1
|
Abstract
The type II secretion system (T2SS) delivers toxins and a range of hydrolytic enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular and intracellular pathogens as well as environmental species of proteobacteria is evident. This dynamic, multicomponent machinery spans the entire cell envelope and consists of a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a secretin pore embedded in the outer membrane. Despite the trans-envelope configuration of the T2S nanomachine, proteins to be secreted engage with the system first once they enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is specifically dedicated to their outer membrane translocation. The many sequence and structural similarities between the T2SS and type IV pili suggest a common origin and argue for a pilus-mediated mechanism of secretion. This minireview describes the structures, functions, and interactions of the individual T2SS components and the general architecture of the assembled T2SS machinery and briefly summarizes the transport and function of a growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have led to an increased understanding of the structure-function relationship of the secretin channel and the pseudopilus, are emphasized.
Collapse
|
2
|
Fulara A, Vandenberghe I, Read RJ, Devreese B, Savvides SN. Structure and oligomerization of the periplasmic domain of GspL from the type II secretion system of Pseudomonas aeruginosa. Sci Rep 2018; 8:16760. [PMID: 30425318 PMCID: PMC6233222 DOI: 10.1038/s41598-018-34956-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/27/2018] [Indexed: 01/12/2023] Open
Abstract
The ability of bacteria to infect a host relies in part on the secretion of molecular virulence factors across the cell envelope. Pseudomonas aeruginosa, a ubiquitous environmental bacterium causing opportunistic infections in humans, employs the type II secretion system (T2SS) to transport effector proteins across its cellular envelope as part of a diverse array of virulence strategies. General secretory pathway protein L (GspL) is an essential inner-membrane component of the T2SS apparatus, and is thought to facilitate transduction of the energy from ATP hydrolysis in the cytoplasm to the periplasmic components of the system. However, our incomplete understanding of the assembly principles of the T2SS machinery prevents the mechanistic deconvolution of T2SS-mediated protein secretion. Here we show via two crystal structures that the periplasmic ferredoxin-like domain of GspL (GspLfld) is a dimer stabilized by hydrophobic interactions, and that this interface may allow significant interdomain plasticity. The general dimerization mode of GspLfld is shared with GspL from Vibrio parahaemolyticus suggesting a conserved oligomerization mode across the GspL family. Furthermore, we identified a tetrameric form of the complete periplasmic segment of GspL (GspLperi) which indicates that GspL may be able to adopt multiple oligomeric states as part of its dynamic role in the T2SS apparatus.
Collapse
Affiliation(s)
- Aleksandra Fulara
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent (Zwijnaarde), Belgium
- VIB-UGent Center for Inflammation Research, 9052, Ghent (Zwijnaarde), Belgium
| | - Isabel Vandenberghe
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Randy J Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000, Ghent, Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent (Zwijnaarde), Belgium.
- VIB-UGent Center for Inflammation Research, 9052, Ghent (Zwijnaarde), Belgium.
| |
Collapse
|
3
|
Leighton TL, Yong DH, Howell PL, Burrows LL. Type IV Pilus Alignment Subcomplex Proteins PilN and PilO Form Homo- and Heterodimers in Vivo. J Biol Chem 2016; 291:19923-38. [PMID: 27474743 DOI: 10.1074/jbc.m116.738377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and is resistant to many antibiotics. Type IV pili (T4P) are among the key virulence factors used by P. aeruginosa for host cell attachment, biofilm formation, and twitching motility, making this system a promising target for novel therapeutics. Point mutations in the conserved PilMNOP alignment subcomplex were previously shown to have distinct effects on assembly and disassembly of T4P, suggesting that it may function in a dynamic manner. We introduced mutations encoding Cys substitutions into pilN and/or pilO on the chromosome to maintain normal stoichiometry and expression levels and captured covalent PilNO heterodimers, as well as PilN and PilO homodimers, in vivo Most covalent PilN or PilO homodimers had minimal functional impact in P. aeruginosa, suggesting that homodimers are a physiologically relevant state. However, certain covalent homo- or heterodimers eliminated twitching motility, suggesting that specific PilNO configurations are essential for T4P function. These data were verified using soluble N-terminal truncated fragments of PilN and PilO Cys mutants, which purified as a mixture of homo- and heterodimers at volumes consistent with a tetramer. Deletion of genes encoding alignment subcomplex components, PilM or PilP, but not other T4P components, including the motor ATPases PilB or PilT, blocked in vivo formation of disulfide-bonded PilNO heterodimers, suggesting that both PilM and PilP influence the heterodimer interface. Combined, our data suggest that T4P function depends on rearrangements at PilN and PilO interfaces.
