1
|
Zakharova YA, Ivashchenko IA, Bolgarova EV. To the question of the relevance of the development and prospects for the use of the bacteriophage <i>Streptococcus pneumoniae</i>. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction. The prevalence of Streptococcus pneumoniae strains causing invasive forms of pneumococcal infection and the growing rates of antibiotic resistance of individual serotypes of the pathogen pose a number of urgent and socially significant tasks the search for new antimicrobial agents for prevention and treatment.
Objective. To analyze the data of scientific publications of domestic and foreign authors on the problems of practical use and prospects for the development of the bacteriophage S. pneumoniae drug aimed at the actual serotypes of the pathogen.
Results. Analysis of literary sources in scientific electronic databases and publishing houses eLibrary.Ru, ScienceDirect, Scopus, PubMed, Springerlink, Wiley Online Library, Annual reviews allowed us to summarize information about four isolated lytic bacteriophages of S. pneumoniae and their endolysins, as well as about two lysogenic phages, to present data on the clinical efficacy of streptococcal bacteriophage in pneumococcal infection in animals and humans. The results of search queries on the most significant and widespread serotypes of S. pneumoniae in the territory of the Russian Federation have established the predominance in the structure of variants 19F, 14, 9V/A, 15 A/F, 6 A/B/C/D, 3 and 23F. Some of them are characterized by a high level of antibiotic resistance and cause invasive forms of the disease, and serotypes 15 A/F/C, 6 C/D are not represented in modern vaccines, which increases the relevance of the development and use of pneumococcal bacteriophage, including intraspecific typing of significant and common serotypes.
Conclusion. Based on the analysis of the current state of the issue of pneumococcal bacteriophages, the information obtained on the circulation of topical strains of S. pneumoniae on the territory of the Russian Federation and their serotype landscape, it is concluded that the development of the bacteriophage S. pneumoniae drug is relevant as a means of targeted action for the prevention, diagnosis and personalized therapy of human diseases of pneumococcal etiology.
Collapse
|
2
|
Martín-Galiano AJ, García E. Streptococcus pneumoniae: a Plethora of Temperate Bacteriophages With a Role in Host Genome Rearrangement. Front Cell Infect Microbiol 2021; 11:775402. [PMID: 34869076 PMCID: PMC8637289 DOI: 10.3389/fcimb.2021.775402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria. They are the most abundant biological entity on Earth (current estimates suggest there to be perhaps 1031 particles) and are found nearly everywhere. Temperate phages can integrate into the chromosome of their host, and prophages have been found in abundance in sequenced bacterial genomes. Prophages may modulate the virulence of their host in different ways, e.g., by the secretion of phage-encoded toxins or by mediating bacterial infectivity. Some 70% of Streptococcus pneumoniae (the pneumococcus)—a frequent cause of otitis media, pneumonia, bacteremia and meningitis—isolates harbor one or more prophages. In the present study, over 4000 S. pneumoniae genomes were examined for the presence of prophages, and nearly 90% were found to contain at least one prophage, either defective (47%) or present in full (43%). More than 7000 complete putative integrases, either of the tyrosine (6243) or serine (957) families, and 1210 full-sized endolysins (among them 1180 enzymes corresponding to 318 amino acid-long N-acetylmuramoyl-L-alanine amidases [LytAPPH]) were found. Based on their integration site, 26 different pneumococcal prophage groups were documented. Prophages coding for tRNAs, putative virulence factors and different methyltransferases were also detected. The members of one group of diverse prophages (PPH090) were found to integrate into the 3’ end of the host lytASpn gene encoding the major S. pneumoniae autolysin without disrupting it. The great similarity of the lytASpnand lytAPPH genes (85–92% identity) allowed them to recombine, via an apparent integrase-independent mechanism, to produce different DNA rearrangements within the pneumococcal chromosome. This study provides a complete dataset that can be used to further analyze pneumococcal prophages, their evolutionary relationships, and their role in the pathogenesis of pneumococcal disease.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
3
|
Garriss G, Henriques-Normark B. Lysogeny in Streptococcus pneumoniae. Microorganisms 2020; 8:E1546. [PMID: 33036379 PMCID: PMC7600539 DOI: 10.3390/microorganisms8101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are major contributors to the evolution, pathogenesis and overall biology of their host bacteria. During their life cycle, temperate bacteriophages form stable associations with their host by integrating into the chromosome, a process called lysogeny. Isolates of the human pathogen Streptococcus pneumoniae are frequently lysogenic, and genomic studies have allowed the classification of these phages into distinct phylogenetic groups. Here, we review the recent advances in the characterization of temperate pneumococcal phages, with a focus on their genetic features and chromosomal integration loci. We also discuss the contribution of phages, and specific phage-encoded features, to colonization and virulence. Finally, we discuss interesting research perspectives in this field.
