1
|
Peiter N, Einert A, Just P, Jannasch F, Najdovska M, Rother M. Defining the methanogenic SECIS element in vivo by targeted mutagenesis. RNA Biol 2025; 22:1-13. [PMID: 40000419 PMCID: PMC11881835 DOI: 10.1080/15476286.2025.2472448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In all domains of life, Archaea, Eukarya and Bacteria, the unusual amino acid selenocysteine (Sec) is co-translationally incorporated into proteins by recoding a UGA stop codon to a sense codon. A secondary structure on the mRNA, the selenocysteine insertion sequence (SECIS), is required, but its position, secondary structure and binding partner(s) are not conserved across the tree of life. Thus far, the nature of archaeal SECIS elements has been derived mainly from sequence analyses. A recently developed in vivo reporter system was used to study the structure-function relationships of SECIS elements in Methanococcus maripaludis. Through targeted mutagenesis, we defined the minimal functional SECIS element, the parts of the SECIS where structure and not the identity of the bases are relevant for function, and identified two conserved -and invariant- adenines that are most likely to interact with the other factor(s) of the Sec recoding machinery. Finally, we demonstrated the functionality of SECIS elements in the 5`-untranslated region of the mRNA and identified a potential mechanism of SECIS repositioning in the vicinity of the UGA for efficient selenocysteine insertion.
Collapse
Affiliation(s)
- Nils Peiter
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Anna Einert
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Pauline Just
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Frida Jannasch
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Marija Najdovska
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Michael Rother
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Funkner K, Poehlein A, Jehmlich N, Egelkamp R, Daniel R, von Bergen M, Rother M. Proteomic and transcriptomic analysis of selenium utilization in Methanococcus maripaludis. mSystems 2024; 9:e0133823. [PMID: 38591896 PMCID: PMC11097638 DOI: 10.1128/msystems.01338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Methanococcus maripaludis utilizes selenocysteine- (Sec-) containing proteins (selenoproteins), mostly active in the organism's primary energy metabolism, methanogenesis. During selenium depletion, M. maripaludis employs a set of enzymes containing cysteine (Cys) instead of Sec. The genes coding for these Sec-/Cys-containing isoforms were the only genes known of which expression is influenced by the selenium status of the cell. Using proteomics and transcriptomics, approx. 7% and 12%, respectively, of all genes/proteins were found differentially expressed/synthesized in response to the selenium supply. Some of the genes identified involve methanogenesis, nitrogenase functions, and putative transporters. An increase of transcript abundance for putative transporters under selenium depletion indicated the organism's effort to tap into alternative sources of selenium. M. maripaludis is known to utilize selenite and dimethylselenide as selenium sources. To expand this list, a selenium-responsive reporter strain was assessed with nine other, environmentally relevant selenium species. While the effect of some was very similar to that of selenite, others were effectively utilized at lower concentrations. Conversely, selenate and seleno-amino acids were only utilized at unphysiologically high concentrations and two compounds were not utilized at all. To address the role of the selenium-regulated putative transporters, M. maripaludis mutant strains lacking one or two of the putative transporters were tested for the capability to utilize the different selenium species. Of the five putative transporters analyzed by loss-of-function mutagenesis, none appeared to be absolutely required for utilizing any of the selenium species tested, indicating they have redundant and/or overlapping specificities or are not dedicated selenium transporters. IMPORTANCE While selenium metabolism in microorganisms has been studied intensively in the past, global gene expression approaches have not been employed so far. Furthermore, the use of different selenium sources, widely environmentally interconvertible via biotic and abiotic processes, was also not extensively studied before. Methanococcus maripaludis JJ is ideally suited for such analyses, thanks to its known selenium usage and available genetic tools. Thus, an overall view on the selenium regulon of M. maripaludis was obtained via transcriptomic and proteomic analyses, which inspired further experimentation. This led to demonstrating the use of selenium sources M. maripaludis was previously not known to employ. Also, an attempt-although so far unsuccessful-was made to pinpoint potential selenium transporter genes, in order to deepen our understanding of trace element utilization in this important model organism.
Collapse
Affiliation(s)
- Katrina Funkner
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Michael Rother
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules 2023; 13:biom13010114. [PMID: 36671499 PMCID: PMC9855744 DOI: 10.3390/biom13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Archaea represents the third domain of life, displaying a closer relationship with eukaryotes than bacteria. These microorganisms are valuable model systems for molecular biology and biotechnology. In fact, nowadays, methanogens, halophiles, thermophilic euryarchaeota, and crenarchaeota are the four groups of archaea for which genetic systems have been well established, making them suitable as model systems and allowing for the increasing study of archaeal genes' functions. Furthermore, thermophiles are used to explore several aspects of archaeal biology, such as stress responses, DNA replication and repair, transcription, translation and its regulation mechanisms, CRISPR systems, and carbon and energy metabolism. Extremophilic archaea also represent a valuable source of new biomolecules for biological and biotechnological applications, and there is growing interest in the development of engineered strains. In this review, we report on some of the most important aspects of the use of archaea as a model system for genetic evolution, the development of genetic tools, and their application for the elucidation of the basal molecular mechanisms in this domain of life. Furthermore, an overview on the discovery of new enzymes of biotechnological interest from archaea thriving in extreme environments is reported.
