1
|
Jung HC, Lee SM, Yang JI, Lee SH, Lee HS, Kang SG. Exploration of formate as a liquid organic hydrogen carrier in biohydrogen production through evolutionary and process engineering of hyperthermophilic archaeon. BIORESOURCE TECHNOLOGY 2025; 425:132318. [PMID: 40023330 DOI: 10.1016/j.biortech.2025.132318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Hydrogen (H2) is considered a promising renewable energy source, but its storage and delivery present significant challenges. Liquid organic hydrogen carriers (LOHC) offer a potential solution to this problem, with formate as a top candidate for LOHC. This study focused on developing technology for biological H2 production from formate by utilizing the hyperthermophilic archaeon Thermococcus onnurineus NA1. An engineered strain, WTF-350 T, was developed through adaptive evolution using formate and exhibited 3.6-4.0 times enhanced cell growth, formate consumption, and H2 production compared to the wild-type strain. Optimizing fermentation processes through pH-stat, fed-batch mode, and pyruvate supplementation led to a 2.0-2.5 times increase in cell density and H2 production rate. Moreover, formic acid, produced by the electroreduction of carbon dioxide (CO2), was found to be an effective feedstock for biohydrogen production. This study successfully demonstrated the potential of integrating CO2 electroreduction and biohydrogen production for a sustainable hydrogen economy.
Collapse
Affiliation(s)
- Hae-Chang Jung
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Sung-Mok Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Ji-In Yang
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; Department of Applied Ocean Science, University of Science and Technology, Daejeon 34129, Republic of Korea
| | - Seong Hyuk Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Hyun Sook Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; Department of Applied Ocean Science, University of Science and Technology, Daejeon 34129, Republic of Korea
| | - Sung Gyun Kang
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; Department of Applied Ocean Science, University of Science and Technology, Daejeon 34129, Republic of Korea.
| |
Collapse
|
2
|
Fujiwara S, Satake R, Aoki H, Yamada K, Ishii Y, Fukuda W. Replacement of branched-chain polyamine biosynthesis with thermospermine supports survival under both cold and heat stress in the hyperthermophilic archaeon Thermococcus kodakarensis. Appl Environ Microbiol 2025:e0032625. [PMID: 40434083 DOI: 10.1128/aem.00326-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
N4-bis(aminopropyl)spermidine (BCPA), a branched-chain polyamine, is uniquely found in bacterial and archaeal hyperthermophiles. In Thermococcus kodakarensis, BCPA is synthesized by BCPA synthase (BpsA), an aminopropyl transferase encoded by bpsA. This highly positively charged molecule is localized in both the nucleic acid and membrane fractions of T. kodakarensis cells. The bpsA deletion strain (DBP1), which lacks BCPA, failed to grow at 93°C and exhibited poor survival under repeated cold stress, indicating that BCPA is essential for membrane stability and function in vivo. Additionally, the expression of specific genes, including the cytoplasmic hydrogenase subunit hyhL, was absent in DBP1, suggesting a role for BCPA in gene regulation. To further investigate BCPA's function, we replaced bpsA in T. kodakarensis with speE from the hyperthermophilic archaeon Pyrobaculum calidifontis, enabling the production of norspermine instead of BCPA. The resulting KPS strain accumulated thermospermine as its major polyamine. Growth at 93°C was partially restored in KPS, and cold-stress survival improved significantly. Additionally, KPS exhibited biosurfactant (sophorolipid) tolerance comparable to that of the parental T. kodakarensis strain KU216 under thermal conditions. Furthermore, hyhL expression was restored in KPS, as confirmed by immunoblotting with anti-HyhL antisera, suggesting that thermospermine can functionally compensate for BCPA. Notably, mutant DBP1 cells lacking both BCPA and thermospermine did not survive repeated cycles of cold and heat stress. This observation suggests that these polyamines play a crucial role in long-term survival, potentially facilitating hibernation-like states in natural environments where extreme temperature fluctuations occur.IMPORTANCEAt the hot springs of Kodakarajima Island, surrounded by cold ocean water, diverse hyperthermophiles, including Thermococcus, Thermotoga, and Thermus species, naturally produce branched-chain polyamines (BCPAs) via a unique aminopropyltransferase BpsA, in addition to spermidine. In Pyrobaculum calidifontis, the Pc-SpeE enzyme produces norspermine in vivo. However, when the speE gene from P. calidifontis is introduced into Thermococcus kodakarensis, the transformant (ΔbpsA::Pc-speE) produces thermospermine instead of norspermine. This shift suggests that the product specificity of Pc-SpeE is influenced by factors inherent to the host organism. Interestingly, thermospermine appears to functionally substitute for BCPA, potentially by forming BCPA-like structures with bent nitrogen atoms. This structural mimicry could contribute to cellular stability under both heat and cold stress, highlighting a potential mechanism for temperature and stress adaptation in T. kodakarensis. These findings further suggest that while BCPA and thermospermine are distinct, they may play similar roles in stress resilience.
Collapse
Affiliation(s)
- Shinsuke Fujiwara
- Department of Biosciences, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Riko Satake
- Department of Biosciences, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Himari Aoki
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kaho Yamada
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Yuri Ishii
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Wakao Fukuda
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
3
|
Yang JI, Jung HC, Oh HM, Choi BG, Lee HS, Kang SG. NADP + or CO 2 reduction by frhAGB-encoded hydrogenase through interaction with formate dehydrogenase 3 in the hyperthermophilic archaeon Thermococcus onnurineus NA1. Appl Environ Microbiol 2023; 89:e0147423. [PMID: 37966269 PMCID: PMC10734459 DOI: 10.1128/aem.01474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/23/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.