Collapse
Affiliation(s)
- Geneviève Garriss
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Bioclinicum, 171 76 Stockholm, Sweden
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
4
|
Methylation Warfare: Interaction of Pneumococcal Bacteriophages with Their Host. J Bacteriol 2019; 201:JB.00370-19. [PMID: 31285240 PMCID: PMC6755750 DOI: 10.1128/jb.00370-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection. Virus-host interactions are regulated by complex coevolutionary dynamics. In Streptococcus pneumoniae, phase-variable type I restriction-modification (R-M) systems are part of the core genome. We hypothesized that the ability of the R-M systems to switch between six target DNA specificities also has a key role in preventing the spread of bacteriophages. Using the streptococcal temperate bacteriophage SpSL1, we show that the variants of both the SpnIII and SpnIV R-M systems are able to restrict invading bacteriophage with an efficiency approximately proportional to the number of target sites in the bacteriophage genome. In addition to restriction of lytic replication, SpnIII also led to abortive infection in the majority of host cells. During lytic infection, transcriptional analysis found evidence of phage-host interaction through the strong upregulation of the nrdR nucleotide biosynthesis regulon. During lysogeny, the phage had less of an effect on host gene regulation. This research demonstrates a novel combined bacteriophage restriction and abortive infection mechanism, highlighting the importance that the phase-variable type I R-M systems have in the multifunctional defense against bacteriophage infection in the respiratory pathogen S. pneumoniae. IMPORTANCE With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection.
Collapse
|
5
|
McShan WM, McCullor KA, Nguyen SV. The Bacteriophages of Streptococcus pyogenes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0059-2018. [PMID: 31111820 PMCID: PMC11314938 DOI: 10.1128/microbiolspec.gpp3-0059-2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
The bacteriophages of Streptococcus pyogenes (group A streptococcus) play a key role in population shaping, genetic transfer, and virulence of this bacterial pathogen. Lytic phages like A25 can alter population distributions through elimination of susceptible serotypes but also serve as key mediators for genetic transfer of virulence genes and antibiotic resistance via generalized transduction. The sequencing of multiple S. pyogenes genomes has uncovered a large and diverse population of endogenous prophages that are vectors for toxins and other virulence factors and occupy multiple attachment sites in the bacterial genomes. Some of these sites for integration appear to have the potential to alter the bacterial phenotype through gene disruption. Remarkably, the phage-like chromosomal islands (SpyCI), which share many characteristics with endogenous prophages, have evolved to mediate a growth-dependent mutator phenotype while acting as global transcriptional regulators. The diverse population of prophages appears to share a large pool of genetic modules that promotes novel combinations that may help disseminate virulence factors to different subpopulations of S. pyogenes. The study of the bacteriophages of this pathogen, both lytic and lysogenic, will continue to be an important endeavor for our understanding of how S. pyogenes continues to be a significant cause of human disease.
