1
|
Burton AT, Pospíšilová D, Sudzinova P, Snider EV, Burrage AM, Krásný L, Kearns DB. The alternative sigma factor SigN of Bacillus subtilis is intrinsically toxic. J Bacteriol 2023; 205:e0011223. [PMID: 37728605 PMCID: PMC10601692 DOI: 10.1128/jb.00112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023] Open
Abstract
Sigma factors bind and direct the RNA polymerase core to specific promoter sequences, and alternative sigma factors direct transcription of different regulons of genes. Here, we study the pBS32 plasmid-encoded sigma factor SigN of Bacillus subtilis to determine how it contributes to DNA damage-induced cell death. We find that SigN causes cell death when expressed at high levels and does so in the absence of its regulon suggesting it is intrinsically toxic. One way toxicity was relieved was by curing the pBS32 plasmid, which eliminated a positive feedback loop that led to SigN hyper-accumulation. Another way toxicity was relieved was through mutating the chromosomally encoded transcriptional repressor protein AbrB, thereby derepressing a potent antisense transcript that antagonized SigN expression. SigN efficiently competed with the vegetative sigma factor SigA in vitro, and SigN accumulation in the absence of positive feedback reduced SigA-dependent transcription suggesting that toxicity may be due to competitive inhibition of one or more essential transcripts. Why B. subtilis encodes a toxic sigma factor is unclear but SigN may function in host-inhibition during lytic conversion, as phage lysogen genes are also encoded on pBS32. IMPORTANCE Alternative sigma factors activate entire regulons of genes to improve viability in response to environmental stimuli. The pBS32 plasmid-encoded alternative sigma factor SigN of Bacillus subtilis however, is activated by the DNA damage response and leads to cellular demise. Here we find that SigN impairs viability by hyper-accumulating and outcompeting the vegetative sigma factor for the RNA polymerase core. Why B. subtilis retains a plasmid with a deleterious alternative sigma factor is unknown.
Collapse
Affiliation(s)
- Aisha T. Burton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Debora Pospíšilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czechia
| | - Petra Sudzinova
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czechia
| | | | - Andrew M. Burrage
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czechia
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Ganapathy S, Wiegard JC, Hartmann RK. Rapid preparation of 6S RNA-free B. subtilis σ A-RNA polymerase and σ A. J Microbiol Methods 2021; 190:106324. [PMID: 34506811 DOI: 10.1016/j.mimet.2021.106324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
The regulatory 6S-1 and 6S-2 RNAs of B. subtilis bind to the housekeeping RNA polymerase holoenzyme (σA-RNAP) with submicromolar affinity. We observed copurification of endogenous 6S RNAs from a published B. subtilis strain expressing a His-tagged RNAP. Such 6S RNA contaminations in σA-RNAP preparations reduce the fraction of enzymes that are accessible for binding to DNA promoters. In addition, this leads to background RNA synthesis by σA-RNAP utilizing copurified 6S RNA as template for the synthesis of short abortive transcripts termed product RNAs (pRNAs). To avoid this problem we constructed a B. subtilis strain expressing His-tagged RNAP but carrying deletions of the two 6S RNA genes. The His-tagged, 6S RNA-free σA-RNAP holoenzyme can be prepared with sufficient purity and activity by a single affinity step. We also report expression and separate purification of B. subtilis σA that can be added to the His-tagged RNAP to maximize the amount of holoenzyme and, by inference, in vitro transcription activity.
Collapse
Affiliation(s)
- Sweetha Ganapathy
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Jana Christin Wiegard
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany.
| |
Collapse
|
3
|
Imber M, Loi VV, Reznikov S, Fritsch VN, Pietrzyk-Brzezinska AJ, Prehn J, Hamilton C, Wahl MC, Bronowska AK, Antelmann H. The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus. Redox Biol 2018; 15:557-568. [PMID: 29433022 PMCID: PMC5975064 DOI: 10.1016/j.redox.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which functions in thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite stress. The aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus. Here, we have studied the expression, function, redox regulation and structural changes of AldA of S. aureus. Transcription of aldA was previously shown to be regulated by the alternative sigma factor SigmaB. Northern blot analysis revealed SigmaB-independent induction of aldA transcription under formaldehyde, methylglyoxal, diamide and NaOCl stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, suggesting an important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol aldehyde. Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated under NaOCl stress. Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 treatment in vitro due to overoxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with BSH prior to H2O2 exposure resulted in reversible AldA inactivation due to S-bacillithiolation as revealed by activity assays and BSH-specific Western blot analysis. Using molecular docking and molecular dynamic simulation, we further show that BSH occupies two different positions in the AldA active site depending on the AldA activation state. In conclusion, we show here that AldA is an important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress and functions in protection under hypochlorite stress.
