1
|
Lee SH, Cirino PC, Gonzalez R. Metabolic engineering of Escherichia coli for the utilization of methylsuccinate, the product of methane activation via fumarate addition. BIORESOURCE TECHNOLOGY 2025; 416:131700. [PMID: 39486650 DOI: 10.1016/j.biortech.2024.131700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Methylsuccinate is a branched-chain, 5-carbon (C5) dicarboxylate that can be generated from the O2-independent activation of methane via fumarate addition. However, no established metabolic pathway enables growth and product synthesis from methylsuccinate. Here, we report a synthetic pathway that converts methylsuccinate into two precursor metabolites: pyruvate and acetyl-CoA. The pathway was constructed through rational design and validated both in vitro and in vivo using E. coli as the host. Subsequently, growth on methylsuccinate as the sole carbon source was achieved using two parallel strategies: adaptive laboratory evolution and enzyme mining. Through the latter approach, we identified a heterologous electron transfer pathway mediated by previously uncharacterized enzymes and integrated into E. coli enabling the conversion of methylsuccinyl-CoA to mesaconyl-C4-CoA. The engineered strain demonstrated efficient growth on various C5 dicarboxylates including methylsuccinate, mesaconate, and itaconate, with a specific growth rate of 0.11 h-1 on methylsuccinate. This study represents an important step toward achieving synthetic methanotrophy, as the engineered strain can serve as a platform for screening potential methane activation enzymes and ultimately as a production chassis for the bioconversion of methane into various value-added products.
Collapse
Affiliation(s)
- Seung Hwan Lee
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Liu B, Wang H, Su C, ShangGuan S, Zhang Y, Nie S, Wang R, Li P, Wang J, Su J. Reconfiguring the Escherichia coli Electron Transport Chain to Enhance trans-2-Decenoic Acid Production. ACS Synth Biol 2024; 13:3646-3657. [PMID: 39418093 DOI: 10.1021/acssynbio.4c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
trans-2-Decenoic acid is a pivotal α,β-medium-chain unsaturated fatty acid that serves as an essential intermediary in the synthesis of 10-hydroxy-2-decenoic acid and various pharmaceutical compounds. Biosynthesis yield of trans-2-decenoic acid by decanoic acid has significantly improved in recent years; however, the oxidative stress of Escherichia coli at high fatty acid concentrations restricts the conversion rate. Here, we introduced a combination of rational design and metabolic rewiring of the E. coli electron transport chain (ETC) to improve trans-2-decenoic acid production. Overexpressing ubiquinone (UbQ) biosynthesis genes enhanced the expression of ETC complex III: UbQ to reduce reactive oxygen species (ROS) accumulation. Furthermore, applying rotenone to inhibit ETC complex I improved the electron transfer efficiency of complex II. The integration of Vitamin B5 and B2 into the fermentation process increased the activities of fatty acyl-CoA synthetase (MaMACS) and fatty acyl-CoA dehydrogenase (PpfadE). Finally, the constructed E. coli BL21(DE3)(ΔfadBJR/pCDFDuet-1-PpfadE-MaMACS/pRSFDuet-1-sumo-CtydiI-ubiI) strain exhibited a 51.50% decrease in ROS and a 93.33% enhancement in trans-2-decenoic acid yield, reaching 1.45 g/L after 66 h, which is the highest yield reported for flask fermentation. This study reports the feasibility of rewiring the ETC regulation and energy metabolism to improve α,β-UCA biosynthesis efficiency.
Collapse
Affiliation(s)
- Ben Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| | - HaoYang Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| | - ChunLi Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| | - SiFan ShangGuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| | - YiSang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| | - ShiHao Nie
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan 250353 Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353 Shandong, Republic of China
| |
Collapse
|
3
|
Yan J, Zhang Z, Shi H, Xue X, Li A, Liu F, Ding P, Guo X, Cao B. The effects of PstR, a PadR family transcriptional regulatory factor, in Plesiomonas shigelloides are revealed by transcriptomics. BMC Microbiol 2024; 24:479. [PMID: 39548383 PMCID: PMC11566425 DOI: 10.1186/s12866-024-03639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Plesiomonas shigelloides is a gram-negative opportunistic pathogen associated with gastrointestinal and extraintestinal diseases in humans. There have been reports of specific functional genes in the study of P. shigelloides, but there are also many unknown genes that may play a role in P. shigelloides pathogenesis as global regulatory proteins or virulence factors. RESULTS In this study, we found a transcriptional regulator of the PadR family in P. shigelloides and named it PstR (GenBank accession number: EON87311.1), which is present in various pathogenic bacteria but whose function has rarely been reported. RNA sequencing (RNA-Seq) was used to analyze the effects of PstR on P. shigelloides, and the results indicated that PstR regulates approximately 9.83% of the transcriptome, which includes impacts on motility, virulence, and physiological metabolism. RNA-seq results showed that PstR positively regulated the expression of the flagella gene cluster, which was also confirmed by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Luminescence screening assay. Meanwhile, the ΔpstR mutant strains lacked flagella and were non-motile, as confirmed by motility assays and transmission electron microscopy (TEM). Additionally, PstR also positively regulates T3SS expression, which aids in P. shigelloides' capacity to infect Caco-2 cells. Meanwhile, we also revealed that PstR negatively regulates fatty acid degradation and metabolism, as well as the regulatory relationship between PsrA, a regulator of fatty acid degradation and metabolism, and its downstream genes in P. shigelloides. CONCLUSIONS Overall, we revealed the effects of PstR on motility, virulence, and physiological metabolism in P. shigelloides, which will serve as a foundation for future research into the intricate regulatory network of PstR in bacteria.
Collapse
Affiliation(s)
- Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Zixu Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Hongdan Shi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xinke Xue
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Fenxia Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Peng Ding
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China.
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China.
| |
Collapse
|
4
|
Sirithanakorn C, Imlay JA. Evidence for endogenous hydrogen peroxide production by E. coli fatty acyl-CoA dehydrogenase. PLoS One 2024; 19:e0309988. [PMID: 39436877 PMCID: PMC11495604 DOI: 10.1371/journal.pone.0309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Aerobic organisms continuously generate internal superoxide and hydrogen peroxide, which can damage enzymes and impair growth. To avoid this problem cells maintain high levels of superoxide dismutases, catalases, and peroxidases. Surprisingly, we do not know the primary sources of these reactive oxygen species (ROS) in living cells. However, in vitro studies have shown that flavoenzymes can inadvertently transfer electrons to oxygen. Therefore, it seems plausible that substantial ROS may be generated when large metabolic fluxes flow through flavoproteins. Such a situation may arise during the catabolism of fatty acids. Acyl-CoA dehydrogenase (FadE) is a flavoprotein involved in each turn of the beta-oxidation cycle. In the present study the catabolism of dodecanoic acid specifically impaired the growth of strains that lack enzymes to scavenge hydrogen peroxide. The defect was absent from fadE mutants. Direct measurements confirmed that the beta-oxidation pathway amplified the rate of intracellular hydrogen peroxide formation. Scavenging-proficient cells did not display the FadE-dependent growth defect. Those cells also did not induce the peroxide stress response during dodecanoate catabolism, indicating that the basal defenses are sufficient to cope with moderately elevated peroxide formation. In vitro work still is needed to test whether the ROS evolve specifically from the FadE flavin site and to determine whether superoxide as well as peroxide is released. At present such experiments are challenging because the natural redox partner of FadE has not been identified. This study supports the hypothesis that the degree of internal ROS production can depend upon the type of active metabolism inside cells.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Division of Molecular and Cellular Medicine, King Mongkut’s Institute of Technology Ladkrabang, Faculty of Medicine, Bangkok, Thailand
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
5
|
Bannister KR, Prather KLJ. α-Substituted 3-hydroxy acid production from glucose in Escherichia coli. Metab Eng 2024; 86:124-134. [PMID: 39313110 DOI: 10.1016/j.ymben.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are renewably-derived, microbial polyesters composed of hydroxy acids (HAs). Demand for sustainable plastics alternatives, combined with the unfavorable thermal properties exhibited by some PHAs, motivates the discovery of novel PHA-based materials. Incorporation of α-substituted HAs yields thermostable PHAs; however, the reverse β-oxidation (rBOX) pathway, the canonical pathway for HA production, is unable to produce these monomers because it utilizes thiolases with narrow substrate specificity. Here, we present a thiolase-independent pathway to two α-substituted HAs, 3-hydroxyisobutyric acid (3HIB) and 3-hydroxy-2-methylbutyric acid (3H2MB). This pathway involves the conversion of glucose to various branched acyl-CoAs and ultimately to 3HIB or 3H2MB. As proof of concept, we engineered Escherichia coli for the specific production of 3HIB and 3H2MB from glucose at titers as high as 66 ± 5 mg/L and 290 ± 40 mg/L, respectively. Optimizing this pathway for 3H2MB production via a novel byproduct recycle increased titer by 60%. This work illustrates the utility of novel pathway design HA production leading to PHAs with industrially relevant properties.