Collapse
Affiliation(s)
- W Michael McShan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| | - Kimberly A McCullor
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| | - Scott V Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| |
Collapse
|
6
|
Hiller NL, Sá-Leão R. Puzzling Over the Pneumococcal Pangenome. Front Microbiol 2018; 9:2580. [PMID: 30425695 PMCID: PMC6218428 DOI: 10.3389/fmicb.2018.02580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
The Gram positive bacterium Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human host, and in the nasopharynx, sinus, and middle ear it survives as a biofilm. This mode of growth is optimal for multi-strain colonization and genetic exchange. Over the last decades, the far-reaching use of antibiotics and the widespread implementation of pneumococcal multivalent conjugate vaccines have posed considerable selective pressure on pneumococci. This scenario provides an exceptional opportunity to study the evolution of the pangenome of a clinically important bacterium, and has the potential to serve as a case study for other species. The goal of this review is to highlight key findings in the studies of pneumococcal genomic diversity and plasticity.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
McDonnell B, Mahony J, Hanemaaijer L, Neve H, Noben JP, Lugli GA, Ventura M, Kouwen TR, van Sinderen D. Global Survey and Genome Exploration of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Front Microbiol 2017; 8:1754. [PMID: 28955321 PMCID: PMC5601072 DOI: 10.3389/fmicb.2017.01754] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/29/2017] [Indexed: 01/31/2023] Open
Abstract
Despite the persistent and costly problem caused by (bacterio)phage predation of Streptococcus thermophilus in dairy plants, DNA sequence information relating to these phages remains limited. Genome sequencing is necessary to better understand the diversity and proliferative strategies of virulent phages. In this report, whole genome sequences of 40 distinct bacteriophages infecting S. thermophilus were analyzed for general characteristics, genomic structure and novel features. The bacteriophage genomes display a high degree of conservation within defined groupings, particularly across the structural modules. Supporting this observation, four novel members of a recently discovered third group of S. thermophilus phages (termed the 5093 group) were found to be conserved relative to both phage 5093 and to each other. Replication modules of S. thermophilus phages generally fall within two main groups, while such phage genomes typically encode one putative transcriptional regulator. Such features are indicative of widespread functional synteny across genetically distinct phage groups. Phage genomes also display nucleotide divergence between groups, and between individual phages of the same group (within replication modules and at the 3′ end of the lysis module)—through various insertions and/or deletions. A previously described multiplex PCR phage detection system was updated to reflect current knowledge on S. thermophilus phages. Furthermore, the structural protein complement as well as the antireceptor (responsible for the initial attachment of the phage to the host cell) of a representative of the 5093 group was defined. Our data more than triples the currently available genomic information on S. thermophilus phages, being of significant value to the dairy industry, where genetic knowledge of lytic phages is crucial for phage detection and monitoring purposes. In particular, the updated PCR detection methodology for S. thermophilus phages is highly useful in monitoring particular phage group(s) present in a given whey sample. Studies of this nature therefore not only provide information on the prevalence and associated threat of known S. thermophilus phages, but may also uncover newly emerging and genomically distinct phages infecting this dairy starter bacterium.
Collapse
Affiliation(s)
- Brian McDonnell
- School of Microbiology, College of Science, Engineering and Food Science, University College CorkCork, Ireland
| | - Jennifer Mahony
- School of Microbiology, College of Science, Engineering and Food Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | | | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt UniversityDiepenbeek, Belgium
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of ParmaParma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of ParmaParma, Italy
| | | | - Douwe van Sinderen
- School of Microbiology, College of Science, Engineering and Food Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
8
|
Pneumococcal prophages are diverse, but not without structure or history. Sci Rep 2017; 7:42976. [PMID: 28218261 PMCID: PMC5317160 DOI: 10.1038/srep42976] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/17/2017] [Indexed: 11/24/2022] Open
Abstract
Bacteriophages (phages) infect many bacterial species, but little is known about the diversity of phages among the pneumococcus, a leading global pathogen. The objectives of this study were to determine the prevalence, diversity and molecular epidemiology of prophages (phage DNA integrated within the bacterial genome) among pneumococci isolated over the past 90 years. Nearly 500 pneumococcal genomes were investigated and RNA sequencing was used to explore prophage gene expression. We revealed that every pneumococcal genome contained prophage DNA. 286 full-length/putatively full-length pneumococcal prophages were identified, of which 163 have not previously been reported. Full-length prophages clustered into four major groups and every group dated from the 1930–40 s onward. There was limited evidence for genes shared between prophage clusters. Prophages typically integrated in one of five different sites within the pneumococcal genome. 72% of prophages possessed the virulence genes pblA and/or pblB. Individual prophages and the host pneumococcal genetic lineage were strongly associated and some prophages persisted for many decades. RNA sequencing provided clear evidence of prophage gene expression. Overall, pneumococcal prophages were highly prevalent, demonstrated a structured population, possessed genes associated with virulence, and were expressed under experimental conditions. Pneumococcal prophages are likely to play a more important role in pneumococcal biology and evolution than previously recognised.