Collapse
|
4
|
Peiter N, Rother M. In vivo probing of SECIS-dependent selenocysteine translation in Archaea. Life Sci Alliance 2023; 6:6/1/e202201676. [PMID: 36316034 PMCID: PMC9622424 DOI: 10.26508/lsa.202201676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Cotranslational insertion of selenocysteine (Sec) proceeds by recoding UGA to a sense codon. This recoding is governed by the Sec insertion sequence (SECIS) element, an RNA structure on the mRNA, but size, location, structure determinants, and mechanism differ for Bacteria, Eukarya, and Archaea. For Archaea, the structure-function relation of the SECIS is poorly understood, as only rather laborious experimental approaches are established. Furthermore, these methods do not allow for quantitative probing of Sec insertion. In order to overcome these limitations, we engineered bacterial β-lactamase into an archaeal selenoprotein, thereby establishing a reporter system, which correlates enzyme activity to Sec insertion. Using this system, in vivo Sec insertion depending on the availability of selenium and the presence of a SECIS element was assessed in Methanococcus maripaludis Furthermore, a minimal SECIS element required for Sec insertion in M. maripaludis was defined and a conserved structural motif shown to be essential for function. Besides developing a convenient tool for selenium research, converting a bacterial enzyme into an archaeal selenoprotein provides proof of concept that novel selenoproteins can be engineered in Archaea.
Collapse
Affiliation(s)
- Nils Peiter
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Michael Rother
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
De Lise F, Strazzulli A, Iacono R, Curci N, Di Fenza M, Maurelli L, Moracci M, Cobucci-Ponzano B. Programmed Deviations of Ribosomes From Standard Decoding in Archaea. Front Microbiol 2021; 12:688061. [PMID: 34149676 PMCID: PMC8211752 DOI: 10.3389/fmicb.2021.688061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic code decoding, initially considered to be universal and immutable, is now known to be flexible. In fact, in specific genes, ribosomes deviate from the standard translational rules in a programmed way, a phenomenon globally termed recoding. Translational recoding, which has been found in all domains of life, includes a group of events occurring during gene translation, namely stop codon readthrough, programmed ± 1 frameshifting, and ribosome bypassing. These events regulate protein expression at translational level and their mechanisms are well known and characterized in viruses, bacteria and eukaryotes. In this review we summarize the current state-of-the-art of recoding in the third domain of life. In Archaea, it was demonstrated and extensively studied that translational recoding regulates the decoding of the 21st and the 22nd amino acids selenocysteine and pyrrolysine, respectively, and only one case of programmed -1 frameshifting has been reported so far in Saccharolobus solfataricus P2. However, further putative events of translational recoding have been hypothesized in other archaeal species, but not extensively studied and confirmed yet. Although this phenomenon could have some implication for the physiology and adaptation of life in extreme environments, this field is still underexplored and genes whose expression could be regulated by recoding are still poorly characterized. The study of these recoding episodes in Archaea is urgently needed.
Collapse
Affiliation(s)
- Federica De Lise
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Roberta Iacono
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Nicola Curci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Mauro Di Fenza
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Luisa Maurelli
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Marco Moracci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
6
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
7
|
Ruth JC, Milton RD, Gu W, Spormann AM. Enhanced Electrosynthetic Hydrogen Evolution by Hydrogenases Embedded in a Redox-Active Hydrogel. Chemistry 2020; 26:7323-7329. [PMID: 32074397 DOI: 10.1002/chem.202000750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 01/27/2023]
Abstract
Molecular hydrogen is a major high-energy carrier for future energy technologies, if produced from renewable electrical energy. Hydrogenase enzymes offer a pathway for bioelectrochemically producing hydrogen that is advantageous over traditional platforms for hydrogen production because of low overpotentials and ambient operating temperature and pressure. However, electron delivery from the electrode surface to the enzyme's active site is often rate-limiting. Here, it is shown that three different hydrogenases from Clostridium pasteurianum and Methanococcus maripaludis, when immobilized at a cathode in a cobaltocene-functionalized polyallylamine (Cc-PAA) redox polymer, mediate rapid and efficient hydrogen evolution. Furthermore, it is shown that Cc-PAA-mediated hydrogenases can operate at high faradaic efficiency (80-100 %) and low apparent overpotential (-0.578 to -0.593 V vs. SHE). Specific activities of these hydrogenases in the electrosynthetic Cc-PAA assay were comparable to their respective activities in traditional methyl viologen assays, indicating that Cc-PAA mediates electron transfer at high rates, to most of the embedded enzymes.
Collapse
Affiliation(s)
- John C Ruth
- Department of Chemical Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Ross D Milton
- Department of Civil and Environmental Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.,Current address: Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Wenyu Gu
- Department of Civil and Environmental Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Alfred M Spormann
- Department of Chemical Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.,Department of Civil and Environmental Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Chen XD, Zhao ZP, Zhou JC, Lei XG. Evolution, regulation, and function of porcine selenogenome. Free Radic Biol Med 2018; 127:116-123. [PMID: 29698745 PMCID: PMC6420226 DOI: 10.1016/j.freeradbiomed.2018.04.560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
Much less research on regulation and function of selenoproteins has been conducted in domestic pigs than in rodents or humans, although pigs are an excellent model of human nutrition and medicine and pork is a widely consumed meat in the world. Phylogenetically, the 25 identified porcine selenoproteins fell into two primitive groups, and might be further divided into three parallel branches. Despite a high similarity to that of humans and rodents, the porcine selenoproteome exhibited the closest evolutionary relationship with that of sheep and cattle among eight domestic species. Expression (mRNA, protein, and/or enzyme activity) of 2/3 of the 25 porcine selenoproteins in various tissues of pigs was affected by dietary Se intakes, and 14 of them showed responses to a high fat diet. When dietary Se deficiency mainly down-regulated the expression of selected selenoproteins, dietary Se excess exerted rather diverse effects on their expression. Overdosing pigs with dietary Se induced hyperinsulinemia, along with lipid accumulation and protein increase, in the liver and muscle by affecting key genes and(or) proteins involved in the metabolisms of glucose, lipid, and protein. In conclusion, expression of porcine selenoproteins was highly responsive to dietary Se and fat intakes, and was involved in body glucose, lipid, and protein metabolism as those of rodents and humans.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- College of Life Science and Technology, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ze-Ping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Ji-Chang Zhou
- School of Public Health School (Shenzhen), Sun Yat-Sen University, Shenzhen 518100, China; Molecular Biology Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Rother M, Quitzke V. Selenoprotein synthesis and regulation in Archaea. Biochim Biophys Acta Gen Subj 2018; 1862:2451-2462. [DOI: 10.1016/j.bbagen.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023]
|
10
|
Quitzke V, Fersch J, Seyhan D, Rother M. Selenium-dependent gene expression in Methanococcus maripaludis: Involvement of the transcriptional regulator HrsM. Biochim Biophys Acta Gen Subj 2018; 1862:2441-2450. [DOI: 10.1016/j.bbagen.2018.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/23/2023]
|
11
|
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev 2016; 80:451-93. [PMID: 27122598 DOI: 10.1128/mmbr.00070-15] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.