Collapse
Affiliation(s)
- K'yal R Bannister
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Schiaffi V, Barras F, Bouveret E. Matching the β-oxidation gene repertoire with the wide diversity of fatty acids. Curr Opin Microbiol 2024; 77:102402. [PMID: 37992547 DOI: 10.1016/j.mib.2023.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023]
Abstract
Bacteria can use fatty acids (FAs) from their environment as carbon and energy source. This catabolism is performed by the enzymes of the well-known β-oxidation machinery, producing reducing power and releasing acetyl-CoA that can feed the tricarboxylic acid cycle. FAs are extremely diverse: they can be saturated or (poly)unsaturated and are found in different sizes. The need to degrade such a wide variety of compounds may explain why so many seemingly homologous enzymes are found for each step of the β-oxidation cycle. In addition, the degradation of unsaturated fatty acids requires specific auxiliary enzymes for isomerase and reductase reactions. Furthermore, the β-oxidation cycle can be blocked by dead-end products, which are taken care of by acyl-CoA thioesterases. Yet, the functional characterization of the enzymes required for the degradation of the full diversity of FAs remains to be documented in most bacteria.
Collapse
Affiliation(s)
- Veronica Schiaffi
- Institut Pasteur, Department of Microbiology, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, France
| | - Frédéric Barras
- Institut Pasteur, Department of Microbiology, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, France
| | - Emmanuelle Bouveret
- Institut Pasteur, Department of Microbiology, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, France.
| |
Collapse
|
7
|
Fang K, Xu Z, Yang L, Cui Q, Du B, Liu H, Wang R, Li P, Su J, Wang J. Biosynthesis of 10-Hydroxy-2-decenoic Acid through a One-Step Whole-Cell Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1190-1202. [PMID: 38175798 DOI: 10.1021/acs.jafc.3c08142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
10-Hydroxy-2-decenoic acid (10-HDA) is an important component of royal jelly, known for its antimicrobial, anti-inflammatory, blood pressure-lowering, and antiradiation effects. Currently, 10-HDA biosynthesis is limited by the substrate selectivity of acyl-coenzyme A dehydrogenase, which restricts the technique to a two-step process. This study aimed to develop an efficient and simplified method for synthesizing 10-HDA. In this study, ACOX from Candida tropicalis 1798, which catalyzes 10-hydroxydecanoyl coenzyme A desaturation for 10-HDA synthesis, was isolated and heterologously coexpressed with FadE, Macs, YdiI, and CYP in Escherichia coli/SK after knocking out FadB, FadJ, and FadR genes. The engineered E. coli/AKS strain achieved a 49.8% conversion of decanoic acid to 10-HDA. CYP expression was improved through ultraviolet mutagenesis and high-throughput screening, increased substrate conversion to 75.6%, and the synthesis of 10-HDA was increased to 0.628 g/L in 10 h. This is the highest conversion rate and product concentration achieved in the shortest time to date. This study provides a simple and efficient method for 10-HDA biosynthesis and offers an effective method for developing strains with high product yields.
Collapse
Affiliation(s)
- Ke Fang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Ziting Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Lu Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Quan Cui
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Bowen Du
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Huijing Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| |
Collapse
|
8
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Medium-Chain-Length Fatty Acid Catabolism in Cupriavidus necator H16: Transcriptome Sequencing Reveals Differences from Long-Chain-Length Fatty Acid β-Oxidation and Involvement of Several Homologous Genes. Appl Environ Microbiol 2023; 89:e0142822. [PMID: 36541797 PMCID: PMC9888253 DOI: 10.1128/aem.01428-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The number of genes encoding β-oxidation enzymes in Cupriavidus necator H16 (synonym, Ralstonia eutropha H16) is high, but only the operons A0459-A0464 and A1526-A1531, each encoding four genes for β-oxidation enzymes, were expressed during growth with long-chain-length fatty acids (LCFAs). However, we observed that C. necator ΔA0459-A0464 ΔA1526-A1531 and C. necator H16 showed the same growth behavior during growth with decanoic acid and shorter FAs. The negative effect of the deletion of these two operons increased with an increasing chain length of the utilized FAs. Transcriptome sequencing (RNA-Seq) revealed the expression profiles of genes involved in the catabolism of medium-chain-length fatty acids (MCFAs) in C. necator H16. Operon A0459-A0464 was expressed only during growth with nonanoic acid, whereas operon A1526-A1531 was highly expressed during growth with octanoic and nonanoic acid. The gene clusters B1187-B1192 and B0751-B0759 showed a log2 fold change in expression of up to 4.29 and 4.02, respectively, during growth with octanoic acid and up to 8.82 and 5.50, respectively, with nonanoic acid compared to sodium gluconate-grown cells. Several acyl-CoA ligases catalyze the activation of MCFAs with coenzyme A (CoA), but fadD3 (A3288), involved in activation of LCFAs, was not detected. The expression profiles of C. necator strain ΔA0459-A0464 ΔA1526-A1531 showed that the growth with nonanoic acid resulted in the expression of further β-oxidation enzyme-encoding genes. Additional insights into the transport of FAs in C. necator H16 revealed the complexity and putative involvement of the DegV-like protein encoded by A0463 in the transport of odd-chain-length FAs and of siderophore biosynthesis in the transport mechanism. IMPORTANCE Although Cupriavidus necator H16 has been used in several studies to produce polyhydroxyalkanoates from various lipids, the fatty acid metabolism is poorly understood. The β-oxidation of long-chain-length FAs has been investigated, but the tremendous number of homologous genes encoding β-oxidation enzymes hides the potential for variances in the expressed genes for catabolism of shorter FAs. The catabolism of medium-chain-length FAs and connected pathways has not been investigated yet. As more sustainable substrates such as lipids and the production of fatty acids and fatty acid derivates become more critical with the dependency on fossil-based substances, understanding the complex metabolism in this highly diverse workhorse for biotechnology, C. necator, is inevitable. For further metabolic engineering and construction of production strains, we investigated the metabolism during growth on medium-chain-length FAs by RNA-Seq.
Collapse
|
10
|
Degradation of Exogenous Fatty Acids in Escherichia coli. Biomolecules 2022; 12:biom12081019. [PMID: 35892328 PMCID: PMC9329746 DOI: 10.3390/biom12081019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Many bacteria possess all the machineries required to grow on fatty acids (FA) as a unique source of carbon and energy. FA degradation proceeds through the β-oxidation cycle that produces acetyl-CoA and reduced NADH and FADH cofactors. In addition to all the enzymes required for β-oxidation, FA degradation also depends on sophisticated systems for its genetic regulation and for FA transport. The fact that these machineries are conserved in bacteria suggests a crucial role in environmental conditions, especially for enterobacteria. Bacteria also possess specific enzymes required for the degradation of FAs from their environment, again showing the importance of this metabolism for bacterial adaptation. In this review, we mainly describe FA degradation in the Escherichia coli model, and along the way, we highlight and discuss important aspects of this metabolism that are still unclear. We do not detail exhaustively the diversity of the machineries found in other bacteria, but we mention them if they bring additional information or enlightenment on specific aspects.
Collapse
|
11
|
Chautrand T, Depayras S, Souak D, Kondakova T, Barreau M, Kentache T, Hardouin J, Tahrioui A, Thoumire O, Konto-Ghiorghi Y, Barbey C, Ladam G, Chevalier S, Heipieper HJ, Orange N, Duclairoir-Poc C. Gaseous NO 2 induces various envelope alterations in Pseudomonas fluorescens MFAF76a. Sci Rep 2022; 12:8528. [PMID: 35595726 PMCID: PMC9122911 DOI: 10.1038/s41598-022-11606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Anthropogenic atmospheric pollution and immune response regularly expose bacteria to toxic nitrogen oxides such as NO• and NO2. These reactive molecules can damage a wide variety of biomolecules such as DNA, proteins and lipids. Several components of the bacterial envelope are susceptible to be damaged by reactive nitrogen species. Furthermore, the hydrophobic core of the membranes favors the reactivity of nitrogen oxides with other molecules, making membranes an important factor in the chemistry of nitrosative stress. Since bacteria are often exposed to endogenous or exogenous nitrogen oxides, they have acquired protection mechanisms against the deleterious effects of these molecules. By exposing bacteria to gaseous NO2, this work aims to analyze the physiological effects of NO2 on the cell envelope of the airborne bacterium Pseudomonas fluorescens MFAF76a and its potential adaptive responses. Electron microscopy showed that exposure to NO2 leads to morphological alterations of the cell envelope. Furthermore, the proteomic profiling data revealed that these cell envelope alterations might be partly explained by modifications of the synthesis pathways of multiple cell envelope components, such as peptidoglycan, lipid A, and phospholipids. Together these results provide important insights into the potential adaptive responses to NO2 exposure in P. fluorescens MFAF76a needing further investigations.