Collapse
|
9
|
Murphy J, Royer B, Mahony J, Hoyles L, Heller K, Neve H, Bonestroo M, Nauta A, van Sinderen D. Biodiversity of lactococcal bacteriophages isolated from 3 Gouda-type cheese-producing plants. J Dairy Sci 2013; 96:4945-57. [PMID: 23769356 DOI: 10.3168/jds.2013-6748] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
Abstract
This study reports on the identification and characterization of bacteriophages isolated from cheese-production facilities that use undefined, mixed starter cultures. Phage screening was carried out on whey samples isolated from 3 factories, 2 utilizing one particular undefined starter mixture and 1 utilizing another undefined starter mixture. Phage screening was carried out using 40 strains isolated from the 2 mixed starter cultures, and phages were profiled using host range, electron microscopy, multiplex PCR, and DNA restriction analysis. Twenty distinct lactococcal phages were identified based on host range and DNA restriction profiles, all belonging to the 936-type phage species. Nineteen of these phages were found to be able to infect both recognized subspecies of Lactococcus lactis. Restriction of phage DNA isolated using a newly developed guanidinium thiocyanate disruption method showed that the genomes of the 20 isolated phages were between 26 and 31 kb in size. It is evident from this study that the use of mixed starters creates an ideal environment for the proliferation of different phages with slightly varying host ranges. Furthermore, in this environment, members of the 936-type phage species clearly dominated the phage population.
Collapse
Affiliation(s)
- James Murphy
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Frias MJ, Melo-Cristino J, Ramirez M. Export of the pneumococcal phage SV1 lysin requires choline-containing teichoic acids and is holin-independent. Mol Microbiol 2012; 87:430-45. [PMID: 23171061 DOI: 10.1111/mmi.12108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 11/28/2022]
Abstract
Streptococcus pneumoniae bacteriophages (phages) rely on a holin-lysin system to accomplish host lysis. Due to the lack of lysin export signals, it is assumed that holin disruption of the cytoplasmic membrane allows endolysin access to the peptidoglycan. We investigated the lysis mechanism of pneumococcal phage SV1, by using lysogens without holin activity. Upon phage induction in a holin deficient background, phage lysin was gradually targeted to the cell wall, in spite of lacking any obvious signal sequence. Our data indicate that export of the phage lysin requires the presence of choline in the teichoic acids, an unusual characteristic of pneumococci. At the bacterial surface, the exolysin remains bound to choline residues without inducing lysis, but is readily activated by the collapse of the membrane potential. Additionally, the activation of the major autolysin LytA, which also participates in phage-mediated lysis, is equally related to perturbations of the membrane proton motive force. These results indicate that collapse of the membrane potential by holins is sufficient to trigger bacterial lysis. We found that the lysin of phage SV1 reaches the peptidoglycan through a novel holin-independent pathway and propose that the same mechanism could be used by other pneumococcal phages.
Collapse
Affiliation(s)
- Maria João Frias
- Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
11
|
Hiller NL, Eutsey RA, Powell E, Earl JP, Janto B, Martin DP, Dawid S, Ahmed A, Longwell MJ, Dahlgren ME, Ezzo S, Tettelin H, Daugherty SC, Mitchell TJ, Hillman TA, Buchinsky FJ, Tomasz A, de Lencastre H, Sá-Leão R, Post JC, Hu FZ, Ehrlich GD. Differences in genotype and virulence among four multidrug-resistant Streptococcus pneumoniae isolates belonging to the PMEN1 clone. PLoS One 2011; 6:e28850. [PMID: 22205975 PMCID: PMC3242761 DOI: 10.1371/journal.pone.0028850] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/16/2011] [Indexed: 11/19/2022] Open
Abstract
We report on the comparative genomics and characterization of the virulence phenotypes of four S. pneumoniae strains that belong to the multidrug resistant clone PMEN1 (Spain23F ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate – PN4595-T23 – was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain – ATCC700669 – was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains – representing a variety of clonal types – the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinants.