Collapse
Affiliation(s)
- Marcel Imber
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Sylvia Reznikov
- School of Chemistry, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Agnieszka J Pietrzyk-Brzezinska
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924, Poland
| | - Janek Prehn
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Chris Hamilton
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, D-12489 Berlin, Germany
| | - Agnieszka K Bronowska
- School of Chemistry, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
4
|
Park J, Dies M, Lin Y, Hormoz S, Smith-Unna SE, Quinodoz S, Hernández-Jiménez MJ, Garcia-Ojalvo J, Locke JCW, Elowitz MB. Molecular Time Sharing through Dynamic Pulsing in Single Cells. Cell Syst 2018; 6:216-229.e15. [PMID: 29454936 PMCID: PMC6070344 DOI: 10.1016/j.cels.2018.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/04/2017] [Accepted: 01/10/2018] [Indexed: 11/19/2022]
Abstract
In cells, specific regulators often compete for limited amounts of a core enzymatic resource. It is typically assumed that competition leads to partitioning of core enzyme molecules among regulators at constant levels. Alternatively, however, different regulatory species could time share, or take turns utilizing, the core resource. Using quantitative time-lapse microscopy, we analyzed sigma factor activity dynamics, and their competition for RNA polymerase, in individual Bacillus subtilis cells under energy stress. Multiple alternative sigma factors were activated in ~1-hr pulses in stochastic and repetitive fashion. Pairwise analysis revealed that two sigma factors rarely pulse simultaneously and that some pairs are anti-correlated, indicating that RNAP utilization alternates among different sigma factors. Mathematical modeling revealed how stochastic time-sharing dynamics can emerge from pulse-generating sigma factor regulatory circuits actively competing for RNAP. Time sharing provides a mechanism for cells to dynamically control the distribution of cell states within a population. Since core molecular components are limiting in many other systems, time sharing may represent a general mode of regulation.
Collapse
Affiliation(s)
- Jin Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marta Dies
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Department of Physics and Nuclear Engineering, Universitat Politecnica de Catalunya, 08222 Terrassa, Spain; Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Yihan Lin
- Center for Quantitative Biology, and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sahand Hormoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Sofia Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - James C W Locke
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Microsoft Research, Cambridge, UK.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks. PLoS Comput Biol 2016; 12:e1005267. [PMID: 27977677 PMCID: PMC5207722 DOI: 10.1371/journal.pcbi.1005267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 11/23/2016] [Indexed: 01/23/2023] Open
Abstract
Despite the central role of alternative sigma factors in bacterial stress response and virulence their regulation remains incompletely understood. Here we investigate one of the best-studied examples of alternative sigma factors: the σB network that controls the general stress response of Bacillus subtilis to uncover widely relevant general design principles that describe the structure-function relationship of alternative sigma factor regulatory networks. We show that the relative stoichiometry of the synthesis rates of σB, its anti-sigma factor RsbW and the anti-anti-sigma factor RsbV plays a critical role in shaping the network behavior by forcing the σB network to function as an ultrasensitive negative feedback loop. We further demonstrate how this negative feedback regulation insulates alternative sigma factor activity from competition with the housekeeping sigma factor for RNA polymerase and allows multiple stress sigma factors to function simultaneously with little competitive interference. Understanding the regulation of bacterial stress response holds the key to tackling the problems of emerging resistance to anti-bacteria’s and antibiotics. To this end, here we study one of the longest serving model systems of bacterial stress response: the σB pathway of Bacillus subtilis. The sigma factor σB controls the general stress response of Bacillus subtilis to a variety of stress conditions including starvation, antibiotics and harmful environmental perturbations. Recent studies have demonstrated that an increase in stress triggers pulsatile activation of σB. Using mathematical modeling we identify the core structural design feature of the network that are responsible for its pulsatile response. We further demonstrate how the same core design features are common to a variety of stress response pathways. As a result of these features, cells can respond to multiple simultaneous stresses without interference or competition between the different pathways.