Collapse
Affiliation(s)
- Ji-in Yang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Hae-Chang Jung
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
| | | | - Bo Gyoung Choi
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan, South Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
4
|
Zuchan K, Baymann F, Baffert C, Brugna M, Nitschke W. The dyad of the Y-junction- and a flavin module unites diverse redox enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148401. [PMID: 33684340 DOI: 10.1016/j.bbabio.2021.148401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
The concomitant presence of two distinctive polypeptide modules, which we have chosen to denominate as the "Y-junction" and the "flavin" module, is observed in 3D structures of enzymes as functionally diverse as complex I, NAD(P)-dependent [NiFe]-hydrogenases and NAD(P)-dependent formate dehydrogenases. Amino acid sequence conservation furthermore suggests that both modules are also part of NAD(P)-dependent [FeFe]-hydrogenases for which no 3D structure model is available yet. The flavin module harbours the site of interaction with the substrate NAD(P) which exchanges two electrons with a strictly conserved flavin moiety. The Y-junction module typically contains four iron-sulphur centres arranged to form a Y-shaped electron transfer conduit and mediates electron transfer between the flavin module and the catalytic units of the respective enzymes. The Y-junction module represents an electron transfer hub with three potential electron entry/exit sites. The pattern of specific redox centres present both in the Y-junction and the flavin module is correlated to present knowledge of these enzymes' functional properties. We have searched publicly accessible genomes for gene clusters containing both the Y-junction and the flavin module to assemble a comprehensive picture of the diversity of enzymes harbouring this dyad of modules and to reconstruct their phylogenetic relationships. These analyses indicate the presence of the dyad already in the last universal common ancestor and the emergence of complex I's EFG-module out of a subgroup of NAD(P)- dependent formate dehydrogenases.
Collapse
Affiliation(s)
- Kilian Zuchan
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Frauke Baymann
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Carole Baffert
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Myriam Brugna
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France.
| | - Wolfgang Nitschke
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| |
Collapse
|
5
|
Simons JR, Beppu H, Imanaka T, Kanai T, Atomi H. Effects of high-level expression of A 1-ATPase on H 2 production in Thermococcus kodakarensis. J Biosci Bioeng 2020; 130:149-158. [PMID: 32414665 DOI: 10.1016/j.jbiosc.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
The hyperthermophilic archaeon Thermococcus kodakarensis can grow on pyruvate or maltooligosaccharides through H2 fermentation. H2 production levels of members of the Thermococcales are high, and studies to improve their production potential have been reported. Although H2 production is primary metabolism, here we aimed to partially uncouple cell growth and H2 production of T. kodakarensis. Additional A1-type ATPase genes were introduced into T. kodakarensis KU216 under the control of two promoters; the strong constitutive cell surface glycoprotein promoter, Pcsg, and the sugar-inducible fructose-1,6-bisphosphate aldolase promoter, Pfba. Whereas cells with the A1-type ATPase genes under the control of Pcsg displayed only trace levels of growth, cells with Pfba (strain KUA-PF) displayed growth sufficient for further analysis. Increased levels of A1-type ATPase protein were detected in KUA-PF cells grown on pyruvate or maltodextrin, when compared to the levels in the host strain KU216. The growth and H2 production levels of strain KUA-PF with pyruvate or maltodextrin as a carbon and electron source were analyzed and compared to those of the host strain KU216. Compared to a small decrease in total H2 production, significantly larger decreases in cell growth were observed, resulting in an increase in cell-specific H2 production. Quantification of the substrate also revealed that ATPase overexpression led to increased cell-specific pyruvate and maltodextrin consumptions. The results clearly indicate that ATPase production results in partial uncoupling of cell growth and H2 production in T. kodakarensis.