Collapse
Affiliation(s)
- Thibault Chautrand
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Ségolène Depayras
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
- Praxens, Normandy Health Security Center, 55 rue Saint-Germain, 27000, Evreux, France
| | - Djouhar Souak
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Tatiana Kondakova
- LPS-BIOSCIENCES SAS, Domaine de l'Université Paris Sud, Bâtiment 430, Université Paris Saclay, 91400, Orsay, France
| | - Magalie Barreau
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Takfarinas Kentache
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, Bâtiment DULONG - Bd Maurice de Broglie, 76821, Mont Saint Aignan Cedex, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, Bâtiment DULONG - Bd Maurice de Broglie, 76821, Mont Saint Aignan Cedex, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Ali Tahrioui
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Olivier Thoumire
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, 55 rue Saint-Germain, 27000, Evreux, France
| | - Yoan Konto-Ghiorghi
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Corinne Barbey
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Guy Ladam
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, 55 rue Saint-Germain, 27000, Evreux, France
| | - Sylvie Chevalier
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Nicole Orange
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France.
| |
Collapse
|
12
|
Li Y, Wang J, Wang F, Wang L, Wang L, Xu Z, Yuan H, Yang X, Li P, Su J, Wang R. Production of 10-Hydroxy-2-decenoic Acid from Decanoic Acid via Whole-Cell Catalysis in Engineered Escherichia coli. CHEMSUSCHEM 2022; 15:e202102152. [PMID: 34796684 DOI: 10.1002/cssc.202102152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Indexed: 06/13/2023]
Abstract
10-Hydroxy-2-decenoic acid (10-HDA) is a terminal hydroxylated medium-chain α,β-unsaturated carboxylic acid that performs various unique physiological activities and has a wide market value. Therefore, development of an environmentally friendly, safe, and high-efficiency route to synthesize 10-HDA is required. Here, the β-oxidation pathway of Escherichia coli was modified and a P450 terminal hydroxylase (CYP153A33-CPRBM3 ) was rationally designed to synthesize 10-HDA using decanoic acid as a substrate via two-step whole-cell catalysis. Different homologues of FadDs, FadEs, and YdiIs were analyzed in the first step of the conversion of decanoic acid to trans- -2- decenoic acid. In the second step, CYP153A33 (M228L)-CPRBM3 efficiently catalyzed the conversion of trans- -2- decenoic acid to 10-HDA. Finally, 217 mg L-1 10-HDA was obtained with 500 mg L-1 decanoic acid. This study provides a strategy for biosynthesis of 10-HDA and other α, β-unsaturated carboxylic acid derivatives from specific fatty acids.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Fen Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Li Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Leilei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Ziqi Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Xiaohui Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Jinan, Shandong, 250353, P. R. China
- Key Laboratory of Shandong Microbial Engineering, QILU University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| |
Collapse
|
13
|
Yang K, Shi Y, Li Y, Wei G, Zhao Q, Huang A. iTRAQ-Based Quantitative Proteomic Analysis of Antibacterial Mechanism of Milk-Derived Peptide BCp12 against Escherichia coli. Foods 2022; 11:foods11050672. [PMID: 35267305 PMCID: PMC8909071 DOI: 10.3390/foods11050672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
BCp12 is a novel casein-derived antibacterial peptide with a broad-spectrum antibacterial effect. However, its action mechanism against E. coli is unknown. In this study, the growth curve showed that BCp12 had excellent antibacterial activity against E. coli. Red (propidium iodide staining) and green (fluorescein isothiocyanate staining) fluorescence signals were detected at the edges of the E. coli cells treated with BCp12. scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that E. coli cells became rough and shrunken, and part of the cell contents leaked to form a cavity. Furthermore, the iTRAQ proteome analysis showed that 193 and 174 proteins were significantly up-regulated and down-regulated, respectively, after BCp12 treatment. Four enzymes involved in fatty acid degradation of E. coli were down-regulated, disrupting the synthesis of cell membranes. Molecular docking and gel retardation assays showed that BCp12 could bind to genes encoding four key enzymes involved in the fatty acid degradation pathway through hydrogen bonding and hydrophobic interactions, thus significantly inhibiting their activities. Overall, the results indicate that BCp12 inhibits the growth of E. coli, causing metabolic disorders, thus destroying the structure of cell membranes.
Collapse
|
14
|
Sørensen PE, Baig S, Stegger M, Ingmer H, Garmyn A, Butaye P. Spontaneous Phage Resistance in Avian Pathogenic Escherichia coli. Front Microbiol 2021; 12:782757. [PMID: 34966369 PMCID: PMC8711792 DOI: 10.3389/fmicb.2021.782757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the most important bacterial pathogens affecting poultry worldwide. The emergence of multidrug-resistant pathogens has renewed the interest in the therapeutic use of bacteriophages (phages). However, a major concern for the successful implementation of phage therapy is the emergence of phage-resistant mutants. The understanding of the phage-host interactions, as well as underlying mechanisms of resistance, have shown to be essential for the development of a successful phage therapy. Here, we demonstrate that the strictly lytic Escherichia phage vB_EcoM-P10 rapidly selected for resistance in the APEC ST95 O1 strain AM621. Whole-genome sequence analysis of 109 spontaneous phage-resistant mutant strains revealed 41 mutants with single-nucleotide polymorphisms (SNPs) in their core genome. In 32 of these, a single SNP was detected while two SNPs were identified in a total of nine strains. In total, 34 unique SNPs were detected. In 42 strains, including 18 strains with SNP(s), gene losses spanning 17 different genes were detected. Affected by genetic changes were genes known to be involved in phage resistance (outer membrane protein A, lipopolysaccharide-, O- antigen-, or cell wall-related genes) as well as genes not previously linked to phage resistance, including two hypothetical genes. In several strains, we did not detect any genetic changes. Infecting phages were not able to overcome the phage resistance in host strains. However, interestingly the initial infection was shown to have a great fitness cost for several mutant strains, with up to ∼65% decrease in overall growth. In conclusion, this study provides valuable insights into the phage-host interaction and phage resistance in APEC. Although acquired resistance to phages is frequently observed in pathogenic E. coli, it may be associated with loss of fitness, which could be exploited in phage therapy.
Collapse
Affiliation(s)
- Patricia E. Sørensen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Sharmin Baig
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
15
|
Wang ZQ, Song H, Koleski EJ, Hara N, Park DS, Kumar G, Min Y, Dauenhauer PJ, Chang MCY. A dual cellular-heterogeneous catalyst strategy for the production of olefins from glucose. Nat Chem 2021; 13:1178-1185. [PMID: 34811478 DOI: 10.1038/s41557-021-00820-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/23/2021] [Indexed: 11/09/2022]
Abstract
Living systems provide a promising approach to chemical synthesis, having been optimized by evolution to convert renewable carbon sources, such as glucose, into an enormous range of small molecules. However, a large number of synthetic structures can still be difficult to obtain solely from cells, such as unsubstituted hydrocarbons. In this work, we demonstrate the use of a dual cellular-heterogeneous catalytic strategy to produce olefins from glucose using a selective hydrolase to generate an activated intermediate that is readily deoxygenated. Using a new family of iterative thiolase enzymes, we genetically engineered a microbial strain that produces 4.3 ± 0.4 g l-1 of fatty acid from glucose with 86% captured as 3-hydroxyoctanoic and 3-hydroxydecanoic acids. This 3-hydroxy substituent serves as a leaving group that enables heterogeneous tandem decarboxylation-dehydration routes to olefinic products on Lewis acidic catalysts without the additional redox input required for enzymatic or chemical deoxygenation of simple fatty acids.
Collapse
Affiliation(s)
- Zhen Q Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Heng Song
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,College of Chemistry & Molecular Science, Wuhan University, Wuhan, P. R. China
| | - Edward J Koleski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Noritaka Hara
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Dae Sung Park
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA.,Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Gaurav Kumar
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Yejin Min
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Paul J Dauenhauer
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Insights in the Degradation of Medium-Chain Length Dicarboxylic Acids in Cupriavidus necator H16 reveal Differences in β-Oxidation between Dicarboxylic Acids and Fatty Acids. Appl Environ Microbiol 2021; 88:e0187321. [PMID: 34731045 DOI: 10.1128/aem.01873-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many homologous genes encoding β-oxidation enzymes were found in the genome of Cupriavidus necator H16 (synonym: Ralstonia eutropha H16). By proteome analysis, the degradation of adipic acid was investigated and showed differences to the degradation of hexanoic acid. During β-oxidation of adipic acid, activation with coenzyme A (CoA) is catalyzed by the two-subunit acyl-CoA ligase encoded by B0198 and B0199. The operon is completed by B0200 encoding a thiolase catalyzing the cleavage of acetyl-CoA at the end of the β-oxidation cycle. Strain C. necator ΔB0198-B0200 showed improved growth on adipic acid. Potential substitutes are B1239 for B0198-B0199 and A0170 as well as A1445 for B0200. A deletion mutant without all three thiolases showed diminished growth. The deletion of detected acyl-CoA dehydrogenase encoded by B2555 has an altered phenotype grown with sebacic acid but not adipic acid. With hexanoic acid, acyl-CoA dehydrogenase encoded by B0087 was detected on 2D gels. Both enzymes are active with adipoyl-CoA and hexanoyl-CoA as substrates, but specific activity indicates a higher activity of B2555 with adipoyl-CoA. 2D gels, growth experiments and enzyme assays suggest the specific expression of B2555 for the degradation of dicarboxylic acids. In C. necator H16 the degradation of carboxylic acids potentially changes with an increasing chain length. Two operons involved in growth with long-chain fatty acids seem to be replaced during growth on medium-chain carboxylic acids. Only two deletion mutants showed diminished growth. Replacement of deleted genes with one of the numerous homologous is likely. Importance The biotechnologically interesting bacterium Cupriavidus necator H16 was thoroughly investigated. Fifteen years ago, it was sequenced entirely and annotated (Pohlmann et al., 2006). Nevertheless, the degradation of monocarboxylic fatty acids and dicarboxylic acids has not been elucidated completely. C. necator is used to produce value-added products from affordable substrates. One of our investigations ' primary targets is the biotechnological production of organic acids with different and specific chain lengths. The versatile metabolism of carboxylic acids recommends C. necator H16 as a candidate for producing value-added organic products. Therefore, the metabolism of these compounds is of interest, and for different applications in industry, understanding such central metabolic pathways is crucial.