Collapse
|
6
|
Song Y, Nikoloff JM, Fu G, Chen J, Li Q, Xie N, Zheng P, Sun J, Zhang D. Promoter Screening from Bacillus subtilis in Various Conditions Hunting for Synthetic Biology and Industrial Applications. PLoS One 2016; 11:e0158447. [PMID: 27380260 PMCID: PMC4933340 DOI: 10.1371/journal.pone.0158447] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/16/2016] [Indexed: 11/24/2022] Open
Abstract
The use of Bacillus subtilis in synthetic biology and metabolic engineering is highly desirable to take advantage of the unique metabolic pathways present in this organism. To do this, an evaluation of B. subtilis’ intrinsic biological parts is required to determine the best strategies to accurately regulate metabolic circuits and expression of target proteins. The strengths of promoter candidates were evaluated by measuring relative fluorescence units of a green fluorescent protein reporter, integrated into B. subtilis’ chromosome. A total of 84 predicted promoter sequences located upstream of different classes of proteins including heat shock proteins, cell-envelope proteins, and proteins resistant against toxic metals (based on similarity) and other kinds of genes were tested. The expression levels measured ranged from 0.0023 to 4.53-fold of the activity of the well-characterized strong promoter P43. No significant shifts were observed when strains, carrying different promoter candidates, were cultured at high temperature or in media with ethanol, but some strains showed increased activity when cultured under high osmotic pressure. Randomly selected promoter candidates were tested and found to activate transcription of thermostable β-galactosidase (bgaB) at a similar level, implying the ability of these sequences to function as promoter elements in multiple genetic contexts. In addition, selected promoters elevated the final production of both cytoplasmic bgaB and secreted protein α-amylase to about fourfold and twofold, respectively. The generated data allows a deeper understanding of B. subtilis’ metabolism and will facilitate future work to develop this organism for synthetic biology.
Collapse
Affiliation(s)
- Yafeng Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jonas M Nikoloff
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jingqi Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Qinggang Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Nengzhong Xie
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Energy and Enzyme Technology, Nanning 5300074, P. R. China
- Guangxi Biomass Industrialization Engineering Institute, Guangxi Academy of Sciences, Nanning 530007, P. R. China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| |
Collapse
|
7
|
Abstract
The stressosome co-ordinates the response of Bacillus subtilis to the imposition of a variety of physical and environmental insults. These stresses include fluctuations in salt concentration, the presence of ethanol, changes in pH and even the level of UV light. Despite the obvious and significant differences between these quite different physicochemical stimuli, the result is the same: the stressosome is phosphorylated by a key kinase to initiate the sigma(B) cascade. The phosphorylation of the stressosome initiates a signal transduction system that up-regulates the expression of stress-responsive genes so that the Bacillus can survive the imposition of stress. Hence the stressosome acts as a hub, receiving manifold different stimuli to effect a single outcome. Using single-particle analysis of cryo-electron micrographs, we have been able to reconstruct a series of molecular envelopes of the stressosome. These maps have been interpreted at near-atomic resolution with crystal structures of the individual components of the stressosome to provide the first visualization of this unique signalling hub. The macromolecular structure adopted by the stressosome provides the signalling cascade with the potential for co-operative behaviour, which we have also measured in live bacteria. These experiments are consistent with the tuning of the response of B. subtilis to stress relative to the magnitude of the insult.