Collapse
|
12
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
13
|
Seyhan D, Jehmlich N, von Bergen M, Fersch J, Rother M. Selenocysteine-independent suppression of UGA codons in the archaeon Methanococcus maripaludis. Biochim Biophys Acta Gen Subj 2015. [PMID: 26215786 DOI: 10.1016/j.bbagen.2015.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Proteins containing selenocysteine (sec) are found in Bacteria, Eukarya, and Archaea. While selenium-dependence of methanogenesis from H(2)+CO(2) in the archaeon Methanococcus maripaludis JJ is compensated by induction of a set of cysteine-containing homologs, growth on formate is abrogated in the absence of sec due to the dependence of formate dehydrogenase (Fdh) on selenium. Despite this dependence, formate-dependent growth occurs after prolonged incubation of M. maripaludis mutants lacking sec. METHODS To study this phenomenon, a M. maripaludis strain with only one Fdh isoform and an FdhA selenoprotein C-terminally tagged for affinity enrichment was constructed. Factors required for sec synthesis were deleted in this strain and translation of UGA in fdhA was analyzed physiologically, enzymatically, immunologically, and via mass spectrometry. RESULTS M. maripaludis JJ mutants lacking sec synthesis grew at least five times more slowly than the wild type on formate due to a 20-35-fold reduction of Fdh activity. The enzyme in the mutant strains lacked sec but was still produced as a full-length protein. Peptide mass spectrometry revealed that both cysteine (cys) and tryptophan (trp) were inserted at the UGA encoding sec without apparent mutations in tRNA(cys) or tRNA(trp), respectively. CONCLUSIONS We demonstrate that M. maripaludis has the inherent capacity to translate UGA with cys and trp; other mechanisms to replace sec with cys in the absence of selenium could thereby be ruled out. GENERAL SIGNIFICANCE This study exemplifies how an organism uses the inherent flexibility in its canonical protein synthesis machinery to recover some activity of an essential selenium-dependent enzyme in the absence of sec.
Collapse
Affiliation(s)
- Deniz Seyhan
- Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Marie-Curie-Str. 9, 60439 Frankfurt am Main, Germany
| | - Nico Jehmlich
- Department of Proteomics, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Proteomics, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; Department of Metabolomics, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Julia Fersch
- Institute of Microbiology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Rother
- Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Marie-Curie-Str. 9, 60439 Frankfurt am Main, Germany; Institute of Microbiology, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
14
|
|
15
|
Random mutagenesis identifies factors involved in formate-dependent growth of the methanogenic archaeon Methanococcus maripaludis. Mol Genet Genomics 2013; 288:413-24. [PMID: 23801407 DOI: 10.1007/s00438-013-0756-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/31/2013] [Indexed: 01/25/2023]
Abstract
Methane is a key intermediate in the carbon cycle and biologically produced by methanogenic archaea. Most methanogens are able to conserve energy by reducing CO2 to methane using molecular hydrogen as electron donor (hydrogenotrophic methanogenesis), but several hydrogenotrophic methanogens can also use formate as electron donor for methanogenesis. Formate dehydrogenase (Fdh) oxidizes formate to CO2 and is involved in funneling reducing equivalents into the methanogenic pathway, but details on other factors relevant for formate-dependent physiology of methanogens are not available. To learn more about the factors involved in formate-dependent growth of Methanococcus maripaludis strain JJ, we used a recently developed system for random in vitro mutagenesis, which is based on a modified insect transposable element to create 2,865 chromosomal transposon mutants and screened them for impaired growth on formate. Of 12 M. maripaludis transposon-induced mutants exhibiting this phenotype, the transposon insertion sites in the chromosome were mapped. Among the genes, apparently affecting formate-dependent growth were those encoding archaeal transcription factor S, a regulator of ion transport, and carbon monoxide dehydrogenase/acetyl-CoA synthase. Interestingly, in seven of the mutants, transposons were localized in a 10.2 kb region where Fdh1, one of two Fdh isoforms in the organism, is encoded. Two transcription start sites within the 10.2 kb region could be mapped, and quantification of transcripts revealed that transposon insertion in this region diminished fdhA1 expression due to polar effects.