Collapse
|
17
|
Jaswal K, Shrivastava M, Chaba R. Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses. Curr Genet 2021; 67:573-582. [PMID: 33740112 DOI: 10.1007/s00294-021-01178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022]
Abstract
Long-chain fatty acids (LCFAs) are a tremendous source of metabolic energy, an essential component of membranes, and important effector molecules that regulate a myriad of cellular processes. As an energy-rich nutrient source, the role of LCFAs in promoting bacterial survival and infectivity is well appreciated. LCFA degradation generates a large number of reduced cofactors that may confer redox stress; therefore, it is imperative to understand how bacteria deal with this paradoxical situation. Although the LCFA utilization pathway has been studied in great detail, especially in Escherichia coli, where the earliest studies date back to the 1960s, the interconnection of LCFA degradation with bacterial stress responses remained largely unexplored. Recent work in E. coli shows that LCFA degradation induces oxidative stress and also impedes oxidative protein folding. Importantly, both issues arise due to the insufficiency of ubiquinone, a lipid-soluble electron carrier in the electron transport chain. However, to maintain redox homeostasis, bacteria induce sophisticated cellular responses. Here, we review these findings in light of our current knowledge of the LCFA metabolic pathway, metabolism-induced oxidative stress, the process of oxidative protein folding, and stress combat mechanisms. We discuss probable mechanisms for the activation of defense players during LCFA metabolism and the likely feedback imparted by them. We suggest that besides defending against intrinsic stresses, LCFA-mediated upregulation of stress response pathways primes bacteria to adapt to harsh external environments. Collectively, the interplay between LCFA metabolism and stress responses is likely an important factor that underlies the success of LCFA-utilizing bacteria in the host.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India.
| |
Collapse
|
18
|
The Canonical Long-Chain Fatty Acid Sensing Machinery Processes Arachidonic Acid To Inhibit Virulence in Enterohemorrhagic Escherichia coli. mBio 2021; 12:mBio.03247-20. [PMID: 33468701 PMCID: PMC7845647 DOI: 10.1128/mbio.03247-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in host immunity. Manipulation of lipid content in host tissues through diet or pharmacological interventions is associated with altered severity of various inflammatory diseases. The mammalian gastrointestinal tract is a complex biochemical organ that generates a diverse milieu of host- and microbe-derived metabolites. In this environment, bacterial pathogens sense and respond to specific stimuli, which are integrated into the regulation of their virulence programs. Previously, we identified the transcription factor FadR, a long-chain fatty acid (LCFA) acyl coenzyme A (acyl-CoA) sensor, as a novel virulence regulator in the human foodborne pathogen enterohemorrhagic Escherichia coli (EHEC). Here, we demonstrate that exogenous LCFAs directly inhibit the locus of enterocyte effacement (LEE) pathogenicity island in EHEC through sensing by FadR. Moreover, in addition to LCFAs that are 18 carbons in length or shorter, we introduce host-derived arachidonic acid (C20:4) as an additional LCFA that is recognized by the FadR system in EHEC. We show that arachidonic acid is processed by the acyl-CoA synthetase FadD, which permits binding to FadR and decreases FadR affinity for its target DNA sequences. This interaction enables the transcriptional regulation of FadR-responsive operons by arachidonic acid in EHEC, including the LEE. Finally, we show that arachidonic acid inhibits hallmarks of EHEC disease in a FadR-dependent manner, including EHEC attachment to epithelial cells and the formation of attaching and effacing lesions. Together, our findings delineate a molecular mechanism demonstrating how LCFAs can directly inhibit the virulence of an enteric bacterial pathogen. More broadly, our findings expand the repertoire of ligands sensed by the canonical LFCA sensing machinery in EHEC to include arachidonic acid, an important bioactive lipid that is ubiquitous within host environments.
Collapse
|
19
|
Jallet D, Xing D, Hughes A, Moosburner M, Simmons MP, Allen AE, Peers G. Mitochondrial fatty acid β-oxidation is required for storage-lipid catabolism in a marine diatom. THE NEW PHYTOLOGIST 2020; 228:946-958. [PMID: 32535932 DOI: 10.1111/nph.16744] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/29/2020] [Indexed: 05/21/2023]
Abstract
Photoautotrophic growth in nature requires the accumulation of energy-containing molecules via photosynthesis during daylight to fuel nighttime catabolism. Many diatoms store photosynthate as the neutral lipid triacylglycerol (TAG). While the pathways of diatom fatty acid and TAG synthesis appear to be well conserved with plants, the pathways of TAG catabolism and downstream fatty acid β-oxidation have not been characterised in diatoms. We identified a putative mitochondria-targeted, bacterial-type acyl-CoA dehydrogenase (PtMACAD1) that is present in Stramenopile and Hacrobian eukaryotes, but not found in plants, animals or fungi. Gene knockout, protein-YFP tags and physiological assays were used to determine PtMACAD1's role in the diatom Phaeodactylum tricornutum. PtMACAD1 is located in the mitochondria. Absence of PtMACAD1 led to no consumption of TAG at night and slower growth in light : dark cycles compared with wild-type. Accumulation of transcripts encoding peroxisomal-based β-oxidation did not change in response to day : night cycles or to PtMACAD1 knockout. Mutants also hyperaccumulated TAG after the amelioration of N limitation. We conclude that diatoms utilise mitochondrial β-oxidation; this is in stark contrast to the peroxisomal-based pathways observed in plants and green algae. We infer that this pattern is caused by retention of catabolic pathways from the host during plastid secondary endosymbiosis.
Collapse
Affiliation(s)
- Denis Jallet
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
- Toulouse Biotechnology Institute, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, 31077, France
| | - Denghui Xing
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| | - Alexander Hughes
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| | - Mark Moosburner
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Mark P Simmons
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Graham Peers
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| |
Collapse
|
20
|
Jaswal K, Shrivastava M, Roy D, Agrawal S, Chaba R. Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy. PLoS Genet 2020; 16:e1009081. [PMID: 33079953 PMCID: PMC7598926 DOI: 10.1371/journal.pgen.1009081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/30/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
The envelope of gram-negative bacteria serves as the first line of defense against environmental insults. Therefore, its integrity is continuously monitored and maintained by several envelope stress response (ESR) systems. Due to its oxidizing environment, the envelope represents an important site for disulfide bond formation. In Escherichia coli, the periplasmic oxidoreductase, DsbA introduces disulfide bonds in substrate proteins and transfers electrons to the inner membrane oxidoreductase, DsbB. Under aerobic conditions, the reduced form of DsbB is re-oxidized by ubiquinone, an electron carrier in the electron transport chain (ETC). Given the critical role of ubiquinone in transferring electrons derived from the oxidation of reduced cofactors, we were intrigued whether metabolic conditions that generate a large number of reduced cofactors render ubiquinone unavailable for disulfide bond formation. To test this, here we investigated the influence of metabolism of long-chain fatty acid (LCFA), an energy-rich carbon source, on the redox state of the envelope. We show that LCFA degradation increases electron flow in the ETC. Further, whereas cells metabolizing LCFAs exhibit characteristics of insufficient disulfide bond formation, these hallmarks are averted in cells exogenously provided with ubiquinone. Importantly, the ESR pathways, Cpx and σE, are activated by envelope signals generated during LCFA metabolism. Our results argue that Cpx is the primary ESR that senses and maintains envelope redox homeostasis. Amongst the two ESRs, Cpx is induced to a greater extent by LCFAs and senses redox-dependent signal. Further, ubiquinone accumulation during LCFA metabolism is prevented in cells lacking Cpx response, suggesting that Cpx activation helps maintain redox homeostasis by increasing the oxidizing power for disulfide bond formation. Taken together, our results demonstrate an intricate relationship between cellular metabolism and disulfide bond formation dictated by ETC and ESR, and provide the basis for examining whether similar mechanisms control envelope redox status in other gram-negative bacteria.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Deeptodeep Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Shashank Agrawal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
21
|
Diffusible Signal Factors Act through AraC-Type Transcriptional Regulators as Chemical Cues To Repress Virulence of Enteric Pathogens. Infect Immun 2020; 88:IAI.00226-20. [PMID: 32690633 PMCID: PMC7504960 DOI: 10.1128/iai.00226-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023] Open
Abstract
Successful colonization by enteric pathogens is contingent upon effective interactions with the host and the resident microbiota. These pathogens thus respond to and integrate myriad signals to control virulence. Long-chain fatty acids repress the virulence of the important enteric pathogens Salmonella enterica and Vibrio cholerae by repressing AraC-type transcriptional regulators in pathogenicity islands. While several fatty acids are known to be repressive, we show here that cis-2-unsaturated fatty acids, a rare chemical class used as diffusible signal factors (DSFs), are highly potent inhibitors of virulence functions. We found that DSFs repressed virulence gene expression of enteric pathogens by interacting with transcriptional regulators of the AraC family. In Salmonella enterica serovar Typhimurium, DSFs repress the activity of HilD, an AraC-type activator essential to the induction of epithelial cell invasion, by both preventing its interaction with target DNA and inducing its rapid degradation by Lon protease. cis-2-Hexadecenoic acid (c2-HDA), a DSF produced by Xylella fastidiosa, was the most potent among those tested, repressing the HilD-dependent transcriptional regulator hilA and the type III secretion effector sopB >200- and 68-fold, respectively. Further, c2-HDA attenuated the transcription of the ToxT-dependent cholera toxin synthesis genes of V. cholerae c2-HDA significantly repressed invasion gene expression by Salmonella in the murine colitis model, indicating that the HilD-dependent signaling pathway functions within the complex milieu of the animal intestine. These data argue that enteric pathogens respond to DSFs as interspecies signals to identify appropriate niches in the gut for virulence activation, which could be exploited to control the virulence of enteric pathogens.