Collapse
Affiliation(s)
- N Luisa Hiller
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mills S, Griffin C, O’Sullivan O, Coffey A, McAuliffe O, Meijer W, Serrano L, Ross R. A new phage on the ‘Mozzarella’ block: Bacteriophage 5093 shares a low level of homology with other Streptococcus thermophilus phages. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Camilli R, Bonnal RJP, Del Grosso M, Iacono M, Corti G, Rizzi E, Marchetti M, Mulas L, Iannelli F, Superti F, Oggioni MR, De Bellis G, Pantosti A. Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniae invasive isolate. BMC Microbiol 2011; 11:25. [PMID: 21284853 PMCID: PMC3055811 DOI: 10.1186/1471-2180-11-25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/01/2011] [Indexed: 11/13/2022] Open
Abstract
Background Streptococcus pneumoniae is an important human pathogen representing a major cause of morbidity and mortality worldwide. We sequenced the genome of a serotype 11A, ST62 S. pneumoniae invasive isolate (AP200), that was erythromycin-resistant due to the presence of the erm(TR) determinant, and carried out analysis of the genome organization and comparison with other pneumococcal genomes. Results The genome sequence of S. pneumoniae AP200 is 2,130,580 base pair in length. The genome carries 2216 coding sequences (CDS), 56 tRNA, and 12 rRNA genes. Of the CDSs, 72.9% have a predicted biological known function. AP200 contains the pilus islet 2 and, although its phenotype corresponds to serotype 11A, it contains an 11D capsular locus. Chromosomal rearrangements resulting from a large inversion across the replication axis, and horizontal gene transfer events were observed. The chromosomal inversion is likely implicated in the rebalance of the chromosomal architecture affected by the insertions of two large exogenous elements, the erm(TR)-carrying Tn1806 and a functional prophage designated ϕSpn_200. Tn1806 is 52,457 bp in size and comprises 49 ORFs. Comparative analysis of Tn1806 revealed the presence of a similar genetic element or part of it in related species such as Streptococcus pyogenes and also in the anaerobic species Finegoldia magna, Anaerococcus prevotii and Clostridium difficile. The genome of ϕSpn_200 is 35,989 bp in size and is organized in 47 ORFs grouped into five functional modules. Prophages similar to ϕSpn_200 were found in pneumococci and in other streptococcal species, showing a high degree of exchange of functional modules. ϕSpn_200 viral particles have morphologic characteristics typical of the Siphoviridae family and are capable of infecting a pneumococcal recipient strain. Conclusions The sequence of S. pneumoniae AP200 chromosome revealed a dynamic genome, characterized by chromosomal rearrangements and horizontal gene transfers. The overall diversity of AP200 is driven mainly by the presence of the exogenous elements Tn1806 and ϕSpn_200 that show large gene exchanges with other genetic elements of different bacterial species. These genetic elements likely provide AP200 with additional genes, such as those conferring antibiotic-resistance, promoting its adaptation to the environment.
Collapse
Affiliation(s)
- Romina Camilli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sabri M, Häuser R, Ouellette M, Liu J, Dehbi M, Moeck G, García E, Titz B, Uetz P, Moineau S. Genome annotation and intraviral interactome for the Streptococcus pneumoniae virulent phage Dp-1. J Bacteriol 2011; 193:551-62. [PMID: 21097633 PMCID: PMC3019816 DOI: 10.1128/jb.01117-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/08/2010] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae causes several diseases, including pneumonia, septicemia, and meningitis. Phage Dp-1 is one of the very few isolated virulent S. pneumoniae bacteriophages, but only a partial characterization is currently available. Here, we confirmed that Dp-1 belongs to the family Siphoviridae. Then, we determined its complete genomic sequence of 56,506 bp. It encodes 72 open reading frames, of which 44 have been assigned a function. We have identified putative promoters, Rho-independent terminators, and several genomic clusters. We provide evidence that Dp-1 may be using a novel DNA replication system as well as redirecting host protein synthesis through queuosine-containing tRNAs. Liquid chromatography-mass spectrometry analysis of purified phage Dp-1 particles identified at least eight structural proteins. Finally, using comprehensive yeast two-hybrid screens, we identified 156 phage protein interactions, and this intraviral interactome was used to propose a structural model of Dp-1.