Collapse
Affiliation(s)
- Jan-Robert Simons
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruki Beppu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
6
|
Fukuda W, Yamori Y, Hamakawa M, Osaki M, Fukuda M, Hidese R, Kanesaki Y, Okamoto-Kainuma A, Kato S, Fujiwara S. Genes regulated by branched-chain polyamine in the hyperthermophilic archaeon Thermococcus kodakarensis. Amino Acids 2019; 52:287-299. [DOI: 10.1007/s00726-019-02793-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
|
7
|
Kwon S, Nishitani Y, Hirao Y, Kanai T, Atomi H, Miki K. Structure of a [NiFe] hydrogenase maturation protease HycI provides insights into its substrate selectivity. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
A Review of Hydrogen Production by Photosynthetic Organisms Using Whole-Cell and Cell-Free Systems. Appl Biochem Biotechnol 2017; 183:503-519. [DOI: 10.1007/s12010-017-2576-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/02/2017] [Indexed: 10/18/2022]
|
9
|
Nguyen DMN, Schut GJ, Zadvornyy OA, Tokmina-Lukaszewska M, Poudel S, Lipscomb GL, Adams LA, Dinsmore JT, Nixon WJ, Boyd ES, Bothner B, Peters JW, Adams MWW. Two functionally distinct NADP +-dependent ferredoxin oxidoreductases maintain the primary redox balance of Pyrococcus furiosus. J Biol Chem 2017; 292:14603-14616. [PMID: 28705933 DOI: 10.1074/jbc.m117.794172] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/10/2017] [Indexed: 01/08/2023] Open
Abstract
Electron bifurcation has recently gained acceptance as the third mechanism of energy conservation in which energy is conserved through the coupling of exergonic and endergonic reactions. A structure-based mechanism of bifurcation has been elucidated recently for the flavin-based enzyme NADH-dependent ferredoxin NADP+ oxidoreductase I (NfnI) from the hyperthermophillic archaeon Pyrococcus furiosus. NfnI is thought to be involved in maintaining the cellular redox balance, producing NADPH for biosynthesis by recycling the two other primary redox carriers, NADH and ferredoxin. The P. furiosus genome encodes an NfnI paralog termed NfnII, and the two are differentially expressed, depending on the growth conditions. In this study, we show that deletion of the genes encoding either NfnI or NfnII affects the cellular concentrations of NAD(P)H and particularly NADPH. This results in a moderate to severe growth phenotype in deletion mutants, demonstrating a key role for each enzyme in maintaining redox homeostasis. Despite their similarity in primary sequence and cofactor content, crystallographic, kinetic, and mass spectrometry analyses reveal that there are fundamental structural differences between the two enzymes, and NfnII does not catalyze the NfnI bifurcating reaction. Instead, it exhibits non-bifurcating ferredoxin NADP oxidoreductase-type activity. NfnII is therefore proposed to be a bifunctional enzyme and also to catalyze a bifurcating reaction, although its third substrate, in addition to ferredoxin and NADP(H), is as yet unknown.
Collapse
Affiliation(s)
- Diep M N Nguyen
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Oleg A Zadvornyy
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, and
| | | | - Saroj Poudel
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | - Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Leslie A Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Jessica T Dinsmore
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - William J Nixon
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Eric S Boyd
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | | | - John W Peters
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, and
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602,
| |
Collapse
|
10
|
Lee SH, Kim MS, Kim YJ, Kim TW, Kang SG, Lee HS. Transcriptomic profiling and its implications for the H 2 production of a non-methanogen deficient in the frhAGB-encoding hydrogenase. Appl Microbiol Biotechnol 2017; 101:5081-5088. [PMID: 28341885 DOI: 10.1007/s00253-017-8234-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
The F420-reducing hydrogenase of methanogens functions in methanogenesis by providing reduced coenzyme F420 (F420H2) as an electron donor. In non-methanogens, however, their physiological function has not been identified yet. In this study, we constructed an ΔfrhA mutant, whose frhA gene encoding the hydrogenase α subunit was deleted, in the non-methanogenic Thermococcus onnurineus NA1 as a model organism. There was no significant difference in the formate-dependent growth between the mutant and the wild-type strains. Interestingly, the mutation in the frhA gene affected the expression of genes involved in various cellular functions such as H2 oxidation, chemotactic signal transduction, and carbon monoxide (CO) metabolism. Among these genes, the CO oxidation gene cluster, enabling CO-dependent growth and H2 production, showed a 2.8- to 7.0-fold upregulation by microarray-based whole transcriptome expression profiling. The levels of proteins produced by this gene cluster were also significantly increased not only under the formate condition but also under the CO condition. In a controlled bioreactor, where 100% CO was continuously fed, the ΔfrhA mutant exhibited significant increases in cell growth (2.8-fold) and H2 production (3.4-fold). These findings strongly imply that this hydrogenase is functional in non-methanogens and is related to various cellular metabolic processes through an unidentified mechanism. An understanding of the mechanism by which the frhA gene deletion affected the expression of other genes will provide insights that can be applied to the development of strategies for the enhancement of H2 production using CO as a substrate.
Collapse
Affiliation(s)
- Seong Hyuk Lee
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Min-Sik Kim
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
| | - Yun Jae Kim
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Tae Wan Kim
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyun Sook Lee
- Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Genetic analyses of the functions of [NiFe]-hydrogenase maturation endopeptidases in the hyperthermophilic archaeon Thermococcus kodakarensis. Extremophiles 2016; 21:27-39. [DOI: 10.1007/s00792-016-0875-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
|
12
|
Kwon S, Nishitani Y, Watanabe S, Hirao Y, Imanaka T, Kanai T, Atomi H, Miki K. Crystal structure of a [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis KOD1. Proteins 2016; 84:1321-7. [PMID: 27192667 DOI: 10.1002/prot.25070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/22/2016] [Accepted: 05/08/2016] [Indexed: 11/09/2022]
Abstract
A [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis KOD1 (TkHybD) is involved in the cleavage of the C-terminal residues of [NiFe] hydrogenase large subunits by Ni recognition. Here, we report the crystal structure of TkHybD at 1.82 Å resolution to better understand this process. TkHybD exhibits an α/β/α sandwich fold with conserved residues responsible for the Ni recognition. Comparisons of TkHybD with homologous proteins also reveal that they share a common overall architecture, suggesting that they have similar catalytic functions. Our results including metal binding site prediction provide insight into the substrate recognition and catalysis mechanism of TkHybD. Proteins 2016; 84:1321-1327. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sunghark Kwon
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai, 980-8577, Japan
| | - Yoshinori Hirao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency, CREST, 7, Gobancho, Chiyoda-Ku, Tokyo, 102-0076, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency, CREST, 7, Gobancho, Chiyoda-Ku, Tokyo, 102-0076, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan.,Japan Science and Technology Agency, CREST, 7, Gobancho, Chiyoda-Ku, Tokyo, 102-0076, Japan
| |
Collapse
|
13
|
Kanai T, Simons JR, Tsukamoto R, Nakajima A, Omori Y, Matsuoka R, Beppu H, Imanaka T, Atomi H. Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production. Front Microbiol 2015; 6:847. [PMID: 26379632 PMCID: PMC4549637 DOI: 10.3389/fmicb.2015.00847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022] Open
Abstract
The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw−1 h−1 was observed at a dilution rate of 0.31 h−1. We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h−1, the SHPR was 36.2 mmol H2 g-dcw−1 h−1, corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h−1 or 1.07 h−1 resulted in a SHPR of 120 mmol H2 g-dcw−1 h−1, which is one of the highest production rates observed in microbial fermentation.