Collapse
|
16
|
|
17
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|
18
|
Stock T, Selzer M, Connery S, Seyhan D, Resch A, Rother M. Disruption and complementation of the selenocysteine biosynthesis pathway reveals a hierarchy of selenoprotein gene expression in the archaeon Methanococcus maripaludis. Mol Microbiol 2011; 82:734-47. [PMID: 21992107 DOI: 10.1111/j.1365-2958.2011.07850.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Proteins containing selenocysteine are found in members of all three domains of life, Bacteria, Eukarya and Archaea. A dedicated tRNA (tRNA(sec)) serves as a scaffold for selenocysteine synthesis. However, sequence and secondary structures differ in tRNA(sec) from the different domains. An Escherichia coli strain lacking the gene for tRNA(sec) could only be complemented with the homologue from Methanococcus maripaludis when a single base in the anticodon loop was exchanged demonstrating that this base is a crucial determinant for archaeal tRNA(sec) to function in E. coli. Complementation in trans of M. maripaludis JJ mutants lacking tRNA(sec) , O-phosphoseryl-tRNA(sec) kinase or O-phosphoseryl-tRNA(sec) :selenocysteine synthase with the corresponding genes from M. maripaludis S2 restored the mutant's ability to synthesize selenoproteins. However, only partial restoration of the wild-type selenoproteome was observed as only selenocysteine-containing formate dehydrogenase was synthesized. Quantification of transcripts showed that disrupting the pathway of selenocysteine synthesis leads to downregulation of selenoprotein gene expression, concomitant with upregulation of a selenium-independent backup system, which is not re-adjusted upon complementation. This transcriptional arrest was independent of selenophosphate but depended on the 'history' of the mutants and was inheritable, which suggests that a stable genetic switch may cause the resulting hierarchy of selenoproteins synthesized.
Collapse
Affiliation(s)
- Tilmann Stock
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Hohn MJ, Palioura S, Su D, Yuan J, Söll D. Genetic analysis of selenocysteine biosynthesis in the archaeon Methanococcus maripaludis. Mol Microbiol 2011; 81:249-58. [PMID: 21564332 DOI: 10.1111/j.1365-2958.2011.07690.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Archaea selenocysteine (Sec) is synthesized in three steps. First seryl-tRNA synthetase acylates tRNA(Sec) with serine to generate Ser-tRNA(Sec). Then phosphoseryl-tRNA(Sec) kinase (PSTK) forms Sep-tRNA(Sec) , which is converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase (SepSecS) in the presence of selenophosphate produced by selenophosphate synthetase (SelD). A complete in vivo analysis of the archaeal Sec biosynthesis pathway is still unavailable, and the existence of a redundant pathway or of a rescue mechanism based on the conversion of Sep-tRNA(Sec) to Cys-tRNA(Sec) during selenium starvation, cannot be excluded. Here we present a mutational analysis of Sec biosynthesis in Methanococcus maripaludis strain Mm900. Sec formation is abolished upon individually deleting the genes encoding SelD, PSTK or SepSecS; the resulting mutant strains could no longer grow on formate while growth with H(2) + CO(2) remained unaffected. However, deletion of the PSTK and SepSecS genes was not possible unless the selenium-free [NiFe]-hydrogenases Frc and Vhc were expressed. This required the prior deletion of either the gene encoding SelD or that of HrsM, a LysR-type regulator suppressing transcription of the frc and vhc operons in the presence of selenium. These results show that M. maripaludis Mm900 is facultatively selenium-dependent with a single pathway of Sec-tRNA(Sec) formation.
Collapse
Affiliation(s)
- Michael J Hohn
- Departments of Molecular Biophysics and Biochemistry Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
20
|
Assembling the archaeal ribosome: roles for translation-factor-related GTPases. Biochem Soc Trans 2011; 39:45-50. [PMID: 21265745 DOI: 10.1042/bst0390045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major type of ribosome-assembly factor in Eukaryota and Bacteria. They are thought to aid the stepwise assembly of ribosomal subunits through a 'molecular switch' mechanism that involves conformational changes in response to GTP hydrolysis. Most conserved TRAFAC GTPases are involved in ribosome assembly or other translation-associated processes. They typically interact with ribosomal subunits, but in many cases, the exact role that these GTPases play remains unclear. Previous studies almost exclusively focused on the systems of Bacteria and Eukaryota. Archaea possess several conserved TRAFAC GTPases as well, with some GTPase families being present only in the archaeo-eukaryotic lineage. In the present paper, we review the occurrence of TRAFAC GTPases with translation-associated functions in Archaea.
Collapse
|
21
|
Baltazar CSA, Marques MC, Soares CM, DeLacey AM, Pereira IAC, Matias PM. Nickel–Iron–Selenium Hydrogenases – An Overview. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001127] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carla S. A. Baltazar
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Marta C. Marques
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Cláudio M. Soares
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Antonio M. DeLacey
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain, Fax: +34‐915854760
| | - Inês A. C. Pereira
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
| | - Pedro M. Matias
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| |
Collapse
|
22
|
Abstract
Methanogenic archaea are a unique group of strictly anaerobic microorganisms characterized by their ability, and dependence, to convert simple C1 and C2 compounds to methane for growth. The major models for studying the biology of methanogens are members of the Methanococcus and Methanosarcina species. Recent development of sophisticated tools for molecular analysis and for genetic manipulation allows investigating not only their metabolism but also their cell cycle, and their interaction with the environment in great detail. One aspect of such analyses is assessment and dissection of methanoarchaeal gene regulation, for which, at present, only a handful of cases have been investigated thoroughly, partly due to the great methodological effort required. However, it becomes more and more evident that many new regulatory paradigms can be unraveled in this unique archaeal group. Here, we report both molecular and physiological/genetic methods to assess gene regulation in Methanococcus maripaludis and Methanosarcina acetivorans, which should, however, be applicable for other methanogens as well.