Collapse
Affiliation(s)
- Mourad Sabri
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Roman Häuser
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Marc Ouellette
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Jing Liu
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Mohammed Dehbi
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Greg Moeck
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Ernesto García
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Björn Titz
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Peter Uetz
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| |
Collapse
|
15
|
Evidence of localized prophage-host recombination in the lytA gene, encoding the major pneumococcal autolysin. J Bacteriol 2010; 192:2624-32. [PMID: 20304992 DOI: 10.1128/jb.01501-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
According to a highly polymorphic region in the lytA gene, encoding the major autolysin of Streptococcus pneumoniae, two different families of alleles can be differentiated by PCR and restriction digestion. Here, we provide evidence that this polymorphic region arose from recombination events with homologous genes of pneumococcal temperate phages.
Collapse
|
16
|
Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol 2009; 192:1122-30. [PMID: 20008075 DOI: 10.1128/jb.01293-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine the relative importance of temperate bacteriophage in the horizontal gene transfer of fitness and virulence determinants of Enterococcus faecalis, a panel of 47 bacteremia isolates were treated with the inducing agents mitomycin C, norfloxacin, and UV radiation. Thirty-four phages were purified from culture supernatants and discriminated using pulsed-field gel electrophoresis (PFGE) and restriction mapping. From these analyses the genomes of eight representative phages were pyrosequenced, revealing four distinct groups of phages. Three groups of phages, PhiFL1 to 3, were found to be sequence related, with PhiFL1A to C and PhiFL2A and B sharing the greatest identity (87 to 88%), while PhiFL3A and B share 37 to 41% identity with PhiFL1 and 2. PhiFL4A shares 3 to 12% identity with the phages PhiFL1 to 3. The PhiFL3A and B phages possess a high DNA sequence identity with the morphogenesis and lysis modules of Lactococcus lactis subsp. cremoris prophages. Homologs of the Streptococcus mitis platelet binding phage tail proteins, PblA and PblB, are encoded on each sequenced E. faecalis phage. Few other phage genes encoding potential virulence functions were identified, and there was little evidence of carriage of lysogenic conversion genes distal to endolysin, as has been observed with genomes of many temperate phages from the opportunist pathogens Staphylococcus aureus and Streptococcus pyogenes. E. faecalis JH2-2 lysogens were generated using the eight phages, and these were examined for their relative fitness in Galleria mellonella. Several lysogens exhibited different effects upon survival of G. mellonella compared to their isogenic parent. The eight phages were tested for their ability to package host DNA, and three were shown to be very effective for generalized transduction of naive host cells of the laboratory strains OG1RF and JH2-2.
Collapse
|
17
|
The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae. J Bacteriol 2009; 191:5428-40. [PMID: 19581370 DOI: 10.1128/jb.00477-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most bacteriophages (phages) release their progeny through the action of holins that form lesions in the cytoplasmic membrane and lysins that degrade the bacterial peptidoglycan. Although the function of each protein is well established in phages infecting Streptococcus pneumoniae, the role--if any--of the powerful bacterial autolysin LytA in virion release is currently unknown. In this study, deletions of the bacterial and phage lysins were done in lysogenic S. pneumoniae strains, allowing the evaluation of the contribution of each lytic enzyme to phage release through the monitoring of bacterial-culture lysis and phage plaque assays. In addition, we assessed membrane integrity during phage-mediated lysis using flow cytometry to evaluate the regulatory role of holins over the lytic activities. Our data show that LytA is activated at the end of the lytic cycle and that its triggering results from holin-induced membrane permeabilization. In the absence of phage lysin, LytA is able to mediate bacterial lysis and phage release, although exclusive dependence on the autolysin results in reduced virion egress and altered kinetics that may impair phage fitness. Under normal conditions, activation of bacterial LytA, together with the phage lysin, leads to greater phage progeny release. Our findings demonstrate that S. pneumoniae phages use the ubiquitous host autolysin to accomplish an optimal phage exiting strategy.
Collapse
|
18
|
Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol 2009; 191:4854-62. [PMID: 19502408 PMCID: PMC2715734 DOI: 10.1128/jb.01272-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage phiSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them.