Collapse
Affiliation(s)
- Tamotsu Kanai
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Core Research of Evolutional Science and Technology Tokyo, Japan
| | - Jan-Robert Simons
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Core Research of Evolutional Science and Technology Tokyo, Japan
| | - Ryohei Tsukamoto
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | | | | | - Ryoji Matsuoka
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | - Haruki Beppu
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | - Tadayuki Imanaka
- Japan Science and Technology Agency, Core Research of Evolutional Science and Technology Tokyo, Japan ; Research Organization of Science and Technology, Ritsumeikan University Kusatsu, Japan
| | - Haruyuki Atomi
- Laboratory of Biochemical Engineering, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Core Research of Evolutional Science and Technology Tokyo, Japan
| |
Collapse
|
14
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
15
|
Genetic examination and mass balance analysis of pyruvate/amino acid oxidation pathways in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 2014; 196:3831-9. [PMID: 25157082 DOI: 10.1128/jb.02021-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the simultaneous oxidation of pyruvate and amino acids during H2-evolving growth of the hyperthermophilic archaeon Thermococcus kodakarensis. The comparison of mass balance between a cytosolic hydrogenase (HYH)-deficient strain (the ΔhyhBGSL strain) and the parent strain indicated that NADPH generated via H2 uptake by HYH was consumed by reductive amination of 2-oxoglutarate catalyzed by glutamate dehydrogenase. Further examinations were done to elucidate functions of three enzymes potentially involved in pyruvate oxidation: pyruvate formate-lyase (PFL), pyruvate:ferredoxin oxidoreductase (POR), and 2-oxoisovalerate:ferredoxin oxidoreductase (VOR) under the HYH-deficient background in T. kodakarensis. No significant change was observed by deletion of pflDA, suggesting that PFL had no critical role in pyruvate oxidation. The growth properties and mass balances of ΔporDAB and ΔvorDAB strains indicated that POR and VOR specifically functioned in oxidation of pyruvate and branched-chain amino acids, respectively, and the lack of POR or VOR was compensated for by promoting the oxidation of another substrate driven by the remaining oxidoreductase. The H2 yields from the consumed pyruvate and amino acids were increased from 31% by the parent strain to 67% and 82% by the deletion of hyhBGSL and double deletion of hyhBGSL and vorDAB, respectively. Significant discrepancies in the mass balances were observed in excess formation of acetate and NH3, suggesting the presence of unknown metabolisms in T. kodakarensis grown in the rich medium containing pyruvate.
Collapse
|
16
|
An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci U S A 2014; 111:11479-84. [PMID: 25049411 DOI: 10.1073/pnas.1407034111] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments.
Collapse
|
17
|
Yan Z, Nam YW, Fushinobu S, Wakagi T. Sulfolobus tokodaii ST2133 is characterized as a thioredoxin reductase-like ferredoxin:NADP+ oxidoreductase. Extremophiles 2013; 18:99-110. [DOI: 10.1007/s00792-013-0601-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
18
|
Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 2013; 195:1940-8. [PMID: 23435976 DOI: 10.1128/jb.01979-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amino acid catabolism in Thermococcales is presumed to proceed via three steps: oxidative deamination of amino acids by glutamate dehydrogenase (GDH) or aminotransferases, oxidative decarboxylation by 2-oxoacid:ferredoxin oxidoreductases (KOR), and hydrolysis of acyl-coenzyme A (CoA) by ADP-forming acyl-CoA synthetases (ACS). Here, we performed a genetic examination of enzymes involved in Glu catabolism in Thermococcus kodakarensis. Examination of amino acid dehydrogenase activities in cell extracts of T. kodakarensis KUW1 (ΔpyrF ΔtrpE) revealed high NADP-dependent GDH activity, along with lower levels of NAD-dependent activity. NADP-dependent activities toward Gln/Ala/Val/Cys and an NAD-dependent threonine dehydrogenase activity were also detected. In KGDH1, a gene disruption strain of T. kodakarensis GDH (Tk-GDH), only threonine dehydrogenase activity was detected, indicating that all other activities were dependent on Tk-GDH. KGDH1 could not grow in a medium in which growth was dependent on amino acid catabolism, implying that Tk-GDH is the only enzyme that can discharge the electrons (to NADP(+)/NAD(+)) released from amino acids in their oxidation to 2-oxoacids. In a medium containing excess pyruvate, KGDH1 displayed normal growth, but higher degrees of amino acid catabolism were observed compared to those for KUW1, suggesting that Tk-GDH functions to suppress amino acid oxidation and plays an anabolic role under this condition. We further constructed disruption strains of 2-oxoglutarate:ferredoxin oxidoreductase and succinyl-CoA synthetase. The two strains displayed growth defects in both media compared to KUW1. Succinate generation was not observed in these strains, indicating that the two enzymes are solely responsible for Glu catabolism among the multiple KOR and ACS enzymes in T. kodakarensis.