Collapse
Affiliation(s)
- Michael Rother
- Institut fu¨ r Molekulare Biowissenschaften, Molekulare Mikrobiologie & Bioenergetik, Johann Wolfgang Goethe-Universita¨t, Frankfurt am Main, Germany
| | | | | |
Collapse
|
23
|
Abstract
Previous studies revealed that one species of methanogenic archaea, Methanocaldococcus jannaschii, is polyploid, while a second species, Methanothermobacter thermoautotrophicus, is diploid. To further investigate the distribution of ploidy in methanogenic archaea, species of two additional genera-Methanosarcina acetivorans and Methanococcus maripaludis-were investigated. M. acetivorans was found to be polyploid during fast growth (t(D) = 6 h; 17 genome copies) and oligoploid during slow growth (doubling time = 49 h; 3 genome copies). M. maripaludis has the highest ploidy level found for any archaeal species, with up to 55 genome copies in exponential phase and ca. 30 in stationary phase. A compilation of archaeal species with quantified ploidy levels reveals a clear dichotomy between Euryarchaeota and Crenarchaeota: none of seven euryarchaeal species of six genera is monoploid (haploid), while, in contrast, all six crenarchaeal species of four genera are monoploid, indicating significant genetic differences between these two kingdoms. Polyploidy in asexual species should lead to accumulation of inactivating mutations until the number of intact chromosomes per cell drops to zero (called "Muller's ratchet"). A mechanism to equalize the genome copies, such as gene conversion, would counteract this phenomenon. Making use of a previously constructed heterozygous mutant strain of the polyploid M. maripaludis we could show that in the absence of selection very fast equalization of genomes in M. maripaludis took place probably via a gene conversion mechanism. In addition, it was shown that the velocity of this phenomenon is inversely correlated to the strength of selection.
Collapse
|
24
|
Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20847933 PMCID: PMC2933860 DOI: 10.1155/2010/453642] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 01/21/2023]
Abstract
Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.
Collapse
|
25
|
Lukashenko NP. Expanding genetic code: Amino acids 21 and 22, selenocysteine and pyrrolysine. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410080016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Stock T, Selzer M, Rother M. In vivo requirement of selenophosphate for selenoprotein synthesis in archaea. Mol Microbiol 2009; 75:149-60. [PMID: 19919669 DOI: 10.1111/j.1365-2958.2009.06970.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biosynthesis of selenocysteine, the 21st proteinogenic amino acid, occurs bound to a dedicated tRNA in all three domains of life, Bacteria, Eukarya and Archaea, but differences exist between the mechanism employed by bacteria and eukaryotes/archaea. The role of selenophosphate and the enzyme providing it, selenophosphate synthetase, in archaeal selenoprotein synthesis was addressed by mutational analysis. Surprisingly, MMP0904, encoding a homologue of eukaryal selenophosphate synthetase in Methanococcus maripaludis S2, could not be deleted unless selD, encoding selenophosphate synthetase of Escherichia coli, was present in trans, demonstrating that the factor is essential for the organism. In contrast, the homologous gene of M. maripaludis JJ could be readily deleted, obviating the strain's ability to synthesize selenoproteins. Complementing with selD restored selenoprotein synthesis, demonstrating that the deleted gene encodes selenophosphate synthetase and that selenophosphate is the in vivo selenium donor for selenoprotein synthesis of this organism. We also showed that this enzyme is a selenoprotein itself and that M. maripaludis contains another, HesB-like selenoprotein previously only predicted from genome analyses. The data highlight the use of genetic methods in archaea for a causal analysis of their physiology and, by comparing two closely related strains of the same species, illustrate the evolution of the selenium-utilizing trait.
Collapse
Affiliation(s)
- Tilmann Stock
- Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
27
|
Stock T, Rother M. Selenoproteins in Archaea and Gram-positive bacteria. Biochim Biophys Acta Gen Subj 2009; 1790:1520-32. [PMID: 19344749 DOI: 10.1016/j.bbagen.2009.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 01/23/2023]
Abstract
Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.
Collapse
Affiliation(s)
- Tilmann Stock
- Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | |
Collapse
|
28
|
Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis. Appl Environ Microbiol 2008; 74:6584-90. [PMID: 18791018 DOI: 10.1128/aem.01455-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Methanococcus maripaludis, an H(2)- and formate-utilizing methanogen, produced H(2) at high rates from formate. The rates and kinetics of H(2) production depended upon the growth conditions, and H(2) availability during growth was a major factor. Specific activities of resting cells grown with formate or H(2) were 0.4 to 1.4 U mg(-1) (dry weight). H(2) production in formate-grown cells followed Michaelis-Menten kinetics, and the concentration of formate required for half-maximal activity (K(f)) was 3.6 mM. In contrast, in H(2)-grown cells this process followed sigmoidal kinetics, and the K(f) was 9 mM. A key enzyme for formate-dependent H(2) production was formate dehydrogenase, Fdh. H(2) production and growth were severely reduced in a mutant containing a deletion of the gene encoding the Fdh1 isozyme, indicating that it was the primary Fdh. In contrast, a mutant containing a deletion of the gene encoding the Fdh2 isozyme possessed near-wild-type activities, indicating that this isozyme did not play a major role. H(2) production by a mutant containing a deletion of the coenzyme F(420)-reducing hydrogenase Fru was also severely reduced, suggesting that the major pathway of H(2) production comprised Fdh1 and Fru. Because a Deltafru-Deltafrc mutant retained 10% of the wild-type activity, an additional pathway is present. Mutants possessing deletions of the gene encoding the F(420)-dependent methylene-H(4)MTP dehydrogenase (Mtd) or the H(2)-forming methylene-H(4)MTP dehydrogenase (Hmd) also possessed reduced activity, which suggested that this second pathway was comprised of Fdh1-Mtd-Hmd. In contrast to H(2) production, the cellular rates of methanogenesis were unaffected in these mutants, which suggested that the observed H(2) production was not a direct intermediate of methanogenesis. In conclusion, high rates of formate-dependent H(2) production demonstrated the potential of M. maripaludis for the microbial production of H(2) from formate.
Collapse
|
29
|
Abstract
Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.