Collapse
Affiliation(s)
- Tiffany L Leighton
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Daniel H Yong
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - P Lynne Howell
- the Program in Molecular Structure and Function, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto M5G 0A4 Ontario, Canada
| | - Lori L Burrows
- From the Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1 and
| |
Collapse
|
4
|
Type II secretion system: A magic beanstalk or a protein escalator. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1568-77. [DOI: 10.1016/j.bbamcr.2013.12.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/13/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
|
5
|
Lallemand M, Login FH, Guschinskaya N, Pineau C, Effantin G, Robert X, Shevchik VE. Dynamic interplay between the periplasmic and transmembrane domains of GspL and GspM in the type II secretion system. PLoS One 2013; 8:e79562. [PMID: 24223969 PMCID: PMC3815138 DOI: 10.1371/journal.pone.0079562] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/24/2013] [Indexed: 11/29/2022] Open
Abstract
The type II secretion system (T2SS) is a multiprotein nanomachine that transports folded proteins across the outer membrane of gram-negative bacteria. The molecular mechanisms that govern the secretion process remain poorly understood. The inner membrane components GspC, GspL and GspM possess a single transmembrane segment (TMS) and a large periplasmic region and they are thought to form a platform of unknown function. Here, using two-hybrid and pull-down assays we performed a systematic mapping of the GspC/GspL/GspM interaction regions in the plant pathogen Dickeya dadantii. We found that the TMS of these components interact with each other, implying a complex interaction network within the inner membrane. We also showed that the periplasmic, ferredoxin-like, domains of GspL and GspM drive homo- and heterodimerizations of these proteins. Disulfide bonding analyses revealed that the respective domain interfaces include the equivalent secondary-structure elements, suggesting alternating interactions of the periplasmic domains, L/L and M/M versus L/M. Finally, we found that displacements of the periplasmic GspM domain mediate coordinated shifts or rotations of the cognate TMS. These data suggest a plausible mechanism for signal transmission between the periplasmic and the cytoplasmic portions of the T2SS machine.
Collapse
Affiliation(s)
- Mathilde Lallemand
- INSA-Lyon, Villeurbanne, France
- CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon, France
| | - Frédéric H. Login
- Université Lyon 1, Lyon, France
- CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon, France
| | - Natalia Guschinskaya
- Université Lyon 1, Lyon, France
- CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon, France
| | - Camille Pineau
- INSA-Lyon, Villeurbanne, France
- CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon, France
| | | | - Xavier Robert
- Université Lyon 1, Lyon, France
- Laboratory for Biocrystallography and Structural Biology of Therapeutic Targets, Molecular and Structural Bases of Infectious Diseases, CNRS UMR5086, Lyon, France
| | - Vladimir E. Shevchik
- Université Lyon 1, Lyon, France
- INSA-Lyon, Villeurbanne, France
- CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon, France
- * E-mail:
| |
Collapse
|
6
|
Douzi B, Filloux A, Voulhoux R. On the path to uncover the bacterial type II secretion system. Philos Trans R Soc Lond B Biol Sci 2012; 367:1059-72. [PMID: 22411978 DOI: 10.1098/rstb.2011.0204] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gram-negative bacteria have evolved several secretory pathways to release enzymes or toxins into the surrounding environment or into the target cells. The type II secretion system (T2SS) is conserved in Gram-negative bacteria and involves a set of 12 to 16 different proteins. Components of the T2SS are located in both the inner and outer membranes where they assemble into a supramolecular complex spanning the bacterial envelope, also called the secreton. The T2SS substrates transiently go through the periplasm before they are translocated across the outer membrane and exposed to the extracellular milieu. The T2SS is unique in its ability to promote secretion of large and sometimes multimeric proteins that are folded in the periplasm. The present review describes recently identified protein-protein interactions together with structural and functional advances in the field that have contributed to improve our understanding on how the type II secretion apparatus assembles and on the role played by individual proteins of this highly sophisticated system.