Collapse
|
22
|
Powers MJ, Simpson BW, Trent MS. The Mla pathway in Acinetobacter baumannii has no demonstrable role in anterograde lipid transport. eLife 2020; 9:56571. [PMID: 32880370 PMCID: PMC7500953 DOI: 10.7554/elife.56571] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The asymmetric outer membrane (OM) of Gram-negative bacteria functions as a selective permeability barrier to the environment. Perturbations to OM lipid asymmetry sensitize the cell to antibiotics. As such, mechanisms involved in lipid asymmetry are fundamental to our understanding of OM lipid homeostasis. One such mechanism, the Maintenance of lipid asymmetry (Mla) pathway has been proposed to extract mislocalized glycerophospholipids from the outer leaflet of the OM and return them to the inner membrane (IM). Work on this pathway in Acinetobacter baumannii support conflicting models for the directionality of the Mla system being retrograde (OM to IM) or anterograde (IM to OM). Here, we show conclusively that A. baumannii mla mutants exhibit no defects in anterograde transport. Furthermore, we identify an allele of the GTPase obgE that is synthetically sick in the absence of Mla; providing another link between cell envelope homeostasis and stringent response.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, United States.,Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, United States
| | - Brent W Simpson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, United States
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, United States.,Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, United States
| |
Collapse
|
23
|
Role of acyl-CoA dehydrogenases from Shewanella livingstonensis Ac10 in docosahexaenoic acid conversion. Biochem Biophys Res Commun 2020; 528:453-458. [DOI: 10.1016/j.bbrc.2020.05.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 11/21/2022]
|
24
|
Armbruster KM, Komazin G, Meredith TC. Bacterial lyso-form lipoproteins are synthesized via an intramolecular acyl chain migration. J Biol Chem 2020; 295:10195-10211. [PMID: 32471867 DOI: 10.1074/jbc.ra120.014000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
All bacterial lipoproteins share a variably acylated N-terminal cysteine residue. Gram-negative bacterial lipoproteins are triacylated with a thioether-linked diacylglycerol moiety and an N-acyl chain. The latter is transferred from a membrane phospholipid donor to the α-amino terminus by the enzyme lipoprotein N-acyltransferase (Lnt), using an active-site cysteine thioester covalent intermediate. Many Gram-positive Firmicutes also have N-acylated lipoproteins, but the enzymes catalyzing N-acylation remain uncharacterized. The integral membrane protein Lit (lipoprotein intramolecular transacylase) from the opportunistic nosocomial pathogen Enterococcus faecalis synthesizes a specific lysoform lipoprotein (N-acyl S-monoacylglycerol) chemotype by an unknown mechanism that helps this bacterium evade immune recognition by the Toll-like receptor 2 family complex. Here, we used a deuterium-labeled lipoprotein substrate with reconstituted Lit to investigate intramolecular acyl chain transfer. We observed that Lit transfers the sn-2 ester-linked lipid from the diacylglycerol moiety to the α-amino terminus without forming a covalent thioester intermediate. Utilizing Mut-Seq to analyze an alanine scan library of Lit alleles, we identified two stretches of functionally important amino acid residues containing two conserved histidines. Topology maps based on reporter fusion assays and cysteine accessibility placed both histidines in the extracellular half of the cytoplasmic membrane. We propose a general acid base-promoted catalytic mechanism, invoking direct nucleophilic attack by the substrate α-amino group on the sn-2 ester to form a cyclic tetrahedral intermediate that then collapses to produce lyso-lipoprotein. Lit is a unique example of an intramolecular transacylase differentiated from that catalyzed by Lnt, and provides insight into the heterogeneity of bacterial lipoprotein biosynthetic systems.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gloria Komazin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park Pennsylvania, USA
| |
Collapse
|
25
|
Abstract
Hfq (host factor for phage Q beta) is key for posttranscriptional gene regulation in many bacteria. Hfq's function is to stabilize sRNAs and to facilitate base-pairing with trans-encoded target mRNAs. Loss of Hfq typically results in pleiotropic phenotypes, and, in the major human pathogen Vibrio cholerae, Hfq inactivation has been linked to reduced virulence, failure to produce biofilms, and impaired intercellular communication. However, the RNA ligands of Hfq in V. cholerae are currently unknown. Here, we used RIP-seq (RNA immunoprecipitation followed by high-throughput sequencing) analysis to identify Hfq-bound RNAs in V. cholerae Our work revealed 603 coding and 85 noncoding transcripts associated with Hfq, including 44 sRNAs originating from the 3' end of mRNAs. Detailed investigation of one of these latter transcripts, named FarS (fatty acid regulated sRNA), showed that this sRNA is produced by RNase E-mediated maturation of the fabB 3'UTR, and, together with Hfq, inhibits the expression of two paralogous fadE mRNAs. The fabB and fadE genes are antagonistically regulated by the major fatty acid transcription factor, FadR, and we show that, together, FadR, FarS, and FadE constitute a mixed feed-forward loop regulating the transition between fatty acid biosynthesis and degradation in V. cholerae Our results provide the molecular basis for studies on Hfq in V. cholerae and highlight the importance of a previously unrecognized sRNA for fatty acid metabolism in this major human pathogen.
Collapse
|
26
|
Kassab E, Mehlmer N, Brueck T. GFP Scaffold-Based Engineering for the Production of Unbranched Very Long Chain Fatty Acids in Escherichia coli With Oleic Acid and Cerulenin Supplementation. Front Bioeng Biotechnol 2020; 7:408. [PMID: 31921813 PMCID: PMC6914682 DOI: 10.3389/fbioe.2019.00408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/27/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, very long chain fatty acids (VLCFAs) for oleochemical, pharmaceutical, cosmetic, or food applications are extracted from plant or marine organism resources, which is associated with a negative environmental impact. Therefore, there is an industrial demand to develop sustainable, microbial resources. Due to its ease of genetic modification and well-characterized metabolism, Escherichia coli has established itself as a model organism to study and tailor microbial fatty acid biosynthesis using a concerted genetic engineering approach. In this study, we systematically implemented a plant-derived (Arabidopsis thaliana) enzymatic cascade in Escherichia coli to enable unbranched VLCFA biosynthesis. The four Arabidopsis thaliana membrane-bound VLCFA enzymes were expressed using a synthetic expression cassette. To facilitate enzyme solubilization and interaction of the synthetic VLCFA synthase complex, we applied a self-assembly GFP scaffold. In order to initiate VLCFA biosynthesis, external oleic acid and cerulenin were supplemented to cultures. In this context, we detected the generation of arachidic (20:0), cis-11-eicosenoic (20:1) and cis-13-eicosenoic acid (20:1).
Collapse
Affiliation(s)
- Elias Kassab
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Thomas Brueck
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| |
Collapse
|
27
|
Salmonella enterica Requires Lipid Metabolism Genes To Replicate in Proinflammatory Macrophages and Mice. Infect Immun 2019; 88:IAI.00776-19. [PMID: 31611277 DOI: 10.1128/iai.00776-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/28/2022] Open
Abstract
To survive and replicate during infection, pathogens utilize different carbon and energy sources depending on the nutritional landscape of their host microenvironment. Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen that occupies diverse cellular niches. While it is clear that Salmonella Typhimurium requires access to glucose during systemic infection, data on the need for lipid metabolism are mixed. We report that Salmonella Typhimurium strains lacking lipid metabolism genes were defective for systemic infection of mice. Bacterial lipid import, β-oxidation, and glyoxylate shunt genes were required for tissue colonization upon oral or intraperitoneal inoculation. In cultured macrophages, lipid import and β-oxidation genes were required for bacterial replication and/or survival only when the cell culture medium was supplemented with nonessential amino acids. Removal of glucose from tissue culture medium further enhanced these phenotypes and, in addition, conferred a requirement for glyoxylate shunt genes. We also observed that Salmonella Typhimurium needs lipid metabolism genes in proinflammatory but not anti-inflammatory macrophages. These results suggest that during systemic infection, the Salmonella Typhimurium that relies upon host lipids to replicate is within proinflammatory macrophages that have access to amino acids but not glucose. An improved understanding of the host microenvironments in which pathogens have specific metabolic requirements may facilitate the development of targeted approaches to treatment.