Collapse
|
8
|
Transcriptomic and phenotypic analyses identify coregulated, overlapping regulons among PrfA, CtsR, HrcA, and the alternative sigma factors sigmaB, sigmaC, sigmaH, and sigmaL in Listeria monocytogenes. Appl Environ Microbiol 2010; 77:187-200. [PMID: 21037293 DOI: 10.1128/aem.00952-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A set of seven Listeria monocytogenes 10403S mutant strains, each bearing an in-frame null mutation in a gene encoding a key regulatory protein, was used to characterize transcriptional networks in L. monocytogenes; the seven regulatory proteins addressed include all four L. monocytogenes alternative sigma factors (σ(B), σ(C), σ(H), and σ(L)), the virulence gene regulator PrfA, and the heat shock-related negative regulators CtsR and HrcA. Whole-genome microarray analyses, used to identify regulons for each of these 7 transcriptional regulators, showed considerable overlap among regulons. Among 188 genes controlled by more than one regulator, 176 were coregulated by σ(B), including 92 genes regulated by both σ(B) and σ(H) (with 18 of these genes coregulated by σ(B), σ(H), and at least one additional regulator) and 31 genes regulated by both σ(B) and σ(L) (with 10 of these genes coregulated by σ(B), σ(L), and at least one additional regulator). Comparative phenotypic characterization measuring acid resistance, heat resistance, intracellular growth in J774 cells, invasion into Caco-2 epithelial cells, and virulence in the guinea pig model indicated contributions of (i) σ(B) to acid resistance, (ii) CtsR to heat resistance, and (iii) PrfA, σ(B), and CtsR to virulence-associated characteristics. Loss of the remaining transcriptional regulators (i.e., sigH, sigL, or sigC) resulted in limited phenotypic consequences associated with stress survival and virulence. Identification of overlaps among the regulons provides strong evidence supporting the existence of complex regulatory networks that appear to provide the cell with regulatory redundancies, along with the ability to fine-tune gene expression in response to rapidly changing environmental conditions.
Collapse
|
9
|
Sharma UK, Chatterji D. Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. FEMS Microbiol Rev 2010; 34:646-57. [PMID: 20491934 DOI: 10.1111/j.1574-6976.2010.00223.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
During active growth of Escherichia coli, majority of the transcriptional activity is carried out by the housekeeping sigma factor (sigma(70)), whose association with core RNAP is generally favoured because of its higher intracellular level and higher affinity to core RNAP. In order to facilitate transcription by alternative sigma factors during nutrient starvation, the bacterial cell uses multiple strategies by which the transcriptional ability of sigma(70) is diminished in a reversible manner. The facilitators of shifting the balance in favour of alternative sigma factors happen to be as diverse as a small molecule (p)ppGpp (represents ppGpp or pppGpp), proteins (DksA, Rsd) and a species of RNA (6S RNA). Although 6S RNA and (p)ppGpp were known in literature for a long time, their role in transcriptional switching has been understood only in recent years. With the elucidation of function of DksA, a new dimension has been added to the phenomenon of stringent response. As the final outcome of actions of (p)ppGpp, DksA, 6S RNA and Rsd is similar, there is a need to analyse these mechanisms in a collective manner. We review the recent trends in understanding the regulation of sigma(70) by (p)ppGpp, DksA, Rsd and 6S RNA and present a case for evolving a unified model of RNAP redistribution during starvation by modulation of sigma(70) activity in E. coli.
Collapse
Affiliation(s)
- Umender K Sharma
- AstraZeneca R&D, 'Avishkar', Bellary Road, Hebbal, Bangalore 560 024, India.
| | | |
Collapse
|
10
|
Bryant KA, Kinkead LC, Larson MA, Hinrichs SH, Fey PD. Genetic analysis of the Staphylococcus epidermidis macromolecular synthesis operon: Serp1129 is an ATP binding protein and sigA transcription is regulated by both sigma(A)- and sigma(B)-dependent promoters. BMC Microbiol 2010; 10:8. [PMID: 20067631 PMCID: PMC2824700 DOI: 10.1186/1471-2180-10-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/12/2010] [Indexed: 11/24/2022] Open
Abstract
Background The highly conserved macromolecular synthesis operon (MMSO) contains both dnaG (primase) and sigA (primary sigma factor). However, in previously evaluated gram-positive species, the MMSO is divergent upstream of dnaG. The MMSO of Bacillus subtilis contains three open reading frames (ORFs) that are differentially regulated by multiple promoters. In conjunction with studies to determine the expression profile of dnaG, the MMSO of Staphylococus epidermidis was characterized. Results The ORFs of S. epidermidis were compared to the previously described MMSO of B. subtilis and two additional ORFs in S. epidermidis, serp1129 and serp1130, were identified. The largest transcript, 4.8 kb in length, was expressed only in exponential growth and encompassed all four ORFs (serp1130, serp1129, dnaG, and sigA). A separate transcript (1.5 kb) comprising serp1130 and serp1129 was expressed in early exponential growth. Two smaller transcripts 1.3 and 1.2 kb in size were detected with a sigA probe in both exponential and post-exponential phases of growth. Western blot analysis correlated with the transcriptional profile and demonstrated that Serp1129 was detected only in the exponential phase of growth. Computational analysis identified that Serp1130 contained a CBS motif whereas Serp1129 contained an ATP/GTP binding motif. Functional studies of Serp1129 demonstrated that it was capable of binding both ATP and GTP. Comparisons with a sigB:dhfr mutant revealed that the 1.3 kb sigA transcript was regulated by a σB-dependent promoter. Conclusions These studies demonstrated that the S. epidermidis 1457 MMSO contains two ORFs (serp1129 and serp1130) not described within the B. subtilis MMSO and at least three promoters, one of which is σβ-dependent. The transcriptional regulation of sigA by σB provides evidence that the staphylococcal σB-dependent response is controlled at both the transcriptional and post-transcriptional level. The conservation of serp1129 across multiple gram-positive organisms and its capability to bind ATP and GTP support the need for further investigation of its role in bacterial growth.