Collapse
Affiliation(s)
- Badreddine Douzi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (CNRS-LISM-UPR 9027), Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
7
|
Tammam S, Sampaleanu LM, Koo J, Sundaram P, Ayers M, Chong PA, Forman-Kay JD, Burrows LL, Howell PL. Characterization of the PilN, PilO and PilP type IVa pilus subcomplex. Mol Microbiol 2011; 82:1496-514. [PMID: 22053789 DOI: 10.1111/j.1365-2958.2011.07903.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type IVa pili are bacterial nanomachines required for colonization of surfaces, but little is known about the organization of proteins in this system. The Pseudomonas aeruginosa pilMNOPQ operon encodes five key members of the transenvelope complex facilitating pilus function. While PilQ forms the outer membrane secretin pore, the functions of the inner membrane-associated proteins PilM/N/O/P are less well defined. Structural characterization of a stable C-terminal fragment of PilP (PilP(Δ71)) by NMR revealed a modified β-sandwich fold, similar to that of Neisseria meningitidis PilP, although complementation experiments showed that the two proteins are not interchangeable likely due to divergent surface properties. PilP is an inner membrane putative lipoprotein, but mutagenesis of the putative lipobox had no effect on the localization and function of PilP. A larger fragment, PilP(Δ18-6His), co-purified with a PilN(Δ44)/PilO(Δ51) heterodimer as a stable complex that eluted from a size exclusion chromatography column as a single peak with a molecular weight equivalent to two heterotrimers with 1:1:1 stoichiometry. Although PilO forms both homodimers and PilN-PilO heterodimers, PilP(Δ18-6His) did not interact stably with PilO(Δ51) alone. Together these data demonstrate that PilN/PilO/PilP interact directly to form a stable heterotrimeric complex, explaining the dispensability of PilP's lipid anchor for localization and function.
Collapse
Affiliation(s)
- S Tammam
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sampaleanu LM, Bonanno JB, Ayers M, Koo J, Tammam S, Burley SK, Almo SC, Burrows LL, Howell PL. Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J Mol Biol 2009; 394:143-59. [PMID: 19857646 DOI: 10.1016/j.jmb.2009.09.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/09/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022]
Abstract
Type IV pili (T4P) are bacterial virulence factors responsible for attachment to surfaces and for twitching motility, a motion that involves a succession of pilus extension and retraction cycles. In the opportunistic pathogen Pseudomonas aeruginosa, the PilM/N/O/P proteins are essential for T4P biogenesis, and genetic and biochemical analyses strongly suggest that they form an inner-membrane complex. Here, we show through co-expression and biochemical analysis that the periplasmic domains of PilN and PilO interact to form a heterodimer. The structure of residues 69-201 of the periplasmic domain of PilO was determined to 2.2 A resolution and reveals the presence of a homodimer in the asymmetric unit. Each monomer consists of two N-terminal coiled coils and a C-terminal ferredoxin-like domain. This structure was used to generate homology models of PilN and the PilN/O heterodimer. Our structural analysis suggests that in vivo PilN/O heterodimerization would require changes in the orientation of the first N-terminal coiled coil, which leads to two alternative models for the role of the transmembrane domains in the PilN/O interaction. Analysis of PilN/O orthologues in the type II secretion system EpsL/M revealed significant similarities in their secondary structures and the tertiary structures of PilO and EpsM, although the way these proteins interact to form inner-membrane complexes appears to be different in T4P and type II secretion. Our analysis suggests that PilN interacts directly, via its N-terminal tail, with the cytoplasmic protein PilM. This work shows a direct interaction between the periplasmic domains of PilN and PilO, with PilO playing a key role in the proper folding of PilN. Our results suggest that PilN/O heterodimers form the foundation of the inner-membrane PilM/N/O/P complex, which is critical for the assembly of a functional T4P complex.
Collapse
Affiliation(s)
- L M Sampaleanu
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Secretion of cholera toxin and other virulence factors from Vibrio cholerae is mediated by the type II secretion (T2S) apparatus, a multiprotein complex composed of both inner and outer membrane proteins. To better understand the mechanism by which the T2S complex coordinates translocation of its substrates, we are examining the protein-protein interactions of its components, encoded by the extracellular protein secretion (eps) genes. In this study, we took a cell biological approach, observing the dynamics of fluorescently tagged EpsC and EpsM proteins in vivo. We report that the level and context of fluorescent protein fusion expression can have a bold effect on subcellular location and that chromosomal, intraoperon expression conditions are optimal for determining the intracellular locations of fusion proteins. Fluorescently tagged, chromosomally expressed EpsC and EpsM form discrete foci along the lengths of the cells, different from the polar localization for green fluorescent protein (GFP)-EpsM previously described, as the fusions are balanced with all their interacting partner proteins within the T2S complex. Additionally, we observed that fluorescent foci in both chromosomal GFP-EpsC- and GFP-EpsM-expressing strains disperse upon deletion of epsD, suggesting that EpsD is critical to the localization of EpsC and EpsM and perhaps their assembly into the T2S complex.