Collapse
|
19
|
Sasaki D, Watanabe S, Matsumi R, Shoji T, Yasukochi A, Tagashira K, Fukuda W, Kanai T, Atomi H, Imanaka T, Miki K. Identification and structure of a novel archaeal HypB for [NiFe] hydrogenase maturation. J Mol Biol 2013; 425:1627-40. [PMID: 23399544 DOI: 10.1016/j.jmb.2013.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
HypB (metal-binding GTPase) and HypA (nickel metallochaperone) are required for nickel insertion into [NiFe] hydrogenase. However, the HypB homolog proteins are not found in some archaeal species including Thermococcales. In this article, we identify a novel archaeal Mrp/MinD family ATPase-type HypB from Thermococcus kodakarensis (Tk-mmHypB) and determine its crystal structure. The mmhypB gene is conserved among species lacking the hypB gene and is located adjacent to the hypA gene on their genome. Deletion of the mmhypB gene leads to a significant reduction in hydrogen-dependent growth of T. kodakarensis, which is restored by nickel supplementation. The monomer structure of Tk-mmHypB is similar to those of the Mrp/MinD family ATPases. The ADP molecules are tightly bound to the protein. Isothermal titration calorimetry shows that Tk-mmHypB binds ATP with a K(d) value of 84 nM. ADP binds more tightly than does ATP, with a K(d) value of 15 nM. The closed Tk-mmHypB dimer in the crystallographic asymmetric unit is consistent with the ATP-hydrolysis-deficient dimer of the Mrp/MinD family Soj/MinD proteins. Structural comparisons with these proteins suggest the ATP-binding dependent conformational change and rearrangement of the Tk-mmHypB dimer. These observations imply that the nickel insertion process during the [NiFe] hydrogenase maturation is performed by HypA, mmHypB, and a nucleotide exchange factor in these archaea.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
O2-stable membrane-bound [NiFe]hydrogenase from a newly isolated Citrobacter sp. S-77. J Biosci Bioeng 2012; 114:479-84. [DOI: 10.1016/j.jbiosc.2012.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/11/2022]
|
21
|
Sasaki D, Watanabe S, Kanai T, Atomi H, Imanaka T, Miki K. Characterization and in vitro interaction study of a [NiFe] hydrogenase large subunit from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Biochem Biophys Res Commun 2011; 417:192-6. [PMID: 22138400 DOI: 10.1016/j.bbrc.2011.11.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/16/2011] [Indexed: 11/25/2022]
Abstract
The large subunit of the [NiFe] hydrogenases harbors a NiFe(CN)(2)(CO) cluster. Maturation proteins HypA, B, C, D, E, and F are required for the NiFe cluster biosynthesis. While the maturation machinery has been hitherto studied intensively, little is known about interactions between the Hyp proteins and the large subunit of the [NiFe] hydrogenase. In this study, we have purified and characterized the cytosolic [NiFe] hydrogenase large subunit HyhL from Thermococcus kodakarensis (Tk-HyhL). Tk-HyhL exists in equilibrium between monomeric and dimeric forms. In vitro interaction analyses showed that Tk-HyhL monomer forms a tight complex with Tk-HypA and weakly interacts with Tk-HypC. The expected ternary complex formation was not detected. These observations reflect a diversity in the mechanism of Ni insertion in [NiFe] hydrogenase maturation depending on the organism.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I. NAD(H)-coupled hydrogen cycling - structure-function relationships of bidirectional [NiFe] hydrogenases. FEBS Lett 2011; 586:545-56. [PMID: 22056977 DOI: 10.1016/j.febslet.2011.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
Abstract
Hydrogenases catalyze the activation or production of molecular hydrogen. Due to their potential importance for future biotechnological applications, these enzymes have been in the focus of intense research for the past decades. Bidirectional [NiFe] hydrogenases are of particular interest as they couple the reversible cleavage of hydrogen to the redox conversion of NAD(H). In this account, we review the current state of knowledge about mechanistic aspects and structural determinants of these complex multi-cofactor enzymes. Special emphasis is laid on the oxygen-tolerant NAD(H)-linked bidirectional [NiFe] hydrogenase from Ralstonia eutropha.
