity in a nonurease dependent fashion. As cobalt MIC is similar to some antibiotics and 10 to a hundred times lower than for bismuth, cobalt may represent an effective form of therapy for H. pylori infection.
Collapse
|
41
|
Hebbeln P, Eitinger T. Heterologous production and characterization of bacterial nickel/cobalt permeases. FEMS Microbiol Lett 2004; 230:129-35. [PMID: 14734175 DOI: 10.1016/s0378-1097(03)00885-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Nickel/cobalt permeases (NiCoTs, TC 2.A.52) are a rapidly growing family of structurally related membrane transporters whose members are found in Gram-negative and Gram-positive bacteria, in thermoacidophilic archaea, and in fungi. Previous studies have predicted two subclasses represented by HoxN of Ralstonia eutropha, a selective nickel transporter, and by NhlF of Rhodococcus rhodochrous, a nickel and cobalt transporter that displays a preference for the Co ion. In the present study, NiCoT genes of five Gram-negative bacteria and one Gram-positive bacterium were cloned and heterologously expressed in Escherichia coli. Based on substrate preference in metal-accumulation assays with the recombinant strains, two of the novel NiCoTs were assigned to the NhlF class. The remaining four NiCoTs belong to a yet unrecognized, third class. They transport both the nickel and the cobalt ion but have a significantly higher capacity for nickel. The observed substrate preferences correlate in many cases with the genomic localization of NiCoT genes adjacent to regions encoding nickel- or cobalt-dependent enzymes or enzymes involved in cobalamin biosynthesis. Alignment of 23 full-length NiCoT sequences and comparison with the available experimental data predict that substrate specificity of NiCoTs is an adaptation to specific transition metal requirements in various organisms from different taxa.
Collapse
Affiliation(s)
- Peter Hebbeln
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
42
|
Abstract
Nickel is an essential nutrient for selected microorganisms where it participates in a variety of cellular processes. Many microbes are capable of sensing cellular nickel ion concentrations and taking up this nutrient via nickel-specific permeases or ATP-binding cassette-type transport systems. The metal ion is specifically incorporated into nickel-dependent enzymes, often via complex assembly processes requiring accessory proteins and additional non-protein components, in some cases accompanied by nucleotide triphosphate hydrolysis. To date, nine nickel-containing enzymes are known: urease, NiFe-hydrogenase, carbon monoxide dehydrogenase, acetyl-CoA decarbonylase/synthase, methyl coenzyme M reductase, certain superoxide dismutases, some glyoxylases, aci-reductone dioxygenase, and methylenediurease. Seven of these enzymes have been structurally characterized, revealing distinct metallocenter environments in each case.
Collapse
Affiliation(s)
- Scott B Mulrooney
- Department of Microbiology and Molecular Genetics, 6193 Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
43
|
Abstract
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.
Collapse
Affiliation(s)
- Dietrich H Nies
- Institute of Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06099 Halle/Saale, Germany.
| |
Collapse
|
44
|
|