Collapse
|
10
|
Mapping critical interactive sites within the periplasmic domain of the Vibrio cholerae type II secretion protein EpsM. J Bacteriol 2007; 189:9082-9. [PMID: 17921296 DOI: 10.1128/jb.01256-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The type II secretion (T2S) system is present in many gram-negative species, both pathogenic and nonpathogenic, where it supports the delivery of a variety of toxins, proteases, and lipases into the extracellular environment. In Vibrio cholerae, the T2S apparatus is composed of 12 Eps proteins that assemble into a multiprotein complex that spans the entire cell envelope. Two of these proteins, EpsM and EpsL, are key components of the secretion machinery present in the inner membrane. In addition to likely forming homodimers, EpsL and EpsM have been shown to form a stable complex in the inner membrane and to protect each other from proteolytic degradation. To identify and map the specific regions of EpsM involved in protein-protein interactions with both another molecule of EpsM and EpsL, we tested the interactions of deletion constructs of EpsM with full-length EpsM and EpsL by functional characterization and copurification as well as coimmunoprecipitation. Analysis of the truncated EpsM mutants revealed that the region of EpsM from amino acids 100 to 135 is necessary for EpsM to form homo-oligomers, while residues 84 to 99 appear to be critical for a stable interaction with EpsL.
Collapse
|
11
|
Login FH, Shevchik VE. The Single Transmembrane Segment Drives Self-assembly of OutC and the Formation of a Functional Type II Secretion System in Erwinia chrysanthemi. J Biol Chem 2006; 281:33152-62. [PMID: 16956883 DOI: 10.1074/jbc.m606245200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many pathogenic Gram-negative bacteria secrete toxins and lytic enzymes via a multiprotein complex called the type II secretion system. This system, named Out in Erwinia chrysanthemi, consists of 14 proteins integrated or associated with the two bacterial membranes. OutC, a key player in this process, is probably implicated in the recognition of secreted proteins and signal transduction. OutC possesses a short cytoplasmic sequence, a single transmembrane segment (TMS), and a large periplasmic region carrying a putative PDZ domain. A hydrodynamic study revealed that OutC forms stable dimers of an elongated shape, whereas the PDZ domain adopts a globular shape. Bacterial two-hybrid, cross-linking, and pulldown assays revealed that the self-association of OutC is driven by the TMS, whereas the periplasmic region is dispensable for self-association. Site-directed mutagenesis of the TMS revealed that cooperative interactions between three polar residues located at the same helical face provide adequate stability for OutC self-assembly. An interhelical H-bonding mediated by Gln(29) appears to be the main driving force, and two Arg residues located at the TMS boundaries are essential for the stabilization of OutC oligomers. Stepwise mutagenesis of these residues gradually diminished OutC functionality and self-association ability. The triple OutC mutant R15V/Q29L/R36A became monomeric and nonfunctional. Self-association and functionality of the triple mutant were partially restored by the introduction of a polar residue at an alternative position in the interhelical interface. Thus, the OutC TMS is more than just a membrane anchor; it drives the protein self-association that is essential for formation of a functional secretion system.