Collapse
Affiliation(s)
- M Horch
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
23
|
Atomi H, Sato T, Kanai T. Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 2011; 22:618-26. [DOI: 10.1016/j.copbio.2011.06.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/27/2022]
|
24
|
Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 2011; 193:3109-16. [PMID: 21515783 DOI: 10.1128/jb.01072-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H₂) and play a key role in the energy metabolism of microorganisms in anaerobic environments. The hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which assimilates organic carbon coupled with the reduction of elemental sulfur (S⁰) or H₂ generation, harbors three gene operons encoding [NiFe]-hydrogenase orthologs, namely, Hyh, Mbh, and Mbx. In order to elucidate their functions in vivo, a gene disruption mutant for each [NiFe]-hydrogenase ortholog was constructed. The Hyh-deficient mutant (PHY1) grew well under both H₂S- and H₂-evolving conditions. H₂S generation in PHY1 was equivalent to that of the host strain, and H₂ generation was higher in PHY1, suggesting that Hyh functions in the direction of H₂ uptake in T. kodakarensis under these conditions. Analyses of culture metabolites suggested that significant amounts of NADPH produced by Hyh are used for alanine production through glutamate dehydrogenase and alanine aminotransferase. On the other hand, the Mbh-deficient mutant (MHD1) showed no growth under H₂-evolving conditions. This fact, as well as the impaired H₂ generation activity in MHD1, indicated that Mbh is mainly responsible for H₂ evolution. The copresence of Hyh and Mbh raised the possibility of intraspecies H₂ transfer (i.e., H₂ evolved by Mbh is reoxidized by Hyh) in this archaeon. In contrast, the Mbx-deficient mutant (MXD1) showed a decreased growth rate only under H₂S-evolving conditions and exhibited a lower H₂S generation activity, indicating the involvement of Mbx in the S⁰ reduction process. This study provides important genetic evidence for understanding the physiological roles of hydrogenase orthologs in the Thermococcales.
Collapse
|
25
|
A second soluble Hox-type NiFe enzyme completes the hydrogenase set in Thiocapsa roseopersicina BBS. Appl Environ Microbiol 2010; 76:5113-23. [PMID: 20543059 DOI: 10.1128/aem.00351-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three functional NiFe hydrogenases were previously characterized in Thiocapsa roseopersicina BBS: two of them are attached to the periplasmic membrane (HynSL and HupSL), and one is localized in the cytoplasm (HoxEFUYH). The ongoing genome sequencing project revealed the presence of genes coding for another soluble Hox-type hydrogenase enzyme (hox2FUYH). Hox2 is a heterotetrameric enzyme; no indication for an additional subunit was found. Detailed comparative in vivo and in vitro activity and expression analyses of HoxEFUYH (Hox1) and the newly discovered Hox2 enzyme were performed. Functional differences between the two soluble NiFe hydrogenases were disclosed. Hox1 seems to be connected to both sulfur metabolism and dark/photofermentative processes. The bidirectional Hox2 hydrogenase was shown to be metabolically active under specific conditions: it can evolve hydrogen in the presence of glucose at low sodium thiosulfate concentration. However, under nitrogen-fixing conditions, it can oxidize H(2) but less than the other hydrogenases in the cell.
Collapse
|
26
|
Nishimura H, Sako Y. Purification and characterization of the oxygen-thermostable hydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum camini. J Biosci Bioeng 2010; 108:299-303. [PMID: 19716518 DOI: 10.1016/j.jbiosc.2009.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 04/10/2009] [Accepted: 04/16/2009] [Indexed: 11/28/2022]
Abstract
Aeropyrum camini that was isolated from a deep-sea hydrothermal vent chimney, possessed two hydrogenases (161 and 85 kDa) in its soluble fraction. The 85-kDa hydrogenase was purified to homogeneity using several chromatography columns. The specific activities of the purified hydrogenase were: 14.8 micromol methyl viologen(ox)/mg/min for hydrogen oxidation, and 14.6 micromol methyl viologen(red)/mg/min for proton reduction. The oxygen stabilities of hydrogenases that were purified from A. camini and the hydrogen thermophilic bacterium Persephonella hydrogeniphila, were compared. The hydrogenase purified from P. hydrogeniphila completely lost its activity following a 96-h exposure to atmosphere; however, the A. camini hydrogenase maintained 75% of its initial activity, even after a 168 h of atmospheric exposure. A. camini hydrogenase showed a half-life of 48 h at 90 degrees C, while P. hydrogeniphila hydrogenase showed complete denaturation after a 30 min incubation at the same temperature. Nine residues of the N-terminal amino acid sequence of A. camini hydrogenases (MARLLMIPGT) correspond to the protein sequence encoded by the hypothetical soluble hydrogenase subunit gene (APE2423) from A. pernix strain K1. A. camini hydrogenase has a high thermostability and is very tolerant to oxygen; therefore, it may be used for actual H(2) production.
Collapse
|
27
|
Louvel H, Kanai T, Atomi H, Reeve JN. The Fur iron regulator-like protein is cryptic in the hyperthermophilic archaeon Thermococcus kodakaraensis. FEMS Microbiol Lett 2009; 295:117-28. [PMID: 19484827 DOI: 10.1111/j.1574-6968.2009.01594.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Archaea, which regroup organisms with extreme living conditions, possess many predicted iron-containing proteins that may be metabolically critical; however, their need for iron remains poorly documented. In this report, iron acquisition mechanisms were investigated in the hyperthermophilic archaeon Thermococcus kodakaraensis. Thermococcus kodakaraensis requires iron for its growth and possesses many putative iron uptake systems, including several ATP-binding cassette-like transporters and two FeoAB-like receptors, showing that this organism shares similar features with bacteria. One homolog of the major bacterial iron regulator, ferric uptake regulator (Fur), with about 50% similarity to Escherichia coli Fur was also identified. Thermococcus kodakaraensis Fur was found to be able to specifically bind to a Fur-binding site consensus-like sequence of its own gene promoter. However, its expression has been hindered by a -1 frameshift mutation and the chromosomal repair of this mutation did not affect T. kodakaraensis in vivo phenotypes. Microarrays analyses helped to further characterize T. kodakaraensis iron-dependent growth and revealed no role for the Fur homolog in the global regulatory response of the cells to iron. In contrast, additional evidences indicated that the T. kodakaraensis diphtheria toxin regulator (DtxR) homolog may control the expression of the major iron acquisition effectors, while its inactivation enabled higher resistance to iron deficiency.