Collapse
Affiliation(s)
- Kendall A Bryant
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | | | | | | | | |
Collapse
|
11
|
Pané-Farré J, Jonas B, Hardwick SW, Gronau K, Lewis RJ, Hecker M, Engelmann S. Role of RsbU in controlling SigB activity in Staphylococcus aureus following alkaline stress. J Bacteriol 2009; 191:2561-73. [PMID: 19201800 PMCID: PMC2668408 DOI: 10.1128/jb.01514-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 01/28/2009] [Indexed: 02/04/2023] Open
Abstract
SigB is an alternative sigma factor that controls a large regulon in Staphylococcus aureus. Activation of SigB requires RsbU, a protein phosphatase 2C (PP2C)-type phosphatase. In a closely related organism, Bacillus subtilis, RsbU activity is stimulated upon interaction with RsbT, a kinase, which following an activating stimulus switches from a 25S high-molecular-weight complex, the stressosome, to the N-terminal domain of RsbU. Active RsbU dephosporylates RsbV and thereby triggers the release of SigB from its inhibitory complex with RsbW. While RsbU, RsbV, RsbW, and SigB are conserved in S. aureus, proteins similar to RsbT and the components of the stressosome are not, raising the question of how RsbU activity and hence SigB activity are controlled in S. aureus. We found that in contrast to the case in B. subtilis, the induced expression of RsbU was sufficient to stimulate SigB-dependent transcription in S. aureus. However, activation of SigB-dependent transcription following alkaline stress did not lead to a clear accumulation of SigB and its regulators RsbV and RsbW or to a change in the RsbV/RsbV-P ratio in S. aureus. When expressed in B. subtilis, the S. aureus RsbU displayed a high activity even in the absence of an inducing stimulus. This high activity could be transferred to the PP2C domain of the B. subtilis RsbU protein by a fusion to the N-terminal domain of the S. aureus RsbU. Collectively, the data suggest that the activity of the S. aureus RsbU and hence SigB may be subjected to different regulation in comparison to that in B. subtilis.
Collapse
Affiliation(s)
- Jan Pané-Farré
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and its impact on sigB expression. J Bacteriol 2009; 191:2795-805. [PMID: 19181798 DOI: 10.1128/jb.01713-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Staphylococcus aureus, the sigB operon codes for the alternative sigma factor sigma(B) and its regulators that enable the bacteria to rapidly respond to environmental stresses via redirection of transcriptional priorities. However, a full model of sigma(B) regulation in S. aureus has not yet emerged. Earlier data has suggested that mazEF, a toxin-antitoxin (TA) module immediately upstream of the sigB operon, was transcribed with the sigB operon. Here we demonstrate that the promoter P(mazE) upstream of mazEF is essential for full sigma(B) activity and that instead of utilizing autorepression typical of TA systems, sigB downregulates this promoter, providing a negative-feedback loop for sigB to repress its own transcription. We have also found that the transcriptional regulator SarA binds and activates P(mazE). In addition, P(mazE) was shown to respond to environmental and antibiotic stresses in a way that provides an additional layer of control over sigB expression. The antibiotic response also appears to occur in two other TA systems in S. aureus, indicating a shared mechanism of regulation.