Collapse
Affiliation(s)
- Frédéric H Login
- Unité de Microbiologie et Génétique, UMR 5122 CNRS, INSA de Lyon, Université Lyon 1, 69622 Villeurbanne, France
| | | |
Collapse
|
12
|
Korotkov KV, Krumm B, Bagdasarian M, Hol WGJ. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J Mol Biol 2006; 363:311-21. [PMID: 16978643 DOI: 10.1016/j.jmb.2006.08.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 07/19/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
The type 2 secretion system (T2SS) occurring in Gram-negative bacteria is composed of 12-15 different proteins which form large assemblies spanning two membranes and secreting several virulence factors in folded state across the outer membrane. The T2SS component EpsC of Vibrio cholerae plays an important role in this machinery. While anchored in the inner membrane, by far the largest part of EpsC is periplasmic, containing a so-called homology region (HR) domain and a PDZ domain. Here we report studies on the structure and function of both periplasmic domains of EpsC. The crystal structures of two variants of the PDZ domain of EpsC from V. cholerae were determined at better than 2 A resolution. Compared to the short variant, the longer variant contains an additional N-terminal helix, and reveals a significant difference in the position of helix alphaB with respect to the beta-sheet. Both our structures show that the PDZ domain of EpsC adopts a more open form than in previously reported structures of other PDZ domains. Most interestingly, in the crystals of the short EpsC-PDZ domain the peptide binding groove interacts with an alpha-helix from a neighboring subunit burying approximately 921 A2 solvent accessible surface. This makes it possible that the PDZ domain of this bacterial protein binds proteins in a manner which is altogether different from that seen in any other PDZ domain so far. We also determined that the HR domain of EpsC is primarily responsible for the interaction with the secretin EpsD, while the PDZ is not, or much less, so. This new finding, together with studies of others, leads to the suggestion that the PDZ domain of EpsC may interact with exoproteins to be secreted while the HR domain plays a key role in linking the inner-membrane sub-complex of the T2SS in V. cholerae to the outer membrane secretin.
Collapse
Affiliation(s)
- Konstantin V Korotkov
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Box 357742, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
13
|
Johnson TL, Abendroth J, Hol WGJ, Sandkvist M. Type II secretion: from structure to function. FEMS Microbiol Lett 2006; 255:175-86. [PMID: 16448494 DOI: 10.1111/j.1574-6968.2006.00102.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria use the type II secretion system to transport a large number of secreted proteins from the periplasmic space into the extracellular environment. Many of the secreted proteins are major virulence factors in plants and animals. The components of the type II secretion system are located in both the inner and outer membranes where they assemble into a multi-protein, cell-envelope spanning, complex. This review discusses recent progress, particularly newly published structures obtained by X-ray crystallography and electron microscopy that have increased our understanding of how the type II secretion apparatus functions and the role that individual proteins play in this complex system.
Collapse
Affiliation(s)
- Tanya L Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | | | |
Collapse
|
14
|
Robert V, Filloux A, Michel GPF. Role of XcpP in the functionality of the Pseudomonas aeruginosa secreton. Res Microbiol 2006; 156:880-6. [PMID: 15936176 DOI: 10.1016/j.resmic.2005.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/01/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
In gram-negative bacteria, most signal-peptide-dependent exoproteins are secreted via the type II secretion system (T2SS or secreton). In Pseudomonas aeruginosa, T2SS consists of twelve Xcp proteins (XcpA and XcpP to XcpZ) thought to be organized as a multiproteic complex within the envelope. Although well conserved, T2SS are known to be species-specific, namely for distant organisms, and this characteristic was thought to involve XcpP. To check which domain of XcpP could be involved in the species specificity, hybrid proteins were generated using protein domain swapping between P. aeruginosa XcpP and homolog proteins of either Erwinia chrysanthemi or Pseudomonas alcaligenes. The results obtained with hybrid proteins constructed by exchanging the C-terminal domains of P. aeruginosa and E. chrysanthemi suggested that XcpP interacts with XcpQ, probably via its C-terminal domain. More interestingly, the data obtained with a hybrid protein containing the C-terminal part of the P. alcaligenes XcpP homolog, showed that the wild-type C-terminal end plays a very important role in the function of the protein and is required both for a correct interaction with XcpQ and for modulating the opening of the secreton channel.
Collapse
Affiliation(s)
- Viviane Robert
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
15
|
Robert V, Filloux A, Michel GPF. Subcomplexes from the Xcp secretion system of Pseudomonas aeruginosa. FEMS Microbiol Lett 2005; 252:43-50. [PMID: 16168578 DOI: 10.1016/j.femsle.2005.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 11/23/2022] Open
Abstract
In Gram-negative bacteria, most of the sec-dependent exoproteins are secreted via the type II secretion system (T2SS or secreton). In Pseudomonas aeruginosa, T2SS consists of 12 Xcp proteins (XcpA and XcpP to XcpZ) organized as a multiproteic complex within the envelope. In this study, by a co-purification approach using a His-tagged XcpZ as a bait, XcpY and XcpZ were found associated together to constitute the most stable functional unit so far isolated from the P. aeruginosa secreton. This subcomplex was also found to interact with XcpR and XcpS to form a XcpRSYZ complex which was isolated under native conditions. Another component, XcpP was not found to be associated to the complex but the results suggest that it can transiently interact with the XcpYZ subcomplex in vivo.