Collapse
Affiliation(s)
- Hélène Louvel
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
28
|
Eberly JO, Ely RL. Thermotolerant hydrogenases: biological diversity, properties, and biotechnological applications. Crit Rev Microbiol 2008; 34:117-30. [PMID: 18728989 DOI: 10.1080/10408410802240893] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hydrogenases are metalloproteins that catalyze the oxidation and reduction of molecular hydrogen and play a crucial role in many microbial metabolic processes. A subset of hydrogenases capable of functioning at temperatures from 50 to 125 degrees C is found in thermophilic microorganisms. Most known thermotolerant hydrogenases contain a [NiFe] active site and are either bidirectional or uptake type. Although no exhaustive survey has been done of the ecological diversity of thermophilic hydrogen-reducing or oxidizing bacteria, they appear to exist in virtually every thermophilic environment examined to date. Thermotolerant hydrogenases share many similarities with their mesophilic counterparts, but they have several features in addition to thermotolerance that make them especially well suited for biotechnological applications. Ongoing research is focused on potential applications of thermotolerant H2 ases in biosynthesis, H2 production, bioremediation, and biosensors.
Collapse
Affiliation(s)
- Jed O Eberly
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
29
|
Chou CJ, Jenney FE, Adams MW, Kelly RM. Hydrogenesis in hyperthermophilic microorganisms: Implications for biofuels. Metab Eng 2008; 10:394-404. [DOI: 10.1016/j.ymben.2008.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 06/20/2008] [Indexed: 11/25/2022]
|
30
|
|
31
|
Nucleogenesis and origin of organelles. ARCHIVE OF ONCOLOGY 2008. [DOI: 10.2298/aoo0804088s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Division of the ancestral prokaryotic pragenome into two circular double-stranded DNA molecules by genetic recombination is a base for the future separate evolution of the nuclear and mitochondrial gene compartment. This suggests monophyletic origin of both mitochondrion and nucleus. Presumed organism which genome undergoes genetic recombination has to be searched among an aerobic, oxygen non-producing archaeon with no rigid cell wall, but a plasma membrane. Plastids evolve from an aerobic, oxygen producing proto-eukaryot, after mitoplastide genome duplication and subsequent functional segregation. In this proposal, origin of eukaryots occurs by a three-step mechanism. First, replication fork pauses and collapses generating a breakage in the genome of archaeal ancestor of eukaryots. Second, the double-strand break can be repaired intergenomically by complementary strands invasion. Third, this duplicated genome can be fissioned into two compartments by reciprocal genetic recombination. Scenario is accomplished by aberrant fission of the inner membrane surrounding separately those two compartments.
Collapse
|
32
|
Park MO, Mizutani T, Jones PR. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis. J Bacteriol 2007; 189:7281-9. [PMID: 17704226 PMCID: PMC2168465 DOI: 10.1128/jb.00828-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the non-sugar-assimilating mesophile Methanococcus maripaludis contains three genes encoding enzymes: a nonphosphorylating NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR); all these enzymes are potentially capable of catalyzing glyceraldehyde-3-phosphate (G3P) metabolism. GAPOR, whose homologs have been found mainly in archaea, catalyzes the reduction of ferredoxin coupled with oxidation of G3P. GAPOR has previously been isolated and characterized only from a sugar-assimilating hyperthermophile, Pyrococcus furiosus (GAPOR(Pf)), and contains the rare metal tungsten as an irreplaceable cofactor. Active recombinant M. maripaludis GAPOR (GAPOR(Mm)) was purified from Escherichia coli grown in minimal medium containing 100 muM sodium molybdate. In contrast, GAPOR(Mm) obtained from cells grown in medium containing tungsten (W) and W and molybdenum (Mo) or in medium without added W and Mo did not display any activity. Activity and transcript analysis of putative G3P-metabolizing enzymes and corresponding genes were performed with M. maripaludis cultured under autotrophic conditions in chemically defined medium. The activity of GAPOR(Mm) was constitutive throughout the culture period and exceeded that of GAPDH at all time points. As GAPDH activity was detected in only the gluconeogenic direction and GAPN activity was completely absent, only GAPOR(Mm) catalyzes oxidation of G3P in M. maripaludis. Recombinant GAPOR(Mm) is posttranscriptionally regulated as it exhibits pronounced and irreversible substrate inhibition and is completely inhibited by 1 muM ATP. With support from flux balance analysis, it is concluded that the major physiological role of GAPOR(Mm) in M. maripaludis most likely involves only nonoptimal growth conditions.