Collapse
|
13
|
Yeh CM, Su FS, Liao YY, Tsai YC. Enhancement of Recombinant Subtilisin YaB Production byBacillus subtilis. FOOD BIOTECHNOL 2007. [DOI: 10.1080/08905430701410506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Igoshin OA, Brody MS, Price CW, Savageau MA. Distinctive topologies of partner-switching signaling networks correlate with their physiological roles. J Mol Biol 2007; 369:1333-52. [PMID: 17498739 PMCID: PMC2727513 DOI: 10.1016/j.jmb.2007.04.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/09/2007] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
Regulatory networks controlling bacterial gene expression often evolve from common origins and share homologous proteins and similar network motifs. However, when functioning in different physiological contexts, these motifs may be re-arranged with different topologies that significantly affect network performance. Here we analyze two related signaling networks in the bacterium Bacillus subtilis in order to assess the consequences of their different topologies, with the aim of formulating design principles applicable to other systems. These two networks control the activities of the general stress response factor sigma(B) and the first sporulation-specific factor sigma(F). Both networks have at their core a "partner-switching" mechanism, in which an anti-sigma factor forms alternate complexes either with the sigma factor, holding it inactive, or with an anti-anti-sigma factor, thereby freeing sigma. However, clear differences in network structure are apparent: the anti-sigma factor for sigma(F) forms a long-lived, "dead-end" complex with its anti-anti-sigma factor and ADP, whereas the genes encoding sigma(B) and its network partners lie in a sigma(B)-controlled operon, resulting in positive and negative feedback loops. We constructed mathematical models of both networks and examined which features were critical for the performance of each design. The sigma(F) model predicts that the self-enhancing formation of the dead-end complex transforms the network into a largely irreversible hysteretic switch; the simulations reported here also demonstrate that hysteresis and slow turn off kinetics are the only two system properties associated with this complex formation. By contrast, the sigma(B) model predicts that the positive and negative feedback loops produce graded, reversible behavior with high regulatory capacity and fast response time. Our models demonstrate how alterations in network design result in different system properties that correlate with regulatory demands. These design principles agree with the known or suspected roles of similar networks in diverse bacteria.
Collapse
Affiliation(s)
- Oleg A. Igoshin
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - Margaret S. Brody
- Department of Food Science, University of California, Davis, CA, 95616
| | - Chester W. Price
- Department of Food Science, University of California, Davis, CA, 95616
| | - Michael A. Savageau
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
- Corresponding author: e-mail: ; phone 1(530) 754-8375; fax: 1(530) 7545739
| |
Collapse
|
15
|
Hardwick SW, Pané-Farré J, Delumeau O, Marles-Wright J, Murray JW, Hecker M, Lewis RJ. Structural and functional characterization of partner switching regulating the environmental stress response in Bacillus subtilis. J Biol Chem 2007; 282:11562-72. [PMID: 17303566 DOI: 10.1074/jbc.m609733200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general stress response of Bacillus subtilis and close relatives provides the cell with protection from a variety of stresses. The upstream component of the environmental stress signal transduction cascade is activated by the RsbT kinase that switches binding partners from a 25 S macromolecular complex, the stressosome, to the RsbU phosphatase. Once the RsbU phosphatase is activated by interacting with RsbT, the alternative sigma factor, sigmaB, directs transcription of the general stress regulon. Previously, we demonstrated that the N-terminal domain of RsbU mediates the binding of RsbT. We now describe residues in N-RsbU that are crucial to this interaction by experimentation both in vitro and in vivo. Furthermore, crystal structures of the N-RsbU mutants provide a molecular explanation for the loss of interaction. Finally, we also characterize mutants in RsbT that affect binding to both RsbU and a simplified, binary model of the stressosome and thus identify overlapping binding surfaces on the RsbT "switch."
Collapse
Affiliation(s)
- Steven W Hardwick
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
16
|
Molina-Henares AJ, Krell T, Eugenia Guazzaroni M, Segura A, Ramos JL. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 2006; 30:157-86. [PMID: 16472303 DOI: 10.1111/j.1574-6976.2005.00008.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Members of the IclR family of regulators are proteins with around 250 residues. The IclR family is best defined by a profile covering the effector binding domain. This is supported by structural data and by a number of mutants showing that effector specificity lies within a pocket in the C-terminal domain. These regulators have a helix-turn-helix DNA binding motif in the N-terminal domain and bind target promoters as dimers or as a dimer of dimers. This family comprises regulators acting as repressors, activators and proteins with a dual role. Members of the IclR family control genes whose products are involved in the glyoxylate shunt in Enterobacteriaceae, multidrug resistance, degradation of aromatics, inactivation of quorum-sensing signals, determinants of plant pathogenicity and sporulation. No clear consensus exists on the architecture of DNA binding sites for IclR activators: the MhpR binding site is formed by a 15-bp palindrome, but the binding sites of PcaU and PobR are three perfect 10-bp sequence repetitions forming an inverted and a direct repeat. IclR-type positive regulators bind their promoter DNA in the absence of effector. The mechanism of repression differs among IclR-type regulators. In most of them the binding sites of RNA polymerase and the repressor overlap, so that the repressor occludes RNA polymerase binding. In other cases the repressor binding site is distal to the RNA polymerase, so that the repressor destabilizes the open complex.