Collapse
Affiliation(s)
- John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | | | |
Collapse
|
30
|
Valente FMA, Almeida CC, Pacheco I, Carita J, Saraiva LM, Pereira IAC. Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 2006; 188:3228-35. [PMID: 16621815 PMCID: PMC1447438 DOI: 10.1128/jb.188.9.3228-3235.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Desulfovibrio vulgaris Hildenborough is a good model organism to study hydrogen metabolism in sulfate-reducing bacteria. Hydrogen is a key compound for these organisms, since it is one of their major energy sources in natural habitats and also an intermediate in the energy metabolism. The D. vulgaris Hildenborough genome codes for six different hydrogenases, but only three of them, the periplasmic-facing [FeFe], [FeNi]1, and [FeNiSe] hydrogenases, are usually detected. In this work, we studied the synthesis of each of these enzymes in response to different electron donors and acceptors for growth as well as in response to the availability of Ni and Se. The formation of the three hydrogenases was not very strongly affected by the electron donors or acceptors used, but the highest levels were observed after growth with hydrogen as electron donor and lowest with thiosulfate as electron acceptor. The major effect observed was with inclusion of Se in the growth medium, which led to a strong repression of the [FeFe] and [NiFe]1 hydrogenases and a strong increase in the [NiFeSe] hydrogenase that is not detected in the absence of Se. Ni also led to increased formation of the [NiFe]1 hydrogenase, except for growth with H2, where its synthesis is very high even without Ni added to the medium. Growth with H2 results in a strong increase in the soluble forms of the [NiFe]1 and [NiFeSe] hydrogenases. This study is an important contribution to understanding why D. vulgaris Hildenborough has three periplasmic hydrogenases. It supports their similar physiological role in H2 oxidation and reveals that element availability has a strong influence in their relative expression.
Collapse
Affiliation(s)
- Filipa M A Valente
- Instituto de Tecnologia Química e Biológica, Apt. 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
31
|
Mahapatra A, Patel A, Soares JA, Larue RC, Zhang JK, Metcalf WW, Krzycki JA. Characterization of a Methanosarcina acetivorans mutant unable to translate UAG as pyrrolysine. Mol Microbiol 2006; 59:56-66. [PMID: 16359318 DOI: 10.1111/j.1365-2958.2005.04927.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The methyltransferases initiating methanogenesis from trimethylamine, dimethylamine and monomethylamine possess a novel residue, pyrrolysine. Pyrrolysine is the 22nd amino acid, because it is encoded by a single amber (UAG) codon in methylamine methyltransferase transcripts. A dedicated tRNA(CUA) for pyrrolysine, tRNA(Pyl), is charged by a pyrrolysyl-tRNA synthetase with pyrrolysine. As the first step towards the genetic analysis of UAG translation as pyrrolysine, a 761 base-pair genomic segment in Methanosarcina acetivorans containing the pylT gene (encoding tRNA(Pyl)) was deleted and replaced by a puromycin resistance cassette. The DeltappylT mutant lacks detectable tRNA(Pyl), but grows as wild-type on methanol or acetate. Unlike wild-type, the DeltappylT strain cannot grow on any methylamine, nor use monomethylamine as sole nitrogen source. Wild-type cells, but not DeltappylT, have monomethylamine methyltransferase activity during growth on methanol. Immunoblot analysis indicated monomethylamine methyltransferase was absent in DeltappylT. The phenotype of DeltappylT reveals the deficiency in methylamine metabolism expected of a Methanosarcina species unable to decode UAG codons as pyrrolysine, but also that loss of pylT does not compromise growth on other substrates. These results indicate that in-depth genetic analysis of UAG translation as pyrrolysine is feasible, as deletion of pylT is conditionally lethal depending on growth substrate.
Collapse
Affiliation(s)
- Anirban Mahapatra
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R, Van Dorsselaer A, Boll M. Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 2006; 58:1238-52. [PMID: 16313613 DOI: 10.1111/j.1365-2958.2005.04909.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The degradation of aromatic compounds follows different biochemical principles in aerobic and anaerobic microorganisms. While aerobes dearomatize and cleave the aromatic ring by oxygenases, facultative anaerobes utilize an ATP-dependent ring reductase for the dearomatization of the activated key intermediate benzoyl-coenzyme A (CoA). In this work, the aromatic metabolism was studied in the obligately anaerobic model organism Geobacter metallireducens. The gene coding for a putative carboxylic acid-CoA ligase was heterologously overexpressed and the gene product was characterized as a highly specific benzoate-CoA ligase catalysing the initial step of benzoate metabolism. However, no evidence for the presence of an ATP-dependent benzoyl-CoA reductase as observed in facultative anaerobes was obtained. In a proteomic approach benzoate-induced proteins were identified; the corresponding genes are organized in two clusters comprising 44 genes. Induction of representative genes during growth on benzoate was confirmed by reverse transcription polymerase chain reaction. The results obtained suggest that benzoate is activated to benzoyl-CoA, which is then reductively dearomatized to cyclohexa-1,5-diene-1-carbonyl-CoA, followed by beta-oxidation reactions to acetyl-CoA units, as in facultatively anaerobic bacteria. However, in G. metallireducens the process of reductive benzene ring dearomatization appears to be catalysed by a set of completely different protein components comprising putative molybdenum and selenocysteine containing enzymes.
Collapse
Affiliation(s)
- Simon Wischgoll
- Institute for Biology II, Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rother M, Metcalf WW. Genetic technologies for Archaea. Curr Opin Microbiol 2005; 8:745-51. [PMID: 16257573 DOI: 10.1016/j.mib.2005.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 10/12/2005] [Indexed: 11/25/2022]
Abstract
Members of the third domain of life, the Archaea, possess structural, physiological, biochemical and genetic features distinct from Bacteria and Eukarya and, therefore, have drawn considerable scientific interest. Physiological, biochemical and molecular analyses have revealed many novel biological processes in these important prokaryotes. However, assessment of the function of genes in vivo through genetic analysis has lagged behind because suitable systems for the creation of mutants in most Archaea were established only in the past decade. Among the Archaea, sufficiently sophisticated genetic systems now exist for some thermophilic sulfur-metabolizing Archaea, halophilic Archaea and methanogenic Archaea. Recently, there have been developments in genetic analysis of thermophilic and methanogenic Archaea and in the use of genetics to study the physiology, metabolism and regulatory mechanisms that direct gene expression in response to changes of environmental conditions in these important microorganisms.