Collapse
Affiliation(s)
- Myong-Ok Park
- Research and Development Division, Fujirebio Inc, Hachioji-shi, Tokyo, Japan
| | | | | |
Collapse
|
33
|
Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SPJ, Friedrich B. [NiFe]-Hydrogenases of Ralstonia eutropha H16: Modular Enzymes for Oxygen-Tolerant Biological Hydrogen Oxidation. J Mol Microbiol Biotechnol 2006; 10:181-96. [PMID: 16645314 DOI: 10.1159/000091564] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent research on hydrogenases has been notably motivated by a desire to utilize these remarkable hydrogen oxidation catalysts in biotechnological applications. Progress in the development of such applications is substantially hindered by the oxygen sensitivity of the majority of hydrogenases. This problem tends to inspire the study of organisms such as Ralstonia eutropha H16 that produce oxygen-tolerant [NiFe]-hydrogenases. R. eutropha H16 serves as an excellent model system in that it produces three distinct [NiFe]-hydrogenases that each serve unique physiological roles: a membrane-bound hydrogenase (MBH) coupled to the respiratory chain, a cytoplasmic, soluble hydrogenase (SH) able to generate reducing equivalents by reducing NAD+ at the expense of hydrogen, and a regulatory hydrogenase (RH) which acts in a signal transduction cascade to control hydrogenase gene transcription. This review will present recent results regarding the biosynthesis, regulation, structure, activity, and spectroscopy of these enzymes. This information will be discussed in light of the question how do organisms adapt the prototypical [NiFe]-hydrogenase system to function in the presence of oxygen.
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Division of ancestral prokaryotic pragenome into two circular double-stranded DNA molecules by genetic recombination, is a base for future separate evolution of nuclear and mitochondrial gene compartment. This suggests monophyletic origin of both, mitochondrion and nucleus. Presumed organism which genome undergoes genetic recombination has to be searched among an aerobic, oxygen nonproducing, archaeon with no rigid cell wall, but a plasma membrane. Plastid evolves from an aerobic, oxygen producing protoeukaryote, after mitoplastid genome duplication and subsequent functional segregation.
Collapse
|
35
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|
36
|
Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T. Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 2005; 15:352-63. [PMID: 15710748 PMCID: PMC551561 DOI: 10.1101/gr.3003105] [Citation(s) in RCA: 333] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 12/21/2004] [Indexed: 01/27/2023]
Abstract
The genus Thermococcus, comprised of sulfur-reducing hyperthermophilic archaea, belongs to the order Thermococcales in Euryarchaeota along with the closely related genus Pyrococcus. The members of Thermococcus are ubiquitously present in natural high-temperature environments, and are therefore considered to play a major role in the ecology and metabolic activity of microbial consortia within hot-water ecosystems. To obtain insight into this important genus, we have determined and annotated the complete 2,088,737-base genome of Thermococcus kodakaraensis strain KOD1, followed by a comparison with the three complete genomes of Pyrococcus spp. A total of 2306 coding DNA sequences (CDSs) have been identified, among which half (1165 CDSs) are annotatable, whereas the functions of 41% (936 CDSs) cannot be predicted from the primary structures. The genome contains seven genes for probable transposases and four virus-related regions. Several proteins within these genetic elements show high similarities to those in Pyrococcus spp., implying the natural occurrence of horizontal gene transfer of such mobile elements among the order Thermococcales. Comparative genomics clarified that 1204 proteins, including those for information processing and basic metabolisms, are shared among T. kodakaraensis and the three Pyrococcus spp. On the other hand, among the set of 689 proteins unique to T. kodakaraensis, there are several intriguing proteins that might be responsible for the specific trait of the genus Thermococcus, such as proteins involved in additional pyruvate oxidation, nucleotide metabolisms, unique or additional metal ion transporters, improved stress response system, and a distinct restriction system.
Collapse
Affiliation(s)
- Toshiaki Fukui
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 2005; 116:271-82. [PMID: 15707688 DOI: 10.1016/j.jbiotec.2004.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 11/12/2004] [Accepted: 11/18/2004] [Indexed: 11/18/2022]
Abstract
The hydrogen (H2) production potential of the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 was evaluated at 85 degrees C. In batch cultivation using a complex medium supplemented with elemental sulfur (S0), evolution of H2S and CO2 was observed in the gas phase. When S0 was omitted and pyruvate or starch was added in the medium, the cells produced H2 at high levels instead of H2S. As the level of H2 appeared to correlate with the specific growth rate, analysis in continuous cultures was performed to develop a continuous H2 production system. In a steady-state condition at a dilution rate of 0.2 h-1, a continuous H2 production rate (per gram dry weight, gdw) of 24.9 and 14.0 mmol gdw-1 h-1 was observed in media supplemented with pyruvate and starch, respectively. In both cultivations, a high accumulation of acetate and alanine was found as metabolites. When the dilution rates were elevated in the medium with pyruvate, steady-state growth was observed up to 0.8 h-1, and a maximum H2 production rate of 59.6 mmol gdw-1 h-1 was obtained. Based on the experimental results along with data of the entire genome sequence, the metabolic pathway of the strain relating to starch and pyruvate degradation is discussed.
Collapse
Affiliation(s)
- Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kletzin A, Urich T, Müller F, Bandeiras TM, Gomes CM. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 2004; 36:77-91. [PMID: 15168612 DOI: 10.1023/b:jobb.0000019600.36757.8c] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.
Collapse
Affiliation(s)
- Arnulf Kletzin
- Institute of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany.
| | | | | | | | | |
Collapse
|