Collapse
Affiliation(s)
- Antonio J Molina-Henares
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Biochemistry and Molecular and Cellular Biology of Plants, Granada, Spain
| | | | | | | | | |
Collapse
|
17
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
18
|
Prágai Z, Allenby NEE, O'Connor N, Dubrac S, Rapoport G, Msadek T, Harwood CR. Transcriptional regulation of the phoPR operon in Bacillus subtilis. J Bacteriol 2004; 186:1182-90. [PMID: 14762014 PMCID: PMC344217 DOI: 10.1128/jb.186.4.1182-1190.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Bacillus subtilis is subjected to phosphate starvation, the Pho regulon is activated by the PhoP-PhoR two-component signal transduction system to elicit specific responses to this nutrient limitation. The response regulator, PhoP, and its cognate histidine sensor kinase, PhoR, are encoded by the phoPR operon that is transcribed as a 2.7-kb bicistronic mRNA. The phoPR operon is transcribed from two sigma(A)-dependent promoters, P(1) and P(2). Under conditions where the Pho regulon was not induced (i.e., phosphate-replete conditions or phoR-null mutant), a low level of phoPR transcription was detected only from promoter P(1). During phosphate starvation-induced transition from exponential to stationary phase, the expression of the phoPR operon was up-regulated in a phosphorylated PhoP (PhoP approximately P)-dependent manner; in addition to P(1), the P(2) promoter becomes active. In vitro gel shift assays and DNase I footprinting experiments showed that both PhoP and PhoP approximately P could bind to the control region of the phoPR operon. The data indicate that while low-level constitutive expression of phoPR is required under phosphate-replete conditions for signal perception and transduction, autoinduction is required to provide sufficient PhoP approximately P to induce other members of the Pho regulon. The extent to which promoters P(1) and P(2) are activated appears to be influenced by the presence of other sigma factors, possibly the result of sigma factor competition. For example, phoPR is hyperinduced in a sigB mutant and, later in stationary phase, in sigH, sigF, and sigE mutants. The data point to a complex regulatory network in which other stress responses and post-exponential-phase processes influence the expression of phoPR and, thereby, the magnitude of the Pho regulon response.
Collapse
Affiliation(s)
- Zoltán Prágai
- School of Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Mooney RA, Landick R. Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal locations. Genes Dev 2003; 17:2839-51. [PMID: 14630944 PMCID: PMC280631 DOI: 10.1101/gad.1142203] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 10/01/2003] [Indexed: 11/24/2022]
Abstract
Bacterial sigma factors compete for binding to RNA polymerase (RNAP) to control promoter selection, and in some cases interact with RNAP to regulate at least the early stages of transcript elongation. However, the effective concentration of sigmas in vivo, and the extent to which sigma can regulate transcript elongation generally, are unknown. We report that tethering sigma70 to all RNAP molecules via genetic fusion of rpoD to rpoC (encoding sigma70 and RNAP's beta' subunit, respectively) yields viable Escherichia coli strains in which alternative sigma-factor function is not impaired. beta'::sigma70 RNAP transcribed DNA normally in vitro, but allowed sigma70-dependent pausing at extended -10-like sequences anywhere in a transcriptional unit. Based on measurement of the effective concentration of tethered sigma70, we conclude that the effective concentration of sigma70 in E. coli (i.e., its thermodynamic activity) is close to its bulk concentration. At this level, sigma70 would be a bona fide elongation factor able to direct transcriptional pausing even after its release from RNAP during promoter escape.
Collapse
Affiliation(s)
- Rachel Anne Mooney
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|