Collapse
|
28
|
Teper D, Zhang Y, Wang N. TfmR, a novel TetR-family transcriptional regulator, modulates the virulence of Xanthomonas citri in response to fatty acids. MOLECULAR PLANT PATHOLOGY 2019; 20:701-715. [PMID: 30919570 PMCID: PMC6637906 DOI: 10.1111/mpp.12786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The type III secretion system (T3SS) is required for Xanthomonas citri subsp. citri (Xcc) virulence by translocating effectors into host cytoplasm to promote disease development. The T3SS is controlled by the master transcriptional regulators HrpG and HrpX. While the function of HrpG and HrpX are well characterized, their upstream regulation remains elusive. By using transposon mutagenesis, we identified XAC3052, a TetR-family transcriptional regulator, which regulates T3SS gene expression. Deletion of XAC3052 caused significant reduction in the expression of T3SS and effector genes in vitro and in planta; as well as reduction of virulence in sweet orange (Citrus sinensis). Overexpression of hrpG restored the virulence of ∆XAC3052, suggesting that the loss of virulence is caused by reduction of T3SS gene expression. XAC3052 directly binds to the promoter region and represses the transcription of fadE, mhpC and fadH genes. FadE, MhpC and FadH are not involved in T3SS regulation, but involved in fatty acid catabolism. ∆XAC3052 displays altered fatty acid composition and retarded growth in environments limited in fatty acids. Exogenously supplemented long-chain fatty acids activate the fadE/mhpC promoter and suppress T3SS promoters in wild-type Xac but not in ∆XAC3052. Moreover, the binding of XAC3052 to its target promoter was disrupted by long-chain fatty acids in vitro. Herein, XAC3052 is designated as TfmR (T3SS and Fatty acid Mechanism Regulator). This study identifies a novel regulator of fatty acid metabolism and suggests that fatty acids play an important role in the metabolic control of virulence in Xcc.
Collapse
Affiliation(s)
- Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of Florida700 Experiment Station RoadLake Alfred33850USA
| | - Yanan Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of Florida700 Experiment Station RoadLake Alfred33850USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of Florida700 Experiment Station RoadLake Alfred33850USA
- China-USA Citrus Huanglongbing Joint Laboratory (A joint laboratory of The University of Florida’s Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research CenterGannan Normal UniversityGanzhou341000JiangxiChina
| |
Collapse
|
29
|
Fatty Acid Oxidation Is Required for Myxococcus xanthus Development. J Bacteriol 2018; 200:JB.00572-17. [PMID: 29507089 DOI: 10.1128/jb.00572-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus cells produce lipid bodies containing triacylglycerides during fruiting body development. Fatty acid β-oxidation is the most energy-efficient pathway for lipid body catabolism. In this study, we used mutants in fadJ (MXAN_5371 and MXAN_6987) and fadI (MXAN_5372) homologs to examine whether β-oxidation serves an essential developmental function. These mutants contained more lipid bodies than the wild-type strain DK1622 and 2-fold more flavin adenine dinucleotide (FAD), consistent with the reduced consumption of fatty acids by β-oxidation. The β-oxidation pathway mutants exhibited differences in fruiting body morphogenesis and produced spores with thinner coats and a greater susceptibility to thermal stress and UV radiation. The MXAN_5372/5371 operon is upregulated in sporulating cells, and its expression could not be detected in csgA, fruA, or mrpC mutants. Lipid bodies were found to persist in mature spores of DK1622 and wild strain DK851, suggesting that the roles of lipid bodies and β-oxidation may extend to spore germination.IMPORTANCE Lipid bodies act as a reserve of triacylglycerides for use when other sources of carbon and energy become scarce. β-Oxidation is essential for the efficient metabolism of fatty acids associated with triacylglycerides. Indeed, the disruption of genes in this pathway has been associated with severe disorders in animals and plants. Myxococcus xanthus, a model organism for the study of development, is ideal for investigating the complex effects of altered lipid metabolism on cell physiology. Here, we show that β-oxidation is used to consume fatty acids associated with lipid bodies and that the disruption of the β-oxidation pathway is detrimental to multicellular morphogenesis and spore formation.
Collapse
|
30
|
Agrawal S, Jaswal K, Shiver AL, Balecha H, Patra T, Chaba R. A genome-wide screen in Escherichia coli reveals that ubiquinone is a key antioxidant for metabolism of long-chain fatty acids. J Biol Chem 2017; 292:20086-20099. [PMID: 29042439 PMCID: PMC5723998 DOI: 10.1074/jbc.m117.806240] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/14/2017] [Indexed: 11/06/2022] Open
Abstract
Long-chain fatty acids (LCFAs) are used as a rich source of metabolic energy by several bacteria including important pathogens. Because LCFAs also induce oxidative stress, which may be detrimental to bacterial growth, it is imperative to understand the strategies employed by bacteria to counteract such stresses. Here, we performed a genetic screen in Escherichia coli on the LCFA, oleate, and compared our results with published genome-wide screens of multiple non-fermentable carbon sources. This large-scale analysis revealed that among components of the aerobic electron transport chain (ETC), only genes involved in the biosynthesis of ubiquinone, an electron carrier in the ETC, are highly required for growth in LCFAs when compared with other carbon sources. Using genetic and biochemical approaches, we show that this increased requirement of ubiquinone is to mitigate elevated levels of reactive oxygen species generated by LCFA degradation. Intriguingly, we find that unlike other ETC components whose requirement for growth is inversely correlated with the energy yield of non-fermentable carbon sources, the requirement of ubiquinone correlates with oxidative stress. Our results therefore suggest that a mechanism in addition to the known electron carrier function of ubiquinone is required to explain its antioxidant role in LCFA metabolism. Importantly, among the various oxidative stress combat players in E. coli, ubiquinone acts as the cell's first line of defense against LCFA-induced oxidative stress. Taken together, our results emphasize that ubiquinone is a key antioxidant during LCFA metabolism and therefore provides a rationale for investigating its role in LCFA-utilizing pathogenic bacteria.
Collapse
Affiliation(s)
- Shashank Agrawal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, California 94305
| | - Himanshi Balecha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Tapas Patra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
31
|
Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE, Campbell CE, Markley AL, Price MN, Ray J, Wetmore KM, Suh Y, Arkin AP, Deutschbauer AM, Amador-Noguez D, Pfleger BF. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat Microbiol 2017; 2:1624-1634. [PMID: 28947739 PMCID: PMC5705400 DOI: 10.1038/s41564-017-0028-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. This discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.
Collapse
Affiliation(s)
- Jacqueline M Rand
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tippapha Pisithkul
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ryan L Clark
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua M Thiede
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher R Mehrer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel E Agnew
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Candace E Campbell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew L Markley
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jayashree Ray
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kelly M Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yumi Suh
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniel Amador-Noguez
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
32
|
Packard H, Kernell Burke A, Jensen RV, Stevens AM. Analysis of the in planta transcriptome expressed by the corn pathogen Pantoea stewartii subsp. stewartii via RNA-Seq. PeerJ 2017; 5:e3237. [PMID: 28462040 PMCID: PMC5410145 DOI: 10.7717/peerj.3237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/27/2017] [Indexed: 11/29/2022] Open
Abstract
Pantoea stewartii subsp. stewartii is a bacterial phytopathogen that causes Stewart's wilt disease in corn. It uses quorum sensing to regulate expression of some genes involved in virulence in a cell density-dependent manner as the bacterial population grows from small numbers at the initial infection site in the leaf apoplast to high cell numbers in the xylem where it forms a biofilm. There are also other genes important for pathogenesis not under quorum-sensing control such as a Type III secretion system. The purpose of this study was to compare gene expression during an in planta infection versus either a pre-inoculum in vitro liquid culture or an in vitro agar plate culture to identify genes specifically expressed in planta that may also be important for colonization and/or virulence. RNA was purified from each sample type to determine the transcriptome via RNA-Seq using Illumina sequencing of cDNA. Fold gene expression changes in the in planta data set in comparison to the two in vitro grown samples were determined and a list of the most differentially expressed genes was generated to elucidate genes important for plant association. Quantitative reverse transcription PCR (qRT-PCR) was used to validate expression patterns for a select subset of genes. Analysis of the transcriptome data via gene ontology revealed that bacterial transporters and systems important for oxidation reduction processes appear to play a critical role for P. stewartii as it colonizes and causes wilt disease in corn plants.
Collapse
Affiliation(s)
- Holly Packard
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States
| | - Alison Kernell Burke
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States
| |
Collapse
|
33
|
Scheel RA, Ji L, Lundgren BR, Nomura CT. Enhancing poly(3-hydroxyalkanoate) production in Escherichia coli by the removal of the regulatory gene arcA. AMB Express 2016; 6:120. [PMID: 27878786 PMCID: PMC5120623 DOI: 10.1186/s13568-016-0291-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
Recombinant Escherichia coli is a desirable platform for the production of many biological compounds including poly(3-hydroxyalkanoates), a class of naturally occurring biodegradable polyesters with promising biomedical and material applications. Although the controlled production of desirable polymers is possible with the utilization of fatty acid feedstocks, a central challenge to this biosynthetic route is the improvement of the relatively low polymer yield, a necessary factor of decreasing the production costs. In this study we sought to address this challenge by deleting arcA and ompR, two global regulators with the capacity to inhibit the uptake and activation of exogenous fatty acids. We found that polymer yields in a ΔarcA mutant increased significantly with respect to the parental strain. In the parental strain, PHV yields were very low but improved 64-fold in the ΔarcA mutant (1.92-124 mg L-1) The ΔarcA mutant also allowed for modest increases in some medium chain length polymer yields, while weight average molecular weights improved by approximately 1.5-fold to 12-fold depending on the fatty acid substrate utilized. These results were supported by an analysis of differential gene expression, which showed that the key genes (fadD, fadL, and fadE) encoding fatty acid degradation enzymes were all upregulated by 2-, 10-, and 31-fold in an ΔarcA mutant, respectively. Additionally, the short chain length fatty acid uptake genes atoA, atoE and atoD were upregulated by 103-, 119-, and 303-fold respectively, though these values are somewhat inflated due to low expression in the parental strain. Overall, this study demonstrates that arcA is an important target to improve PHA production from fatty acids.