Collapse
Affiliation(s)
- Viviane Robert
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
16
|
Durand E, Michel G, Voulhoux R, Kürner J, Bernadac A, Filloux A. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J Biol Chem 2005; 280:31378-89. [PMID: 16012171 DOI: 10.1074/jbc.m505812200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic gram-negative pathogen equipped with multiple secretion systems. The type II secretion machinery (Xcp secreton) is involved in the release of toxins and enzymes. The Xcp secreton is a multiprotein complex, and most of its components share homology with proteins involved in type IV pili biogenesis. Among them, the XcpT-X pseudopilins possess characteristics of the major constituent of the type IV pili, the pilin PilA. We have shown previously that XcpT can be assembled in a multifibrillar structure that was called the pseudopilus. By using two different microscopic approaches, we show here that the pseudopili are preferentially isolated fibers rather than tight bundles. Moreover, none of the other four pseudopilins are able to form a pseudopilus, suggesting that the assembly of such a structure is a unique property of XcpT. Moreover, we show that 5 of the 12 Xcp proteins are not required for pseudopilus biogenesis, whereas they are for type II secretion. Most interestingly, we showed that one pseudopilin, XcpX, controls the assembly of XcpT into a pseudopilus. Indeed, when the number of XcpX subunits increases, the length of the pseudopilus decreases. Conversely, in the absence of XcpX, the pseudopilus length is abnormally long. Our results indicate that XcpT and XcpX directly interact with each other. Furthermore, this interaction induces a clear destabilization of XcpT. The interaction between XcpT and XcpX could be part of the molecular mechanism underlying the dynamic control of pseudopilus elongation, which could be crucial for type II-dependent protein secretion.
Collapse
Affiliation(s)
- Eric Durand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, IBSM/CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
17
|
Lee HM, Chen JR, Lee HL, Leu WM, Chen LY, Hu NT. Functional dissection of the XpsN (GspC) protein of the Xanthomonas campestris pv. campestris type II secretion machinery. J Bacteriol 2004; 186:2946-55. [PMID: 15126454 PMCID: PMC400604 DOI: 10.1128/jb.186.10.2946-2955.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type II secretion machinery is composed of 12 to 15 proteins for translocating extracellular proteins across the outer membrane. XpsL, XpsM, and XpsN are components of such machinery in the plant pathogen Xanthomonas campestris pv. campestris. All are bitopic cytoplasmic-membrane proteins, each with a large C-terminal periplasmic domain. They have been demonstrated to form a dissociable ternary complex. By analyzing the C-terminally truncated XpsN and PhoA fusions, we discovered that truncation of the C-terminal 103 residues produced a functional protein, albeit present below detectable levels. Furthermore, just the first 46 residues, encompassing the membrane-spanning sequence (residues 10 to 32), are sufficient to keep XpsL and XpsM at normal abundance. XpsN46(His6), synthesized in Escherichia coli, is able to associate in a membrane-mixing experiment with the XpsL-XpsM complex preassembled in X. campestris pv. campestris. The XpsN N-terminal 46 residues are apparently sufficient not only for maintaining XpsL and XpsM at normal levels but also for their stable association. The membrane-spanning sequence of XpsN was not replaceable by that of TetA. However, coimmunoprecipitation with XpsL and XpsM was observed for XpsN97::PhoA, but not XpsN46::PhoA. Only XpsN97::PhoA is dominant negative. Single alanine substitutions for three charged residues within the region between residues 47 and 97 made the protein nonfunctional. In addition, the R78A mutant XpsN protein was pulled down by XpsL-XpsM(His6) immobilized on an Ni-nitrilotriacetic acid column to a lesser extent than the wild-type XpsN. Therefore, in addition to the N-terminal 46 residues, the region between residues 47 and 97 of XpsN probably also plays an important role in interaction with XpsL-XpsM.