Collapse
Affiliation(s)
- Michael Rother
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Marie-Curie-Strasse 9, D-60439 Frankfurt (Main), Germany
| | | |
Collapse
|
34
|
Romero H, Zhang Y, Gladyshev VN, Salinas G. Evolution of selenium utilization traits. Genome Biol 2005; 6:R66. [PMID: 16086848 PMCID: PMC1273633 DOI: 10.1186/gb-2005-6-8-r66] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/07/2005] [Accepted: 06/27/2005] [Indexed: 11/25/2022] Open
Abstract
Completely sequenced genomes were analyzed for occurrence of SelA, B, C, D and ybbB genes. SelB and SelC were found to be signatures for the Sec decoding trait, while SelD defines the overall selenium utilization. Background The essential trace element selenium is used in a wide variety of biological processes. Selenocysteine (Sec), the 21st amino acid, is co-translationally incorporated into a restricted set of proteins. It is encoded by an UGA codon with the help of tRNASec (SelC), Sec-specific elongation factor (SelB) and a cis-acting mRNA structure (SECIS element). In addition, Sec synthase (SelA) and selenophosphate synthetase (SelD) are involved in the biosynthesis of Sec on the tRNASec. Selenium is also found in the form of 2-selenouridine, a modified base present in the wobble position of certain tRNAs, whose synthesis is catalyzed by YbbB using selenophosphate as a precursor. Results We analyzed completely sequenced genomes for occurrence of the selA, B, C, D and ybbB genes. We found that selB and selC are gene signatures for the Sec-decoding trait. However, selD is also present in organisms that do not utilize Sec, and shows association with either selA, B, C and/or ybbB. Thus, selD defines the overall selenium utilization. A global species map of Sec-decoding and 2-selenouridine synthesis traits is provided based on the presence/absence pattern of selenium-utilization genes. The phylogenies of these genes were inferred and compared to organismal phylogenies, which identified horizontal gene transfer (HGT) events involving both traits. Conclusion These results provide evidence for the ancient origin of these traits, their independent maintenance, and a highly dynamic evolutionary process that can be explained as the result of speciation, differential gene loss and HGT. The latter demonstrated that the loss of these traits is not irreversible as previously thought.
Collapse
Affiliation(s)
- Héctor Romero
- Laboratorio de Organización y Evolución del Genoma, Dpto. de Biología Celular y Molecular, Instituto de Biología, Facultad de Ciencias, Iguá 4225, Montevideo, CP 11400, Uruguay
- Escuela Universitaria de Tecnología Médica, Facultad de Medicina, Piso 3 Hospital de Clínicas, Avda. Italia s/n, Montevideo, CP 11600, Uruguay
| | - Yan Zhang
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Vadim N Gladyshev
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Gustavo Salinas
- Cátedra de Inmunología, Facultad de Química/Ciencias, Instituto de Higiene, Avda. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| |
Collapse
|
35
|
Abstract
Standard decoding of the genetic information into polypeptides is performed by one of the most sophisticated cell machineries, the translating ribosome, which, by following the genetic code, ensures the correspondence between the mature mRNA and the protein sequence. However, the expression of a minority of genes requires programmed deviations from the standard decoding rules, globally named recoding. This includes ribosome programmed -/+1 frameshifting, ribosome hopping, and stop codon readthrough. Recoding in Archaea was unequivocally demonstrated only for the translation of the UGA stop codon into the amino acid selenocysteine. However, a new recoding event leading to the 22nd amino acid pyrrolysine and the preliminary reports on a gene regulated by programmed -1 frameshifting have been recently described in Archaea. Therefore, it appears that the study of this phenomenon in Archaea is still at its dawn and that most of the genes whose expression is regulated by recoding are still uncharacterized.
Collapse
|
36
|
Leibundgut M, Frick C, Thanbichler M, Böck A, Ban N. Selenocysteine tRNA-specific elongation factor SelB is a structural chimaera of elongation and initiation factors. EMBO J 2004; 24:11-22. [PMID: 15616587 PMCID: PMC544917 DOI: 10.1038/sj.emboj.7600505] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/12/2004] [Indexed: 11/08/2022] Open
Abstract
In all three kingdoms of life, SelB is a specialized translation elongation factor responsible for the cotranslational incorporation of selenocysteine into proteins by recoding of a UGA stop codon in the presence of a downstream mRNA hairpin loop. Here, we present the X-ray structures of SelB from the archaeon Methanococcus maripaludis in the apo-, GDP- and GppNHp-bound form and use mutational analysis to investigate the role of individual amino acids in its aminoacyl-binding pocket. All three SelB structures reveal an EF-Tu:GTP-like domain arrangement. Upon binding of the GTP analogue GppNHp, a conformational change of the Switch 2 region in the GTPase domain leads to the exposure of SelB residues involved in clamping the 5' phosphate of the tRNA. A conserved extended loop in domain III of SelB may be responsible for specific interactions with tRNA(Sec) and act as a ruler for measuring the extra long acceptor arm. Domain IV of SelB adopts a beta barrel fold and is flexibly tethered to domain III. The overall domain arrangement of SelB resembles a 'chalice' observed so far only for initiation factor IF2/eIF5B. In our model of SelB bound to the ribosome, domain IV points towards the 3' mRNA entrance cleft ready to interact with the downstream secondary structure element.