Collapse
|
19
|
Development of a prophage typing system and analysis of prophage carriage in Streptococcus pneumoniae. Appl Environ Microbiol 2009; 75:1642-9. [PMID: 19168661 DOI: 10.1128/aem.02155-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The frequency of prophage carriage was tested in a collection of 108 clinical isolates of Streptococcus pneumoniae. A PCR-based assay was developed to allow classification of the prophage into the three groups recently identified according to genome comparisons (P. Romero, N. Croucher, N. L. Hiller, F. Z. Hu, G. D. Ehrlich, S. D. Bentley, E. García, and T. J. Mitchell, submitted for publication). Use of the assay showed that more than half of the isolates studied were lysogenic with prophage belonging to group 1 being the most abundant (56%), followed by those belonging to group 2 (26%) and those belonging to group 3 (11%). Four polylysogenic strains harboring a group 1 and a group 2 prophage were identified. Interestingly, lysogenic strains were found in 8 out of the 12 internationally distributed, relevant clones of S. pneumoniae contained in our strain collection. The high percentage of clinical pneumococcal isolates harboring prophage strongly suggests an important contribution to the diversification of the genome architecture in this species as well as a role for bacteriophage in the virulence/and or fitness of S. pneumoniae, although further studies using a significant number of isolates belonging to the most relevant pneumococcal clones are needed.
Collapse
|
20
|
Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniaeSpain23F ST81. J Bacteriol 2008; 191:1480-9. [PMID: 19114491 PMCID: PMC2648205 DOI: 10.1128/jb.01343-08] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a human commensal and pathogen able to cause a variety of diseases that annually result in over a million deaths worldwide. The S. pneumoniae(Spain23F) sequence type 81 lineage was among the first recognized pandemic clones and was responsible for almost 40% of penicillin-resistant pneumococcal infections in the United States in the late 1990s. Analysis of the chromosome sequence of a representative strain, and comparison with other available genomes, indicates roles for integrative and conjugative elements in the evolution of pneumococci and, more particularly, the emergence of the multidrug-resistant Spain 23F ST81 lineage. A number of recently acquired loci within the chromosome appear to encode proteins involved in the production of, or immunity to, antimicrobial compounds, which may contribute to the proficiency of this strain at nasopharyngeal colonization. However, further sequencing of other pandemic clones will be required to establish whether there are any general attributes shared by these strains that are responsible for their international success.
Collapse
|
21
|
van der Ploeg JR. Characterization of Streptococcus gordonii prophage PH15: complete genome sequence and functional analysis of phage-encoded integrase and endolysin. Microbiology (Reading) 2008; 154:2970-2978. [DOI: 10.1099/mic.0.2008/018739-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jan R. van der Ploeg
- Institute of Oral Biology, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland
| |
Collapse
|
22
|
Bose B, Auchtung JM, Lee CA, Grossman AD. A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol Microbiol 2008; 70:570-82. [PMID: 18761623 DOI: 10.1111/j.1365-2958.2008.06414.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mobile genetic element ICEBs1 is an integrative and conjugative element (a conjugative transposon) found in the Bacillus subtilis chromosome. The SOS response and the RapI-PhrI sensory system activate ICEBs1 gene expression, excision and transfer by inactivating the ICEBs1 repressor protein ImmR. Although ImmR is similar to many characterized phage repressors, we found that, unlike these repressors, inactivation of ImmR requires an ICEBs1-encoded anti-repressor ImmA (YdcM). ImmA was needed for the degradation of ImmR in B. subtilis. Coexpression of ImmA and ImmR in Escherichia coli or co-incubation of purified ImmA and ImmR resulted in site-specific cleavage of ImmR. Homologues of immR and immA are found in many mobile genetic elements. We found that the ImmA homologue encoded by B. subtilis phage phi105 is required for inactivation of the phi105 repressor (an ImmR homologue). ImmA-dependent proteolysis of ImmR repressors may be a conserved mechanism for regulating horizontal gene transfer.