Collapse
Affiliation(s)
- Hsien-Min Lee
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Transposons are mobile genetic elements that can relocate from one genomic location to another. As well as modulating gene expression and contributing to genome plasticity and evolution, transposons are remarkably diverse molecular tools for both whole-genome and single-gene studies in bacteria, yeast, and other microorganisms. Efficient but simple in vitro transposition reactions now allow the mutational analysis of previously recalcitrant microorganisms. Transposon-based signature-tagged mutagenesis and genetic footprinting strategies have pinpointed essential genes and genes that are crucial for the infectivity of a variety of human and other pathogens. Individual proteins and protein complexes can be dissected by transposon-mediated scanning linker mutagenesis. These and other transposon-based approaches have reaffirmed the usefulness of these elements as simple yet highly effective mutagens for both functional genomic and proteomic studies of microorganisms.
Collapse
Affiliation(s)
- Finbarr Hayes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England.
| |
Collapse
|
19
|
Tsai RT, Leu WM, Chen LY, Hu NT. A reversibly dissociable ternary complex formed by XpsL, XpsM and XpsN of the Xanthomonas campestris pv. campestris type II secretion apparatus. Biochem J 2002; 367:865-71. [PMID: 12123417 PMCID: PMC1222915 DOI: 10.1042/bj20020909] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Revised: 07/16/2002] [Accepted: 07/18/2002] [Indexed: 11/17/2022]
Abstract
The cytoplasmic membrane proteins XpsL, XpsM and XpsN are components required for type II secretion in Xanthomonas campestris pv. campestris. We performed metal-chelating chromatography to partially purify the His(6)-tagged XpsM (XpsMh)-containing complex. Immunoblot analysis revealed that both XpsL and XpsN co-eluted with XpsMh. The co-fractionated XpsL and XpsN proteins co-immune precipitated with each other, suggesting the existence of an XpsL-XpsM-XpsN complex. Ternary complex formation does not require other Xps protein components of the type II secretion apparatus. Further purification upon size-exclusion chromatography revealed that XpsN is prone to dissociate from the complex. Reassociation of XpsN with the XpsL-XpsMh complex immobilized on a nickel column is more effective than with XpsMh alone. Membrane-mixing experiments suggested that the XpsL-XpsMh complex and XpsN probably dissociate and reassociate in the membrane vesicles. Comparison of the half-lives of the XpsL-XpsMh-XpsN and XpsL-XpsMh complexes revealed that XpsL dissociates from the latter at a faster rate than from the former. Dissociation and reassociation between XpsL and XpsM were also demonstrated with membrane-mixing experiments. A dynamic model is proposed for the XpsL-XpsM-XpsN complex.
Collapse
Affiliation(s)
- Rong-Tzong Tsai
- Institute of Biotechnology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, Taiwan 402, Republic of China
| | | | | | | |
Collapse
|
20
|
Gérard-Vincent M, Robert V, Ball G, Bleves S, Michel GPF, Lazdunski A, Filloux A. Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol Microbiol 2002; 44:1651-65. [PMID: 12067351 DOI: 10.1046/j.1365-2958.2002.02991.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gram-negative bacteria have evolved several types of secretion mechanisms to release proteins into the extracellular medium. One such mechanism, the type II secretory system, is a widely conserved two-step process. The first step is the translocation of signal peptide-bearing exoproteins across the inner membrane. The second step, the translocation across the outer membrane, involves the type II secretory apparatus or secreton. The secretons are made up of 12-15 proteins (Gsp) depending on the organism. Even though the systems are conserved, heterologous secretion is mostly species restricted. Moreover, components of the secreton are not systematically exchangeable, especially with distantly related microorganisms. In closely related species, two components, the GspC and GspD (secretin) family members, confer specificity for substrate recognition and/or secreton assembly. We used Pseudomonas aeruginosa as a model organism to determine which domains of XcpP (GspC member) are involved in specificity. By constructing hybrids between XcpP and OutC, the Erwinia chrysanthemi homologue, we identified a region of 35 residues that was not exchangeable. We showed that this region might influence the stability of the XcpYZ secreton subcomplex. Remarkably, XcpP and OutC have domains, coiled-coil and PDZ, respectively, which exhibit the same function but that are structurally different. Those two domains are exchangeable and we provided evidence that they are involved in the formation of homomultimeric complexes of XcpP.
Collapse
Affiliation(s)
- Manon Gérard-Vincent
- Laboratoire d'lngénierie des Systèmes Macromoléculaires, UPR9027, IBSM/CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | |
Collapse
|