Collapse
Affiliation(s)
- Marc Leibundgut
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Christian Frick
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | - August Böck
- Departement Biologie I der Universität München, München, Germany
| | - Nenad Ban
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
- Institute for Molecular Biology and Biophyiscs, Swiss Federal Institute of Technology, ETH Hönggerberg, HPK Building, Zurich, Switzerland. Tel.: +41 1 633 2785; Fax: +41 1 633 1246; E-mail:
| |
Collapse
|
37
|
Böck A, Rother M. A pseudo-SECIS element in Methanococcus voltae documents evolution of a selenoprotein into a sulphur-containing homologue. Arch Microbiol 2004; 183:148-50. [PMID: 15611862 DOI: 10.1007/s00203-004-0744-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/14/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Methanococcus maripaludis possesses two sets of F(420)-non-reducing hydrogenases which are differentially expressed in response to the selenium content of the medium. One of the subunits of the selenium-containing hydrogenase, VhuD, contains two selenocysteine residues, whereas the homologue of M. voltae possesses cysteine residues in the equivalent positions. Analysis of the 3' non-translated region of the M. voltae vhuD mRNA revealed the existence of a structure resembling the consensus of archaeal SECIS elements but with deviations rendering it non-functional in determining selenocysteine insertion. The presence of a pseudo-SECIS element in the 3' non-translated region of the vhuD mRNA from M. voltae suggests that VhuD from this organism has developed from a selenocysteine-containing ancestor. The 3' non-translated region from the VhcD homologues neither contained a SECIS nor a pseudo SECIS element.
Collapse
Affiliation(s)
- August Böck
- Department I, Faculty of Biology, University of Munich, Maria Ward Strasse 1a, 80638 Munich, Germany.
| | | |
Collapse
|
38
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
Affiliation(s)
- E L Hendrickson
- University of Washington, Dept. of Microbiology, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Niess UM, Klein A. Dimethylselenide demethylation is an adaptive response to selenium deprivation in the archaeon Methanococcus voltae. J Bacteriol 2004; 186:3640-8. [PMID: 15150252 PMCID: PMC415765 DOI: 10.1128/jb.186.11.3640-3648.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The archaeon Methanococcus voltae needs selenium for optimal growth. A gene group most likely involved in the demethylation of dimethylselenide was discovered, the expression of which is induced upon selenium deprivation. The operon comprises open reading frames for a corrinoid protein and two putative methyltransferases. It is shown that the addition of dimethylselenide to selenium-depleted growth medium relieves the lack of selenium, as indicated by the repression of a promoter of a transcription unit encoding selenium-free hydrogenases which is normally active only upon selenium deprivation. Knockout mutants of the corrinoid protein or one of the two methyltransferase genes did not show repression of the hydrogenase promoter in the presence of dimethylselenide. The mutation of the other methyltransferase gene had no effect. Growth rates of the two effective mutants were reduced compared to wild-type cells in selenium-limited medium in the presence of dimethylselenide.
Collapse
Affiliation(s)
- Ulf M Niess
- Genetics, Department of Biology, Philipps University of Marburg, D-35032 Marburg, Germany.
| | | |
Collapse
|
40
|
Affiliation(s)
- Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA.
| | | |
Collapse
|
41
|
Sun J, Klein A. A lysR-type regulator is involved in the negative regulation of genes encoding selenium-free hydrogenases in the archaeon Methanococcus voltae. Mol Microbiol 2004; 52:563-71. [PMID: 15066041 DOI: 10.1111/j.1365-2958.2004.03998.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The archaeon Methanococcus voltae encodes two pairs of NiFe-hydrogenase isoenzymes. One hydrogenase of each pair contains selenium in the active site, whereas the other one is selenium-free. The gene groups for the selenium-free hydrogenases, called vhc and frc, are linked by a common intergenic region. They are only transcribed under selenium limitation. A protein binding to a negative regulatory element involved in the regulation of the two operons was purified by DNA-affinity chromatography. Through the identification of the corresponding gene the protein was found to be a LysR-type regulator. It was named HrsM (hydrogenase gene regulator, selenium dependent in M. voltae). hrsM knockout mutants constitutively transcribed the vhc and frc operons in the presence of selenium. A putative HrsM binding site was also detected in the intergenic region in front of the hrsM gene. Northern blot analysis indicated that the hrsM gene might be autoregulated.
Collapse
Affiliation(s)
- Junsong Sun
- Genetics, Department of Biology, Philipps-University of Marburg, D-35032 Marburg, Germany
| | | |
Collapse
|
42
|
Wood GE, Haydock AK, Leigh JA. Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 2003; 185:2548-54. [PMID: 12670979 PMCID: PMC152622 DOI: 10.1128/jb.185.8.2548-2554.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus maripaludis is a mesophilic species of Archaea capable of producing methane from two substrates: hydrogen plus carbon dioxide and formate. To study the latter, we identified the formate dehydrogenase genes of M. maripaludis and found that the genome contains two gene clusters important for formate utilization. Phylogenetic analysis suggested that the two formate dehydrogenase gene sets arose from duplication events within the methanococcal lineage. The first gene cluster encodes homologs of formate dehydrogenase alpha (FdhA) and beta (FdhB) subunits and a putative formate transporter (FdhC) as well as a carbonic anhydrase analog. The second gene cluster encodes only FdhA and FdhB homologs. Mutants lacking either fdhA gene exhibited a partial growth defect on formate, whereas a double mutant was completely unable to grow on formate as a sole methanogenic substrate. Investigation of fdh gene expression revealed that transcription of both gene clusters is controlled by the presence of H(2) and not by the presence of formate.
Collapse
Affiliation(s)
- Gwendolyn E Wood
- Department of Microbiology, University of Washington, Seattle, Washington 98195-7242, USA
| | | | | |
Collapse
|