Collapse
Affiliation(s)
- Ryan A. Scheel
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Liyuan Ji
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Benjamin R. Lundgren
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Center for Applied Microbiology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Hubei Collaborative Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
34
|
Gulevich AY, Skorokhodova AY, Debabov VG. Escherichia coli ydiO and ydiQRST genes encode components of acyl-CoA dehydrogenase complex of anaerobic fatty acid β-oxidation pathway. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Runkel S, Wells HC, Rowley G. Living with Stress: A Lesson from the Enteric Pathogen Salmonella enterica. ADVANCES IN APPLIED MICROBIOLOGY 2016; 83:87-144. [PMID: 23651595 DOI: 10.1016/b978-0-12-407678-5.00003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to sense and respond to the environment is essential for the survival of all living organisms. Bacterial pathogens such as Salmonella enterica are of particular interest due to their ability to sense and adapt to the diverse range of conditions they encounter, both in vivo and in environmental reservoirs. During this cycling from host to non-host environments, Salmonella encounter a variety of environmental insults ranging from temperature fluctuations, nutrient availability and changes in osmolarity, to the presence of antimicrobial peptides and reactive oxygen/nitrogen species. Such fluctuating conditions impact on various areas of bacterial physiology including virulence, growth and antimicrobial resistance. A key component of the success of any bacterial pathogen is the ability to recognize and mount a suitable response to the discrete chemical and physical stresses elicited by the host. Such responses occur through a coordinated and complex programme of gene expression and protein activity, involving a range of transcriptional regulators, sigma factors and two component regulatory systems. This review briefly outlines the various stresses encountered throughout the Salmonella life cycle and the repertoire of regulatory responses with which Salmonella counters. In particular, how these Gram-negative bacteria are able to alleviate disruption in periplasmic envelope homeostasis through a group of stress responses, known collectively as the Envelope Stress Responses, alongside the mechanisms used to overcome nitrosative stress, will be examined in more detail.
Collapse
Affiliation(s)
- Sebastian Runkel
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
36
|
Wierzbicki M, Niraula N, Yarrabothula A, Layton DS, Trinh CT. Engineering an Escherichia coli platform to synthesize designer biodiesels. J Biotechnol 2016; 224:27-34. [DOI: 10.1016/j.jbiotec.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 01/14/2023]
|
37
|
Wan X, Peng YF, Zhou XR, Gong YM, Huang FH, Moncalián G. Effect of cerulenin on fatty acid composition and gene expression pattern of DHA-producing strain Colwellia psychrerythraea strain 34H. Microb Cell Fact 2016; 15:30. [PMID: 26852325 PMCID: PMC4744452 DOI: 10.1186/s12934-016-0431-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
Background Colwellia psychrerythraea 34H is a psychrophilic bacterium able to produce docosahexaenoic acid (DHA). Polyketide synthase pathway is assumed to be responsible for DHA production in marine bacteria. Results Five pfa genes from strain 34H were confirmed to be responsible for DHA formation by heterogeneous expression in Escherichia coli. The complexity of fatty acid profile of this strain was revealed by GC and GC–MS. Treatment of cells with cerulenin resulted in significantly reduced level of C16 monounsaturated fatty acid (C16:1Δ9t, C16:1Δ7). In contrast, the amount of saturated fatty acids (C10:0, C12:0, C14:0), hydroxyl fatty acids (3-OH C10:0 and 3-OH C12:0), as well as C20:4ω3, C20:5ω3 and C22:6ω3 were increased. RNA sequencing (RNA-Seq) revealed the altered gene expression pattern when C. psychrerythraea cells were treated with cerulenin. Genes involved in polyketide synthase pathway and fatty acid biosynthesis pathway were not obviously affected by cerulenin treatment. In contrast, several genes involved in fatty acid degradation or β-oxidation pathway were dramatically reduced at the transcriptional level. Conclusions Genes responsible for DHA formation in C. psychrerythraea was first cloned and characterized. We revealed the complexity of fatty acid profile in this DHA-producing strain. Cerulenin could substantially change the fatty acid composition by affecting the fatty acid degradation at transcriptional level. Acyl-CoA dehydrogenase gene family involved in the first step of β-oxidation pathway may be important to the selectivity of degraded fatty acids. In addition, inhibition of FabB protein by cerulenin may lead to the accumulation of malonyl-CoA, which is the substrate for DHA formation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0431-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China. .,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China.
| | - Yun-Feng Peng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Xue-Rong Zhou
- CSIRO Agriculture, Canberra, ACT, 2601, Australia. .,CSIRO Food and Nutrition, Canberra, ACT, 2601, Australia.
| | - Yang-Min Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Feng-Hong Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China. .,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China.
| | - Gabriel Moncalián
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain.
| |
Collapse
|
38
|
Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of β-oxidation cycle. Appl Environ Microbiol 2016; 81:1406-16. [PMID: 25527535 DOI: 10.1128/aem.03521-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the -oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782).While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a -oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled deltaffabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the β-oxidation reversal in E. coli.
Collapse
|
39
|
Comba S, Sabatini M, Menendez-Bravo S, Arabolaza A, Gramajo H. Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:172. [PMID: 25593590 PMCID: PMC4295399 DOI: 10.1186/s13068-014-0172-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/18/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations. RESULTS The Streptomyces coelicolor TAG biosynthesis pathway, defined by the acyl-CoA:diacylglycerol acyltransferase (DGAT) Sco0958 and the phosphatidic acid phosphatase (PAP) Lppβ, was successfully reconstructed in an E. coli diacylglycerol kinase (dgkA) mutant strain. TAG production in this genetic background was optimized by increasing the levels of the TAG precursors, diacylglycerol and long-chain acyl-CoAs. For this we carried out a series of stepwise optimizations of the chassis by 1) fine-tuning the expression of the heterologous SCO0958 and lppβ genes, 2) overexpression of the S. coelicolor acetyl-CoA carboxylase complex, and 3) mutation of fadE, the gene encoding for the acyl-CoA dehydrogenase that catalyzes the first step of the β-oxidation cycle in E. coli. The best producing strain, MPS13/pET28-0958-ACC/pBAD-LPPβ rendered a cellular content of 4.85% cell dry weight (CDW) TAG in batch cultivation. Process optimization of fed-batch fermentation in a 1-L stirred-tank bioreactor resulted in cultures with an OD600nm of 80 and a product titer of 722.1 mg TAG L(-1) at the end of the process. CONCLUSIONS This study represents the highest reported fed-batch productivity of TAG reached by a model non-oleaginous bacterium. The organism used as a platform was an E. coli BL21 derivative strain containing a deletion in the dgkA gene and containing the TAG biosynthesis genes from S. coelicolor. The genetic studies carried out with this strain indicate that diacylglycerol (DAG) availability appears to be one of the main limiting factors to achieve higher yields of the storage compound. Therefore, in order to develop a competitive process for neutral lipid production in E. coli, it is still necessary to better understand the native regulation of the carbon flow metabolism of this organism, and in particular, to improve the levels of DAG biosynthesis.
Collapse
Affiliation(s)
- Santiago Comba
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| | - Martín Sabatini
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| | - Simón Menendez-Bravo
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| | - Ana Arabolaza
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| | - Hugo Gramajo
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| |
Collapse
|
40
|
He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewiez MR, Tang YJ, Peng L. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng 2014; 111:575-85. [PMID: 24122357 DOI: 10.1002/bit.25124] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 01/12/2023]
Abstract
We engineered a fatty acid overproducing Escherichia coli strain through overexpressing tesA (“pull”) and fadR (“push”) and knocking out fadE (“block”). This “pull-push-block” strategy yielded 0.17 g of fatty acids (C12–C18) per gram of glucose (equivalent to 48% of the maximum theoretical yield) in batch cultures during the exponential growth phase under aerobic conditions. Metabolic fluxes were determined for the engineered E. coli and its control strain using tracer ([1,2-13C]glucose) experiments and 13C-metabolic flux analysis. Cofactor (NADPH) and energy (ATP) balances were also investigated for both strains based on estimated fluxes. Compared to the control strain, fatty acid overproduction led to significant metabolic responses in the central metabolism: (1) Acetic acid secretion flux decreased 10-fold; (2) Pentose phosphate pathway and Entner–Doudoroff pathway fluxes increased 1.5- and 2.0-fold, respectively; (3) Biomass synthesis flux was reduced 1.9-fold; (4) Anaplerotic phosphoenolpyruvate carboxylation flux decreased 1.7-fold; (5) Transhydrogenation flux converting NADH to NADPH increased by 1.7-fold. Real-time quantitative RT-PCR analysis revealed the engineered strain increased the transcription levels of pntA (encoding the membrane-bound transhydrogenase) by 2.1-fold and udhA (encoding the soluble transhydrogenase) by 1.4-fold, which is in agreement with the increased transhydrogenation flux. Cofactor and energy balances analyses showed that the fatty acid overproducing E. coli consumed significantly higher cellular maintenance energy than the control strain. We discussed the strategies to future strain development and process improvements for fatty acid production in E. coli.
Collapse
|
41
|
Overproduction of AcrR increases organic solvent tolerance mediated by modulation of SoxS regulon in Escherichia coli. Appl Microbiol Biotechnol 2014; 98:8763-73. [DOI: 10.1007/s00253-014-6024-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
|
42
|
fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity. Appl Microbiol Biotechnol 2014; 98:8917-25. [DOI: 10.1007/s00253-014-5974-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/25/2023]
|
43
|
Sun Z, Kang Y, Norris MH, Troyer RM, Son MS, Schweizer HP, Dow SW, Hoang TT. Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo. PLoS One 2014; 9:e103778. [PMID: 25068317 PMCID: PMC4113454 DOI: 10.1371/journal.pone.0103778] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/02/2014] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa can grow to very high-cell-density (HCD) during infection of the cystic fibrosis (CF) lung. Phosphatidylcholine (PC), the major component of lung surfactant, has been hypothesized to support HCD growth of P. aeruginosa in vivo. The phosphorylcholine headgroup, a glycerol molecule, and two long-chain fatty acids (FAs) are released by enzymatic cleavage of PC by bacterial phospholipase C and lipases. Three different bacterial pathways, the choline, glycerol, and fatty acid degradation pathways, are then involved in the degradation of these PC components. Here, we identified five potential FA degradation (Fad) related fadBA-operons (fadBA1-5, each encoding 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA thiolase). Through mutagenesis and growth analyses, we showed that three (fadBA145) of the five fadBA-operons are dominant in medium-chain and long-chain Fad. The triple fadBA145 mutant also showed reduced ability to degrade PC in vitro. We have previously shown that by partially blocking Fad, via mutagenesis of fadBA5 and fadDs, we could significantly reduce the ability of P. aeruginosa to replicate on FA and PC in vitro, as well as in the mouse lung. However, no studies have assessed the ability of mutants, defective in choline and/or glycerol degradation in conjunction with Fad, to grow on PC or in vivo. Hence, we constructed additional mutants (ΔfadBA145ΔglpD, ΔfadBA145ΔbetAB, and ΔfadBA145ΔbetABΔglpD) significantly defective in the ability to degrade FA, choline, and glycerol and, therefore, PC. The analysis of these mutants in the BALB/c mouse lung infection model showed significant inability to utilize PC in vitro, resulted in decreased replication fitness and competitiveness in vivo compared to the complement strain, although there was little to no variation in typical virulence factor production (e.g., hemolysin, lipase, and protease levels). This further supports the hypothesis that lung surfactant PC serves as an important nutrient for P. aeruginosa during CF lung infection.
Collapse
Affiliation(s)
- Zhenxin Sun
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yun Kang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michael H. Norris
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Ryan M. Troyer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mike S. Son
- Department of Biological Sciences, Plymouth State University, Plymouth, New Hampshire, United States of America
| | - Herbert P. Schweizer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Steven W. Dow
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tung T. Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
44
|
Pérez AJ, Bode HB. ω-Azido fatty acids as probes to detect fatty acid biosynthesis, degradation, and modification. J Lipid Res 2014; 55:1897-901. [PMID: 25013232 DOI: 10.1194/jlr.m047969] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
FAs play a central role in the metabolism of almost all known cellular life forms. Although GC-MS is regarded as a standard method for FA analysis, other methods, such as HPLC/MS, are nowadays widespread but are rarely applied to FA analysis. Here we present azido-FAs as probes that can be used to study FA biosynthesis (elongation, desaturation) or degradation (β-oxidation) upon their uptake, activation, and metabolic conversion. These azido-FAs are readily accessible by chemical synthesis and their metabolic products can be easily detected after click-chemistry based derivatization with high sensitivity by HPLC/MS, contributing a powerful tool to FA analysis, and hence, lipid analysis in general.
Collapse
Affiliation(s)
- Alexander J Pérez
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
45
|
Wipperman MF, Sampson NS, Thomas ST. Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:269-93. [PMID: 24611808 PMCID: PMC4255906 DOI: 10.3109/10409238.2014.895700] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ability of science and medicine to control the pathogen Mycobacterium tuberculosis (Mtb) requires an understanding of the complex host environment within which it resides. Pathological and biological evidence overwhelmingly demonstrate how the mammalian steroid cholesterol is present throughout the course of infection. Better understanding Mtb requires a more complete understanding of how it utilizes molecules like cholesterol in this environment to sustain the infection of the host. Cholesterol uptake, catabolism and broader utilization are important for maintenance of the pathogen in the host and it has been experimentally validated to contribute to virulence and pathogenesis. Cholesterol is catabolized by at least three distinct sub-pathways, two for the ring system and one for the side chain, yielding dozens of steroid intermediates with varying biochemical properties. Our ability to control this worldwide infectious agent requires a greater knowledge of how Mtb uses cholesterol to its advantage throughout the course of infection. Herein, the current state of knowledge of cholesterol metabolism by Mtb is reviewed from a biochemical perspective with a focus on the metabolic genes and pathways responsible for cholesterol steroid catabolism.
Collapse
Affiliation(s)
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400
| | | |
Collapse
|
46
|
Bi H, Yu Y, Dong H, Wang H, Cronan JE. Xanthomonas campestris RpfB is a fatty Acyl-CoA ligase required to counteract the thioesterase activity of the RpfF diffusible signal factor (DSF) synthase. Mol Microbiol 2014; 93:262-75. [PMID: 24866092 DOI: 10.1111/mmi.12657] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 11/30/2022]
Abstract
In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signalling factor (DSF, 2(Z)-11-methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl-CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl-CoA ligase, Escherichia coli FadD, in the E. coli ß-oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3-hydroxyacyl-acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl-ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalysing uptake and activation of the free fatty acids to give acyl-CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl-ACP synthetase, replaced RpfB in counteracting the effects of high level RpfF thioesterase activity indicating that the essential role of RpfB is uptake and activation of free fatty acids.
Collapse
Affiliation(s)
- Hongkai Bi
- Department of Microbiology, B103 Chemical and Life Sciences Laboratory, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | | | | | | | | |
Collapse
|
47
|
Guzik MW, Narancic T, Ilic-Tomic T, Vojnovic S, Kenny ST, Casey WT, Duane GF, Casey E, Woods T, Babu RP, Nikodinovic-Runic J, O'Connor KE. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. MICROBIOLOGY-SGM 2014; 160:1760-1771. [PMID: 24794972 DOI: 10.1099/mic.0.078758-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (β-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 °C and pH 6.5-7.
Collapse
Affiliation(s)
- Maciej W Guzik
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - Tanja Narancic
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - Tatjana Ilic-Tomic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sandra Vojnovic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Shane T Kenny
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - William T Casey
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - Gearoid F Duane
- School of Chemical and Bioprocess Engineering, Engineering and Materials Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, Engineering and Materials Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trevor Woods
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Ramesh Padamati Babu
- Centre for Research, Adoptive Nano Structures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Jasmina Nikodinovic-Runic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Kevin E O'Connor
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| |
Collapse
|
48
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
49
|
Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. J Bacteriol 2013; 195:3784-95. [PMID: 23772072 DOI: 10.1128/jb.00384-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, FadR and FabR are transcriptional regulators that control the expression of fatty acid degradation and unsaturated fatty acid synthesis genes, depending on the availability of fatty acids. In this report, we focus on the dual transcriptional regulator FadR. In the absence of fatty acids, FadR represses the transcription of fad genes required for fatty acid degradation. However, FadR is also an activator, stimulating transcription of the products of the fabA and fabB genes responsible for unsaturated fatty acid synthesis. In this study, we show that FadR directly activates another fatty acid synthesis promoter, PfabH, which transcribes the fabHDG operon, indicating that FadR is a global regulator of both fatty acid degradation and fatty acid synthesis. We also demonstrate that ppGpp and its cofactor DksA, known primarily for their role in regulation of the synthesis of the translational machinery, directly inhibit transcription from the fabH promoter. ppGpp also inhibits the fadR promoter, thereby reducing transcription activation of fabH by FadR indirectly. Our study shows that both ppGpp and FadR have direct roles in the control of fatty acid promoters, linking expression in response to both translation activity and fatty acid availability.
Collapse
|
50
|
Zarzycki-Siek J, Norris MH, Kang Y, Sun Z, Bluhm AP, McMillan IA, Hoang TT. Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues. PLoS One 2013; 8:e64554. [PMID: 23737986 PMCID: PMC3667196 DOI: 10.1371/journal.pone.0064554] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/16/2013] [Indexed: 01/22/2023] Open
Abstract
The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924) were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617) contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h.
Collapse
Affiliation(s)
- Jan Zarzycki-Siek
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michael H. Norris
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yun Kang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Zhenxin Sun
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Andrew P. Bluhm
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Ian A. McMillan
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Tung T. Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|