Collapse
Affiliation(s)
- Baundauna Bose
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
23
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|
24
|
Llull D, López R, García E. Characteristic signatures of the lytA gene provide a basis for rapid and reliable diagnosis of Streptococcus pneumoniae infections. J Clin Microbiol 2006; 44:1250-6. [PMID: 16597847 PMCID: PMC1448622 DOI: 10.1128/jcm.44.4.1250-1256.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences of the lytA gene from 29 pneumococcal isolates of various serotypes and 22 additional streptococci of the mitis group (including two Streptococcus pseudopneumoniae strains) have been compared and found to correspond to 19 typical (927-bp-long) and 20 atypical (921-bp-long) alleles. All the Streptococcus pneumoniae strains harbored typical lytA alleles, whereas nonpneumococcal isolates belonging to the mitis group always carried atypical alleles. A sequence alignment showed that the main difference between typical and atypical lytA alleles resided in 102 nucleotide positions (including the 6 bp absent from atypical alleles). These nucleotides were perfectly conserved in all the typical alleles studied, and the corresponding nucleotides of the atypical alleles were also perfectly conserved. The presence in these signatures of distinctive restriction sites (namely, SnaBI, XmnI, and BsaAI) allowed the development of a simple, reliable, and fast method that combines PCR amplification of the lytA gene, digestion with BsaAI, and separation of the products by agarose gel electrophoresis. This assay allows the rapid and consistent identification of true S. pneumoniae strains and represents an improved diagnostic tool for the study of pneumococcal carriage.
Collapse
Affiliation(s)
- Daniel Llull
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | |
Collapse
|
25
|
Tan Y, Zhang K, Rao X, Jin X, Huang J, Zhu J, Chen Z, Hu X, Shen X, Wang L, Hu F. Whole genome sequencing of a novel temperate bacteriophage ofP. aeruginosa: evidence of tRNA gene mediating integration of the phage genome into the host bacterial chromosome. Cell Microbiol 2006; 9:479-91. [PMID: 16965514 DOI: 10.1111/j.1462-5822.2006.00804.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Whole genome sequencing of a novel Pseudomonas aeruginosa temperate bacteriophage PaP3 has been completed. The genome contains 45 503 bp with GC content of 52.1%, without more than 100 bp sequence hitting homologue in all sequenced phage genomes. A total of 256 open reading frames (ORFs) are found in the genome, and 71 ORFs are predicated as coding sequence (CDS). All 71 CDS are divided into the two opposite direction groups, and both groups meet at the bidirectional terminator site locating the near middle of the genome. The genome is dsDNA with 5'-protruded cohesive ends and cohesive sequence is 'GCCGGCCCCTTTCCGCGTTA' (20 mer). There are four tRNA genes (tRNA(Asn), tRNA(Asp), tRNA(Tyr) and tRNA(Pro)) clustering at the 5'-terminal of the genome. Analysis of integration site of PaP3 in the host bacterial genome confirmed that the core sequence of (GGTCGTAGGTTCGAATCCTAC-21mer) locates at tRNA(Pro) gene within the attP region and at tRNA(Lys) gene in the attB region. The results indicated that 3'-end of tRNA(Pro) gene of the PaP3 genome is involved in the integration reaction and 5'-end of tRNA(Lys) gene of host bacteria genome is hot spot of the integration.
Collapse
Affiliation(s)
- Yinling Tan
- Department of Microbiology, The Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Loeffler JM, Fischetti VA. Lysogeny of Streptococcus pneumoniae with MM1 phage: improved adherence and other phenotypic changes. Infect Immun 2006; 74:4486-95. [PMID: 16861634 PMCID: PMC1539626 DOI: 10.1128/iai.00020-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumococcal prophages are extremely frequent, but no role in pathogenesis has so far been attributed to them. We isolated a variant of phage MM1, named MM1-1998, from a serotype 24 strain of Streptococcus pneumoniae. We created three isogenic strain pairs (serotypes 3, 4, and 24) that differed only by the lysogenic presence of the MM1-1998 phage and did a phenotypic comparison. Lysogeny led to improved adherence to inert surfaces and pharyngeal cells compared to that with the cured variants of the strains. We found that lysogeny with MM1-1998 coincided with a more transparent phenotype and phage curing with more opaque colonies in all strain pairs, and we discovered that transparency was associated with more successful and stable lysogeny. Since transparency alone was possibly responsible for the adherence difference, we further compared the TIGR4 lysogen with an equally transparent variant of TIGR4 in order to reassess the role of phage or transparency separately. The results revealed that improved adherence was independently associated with lysogeny with the MM1-1998 phage. Other phenotypic differences such as faster growth, increased autolysis, and decreased intracellular hemolytic activity were more likely due to transparency. By improving the adherence of pneumococci, this prophage may contribute to their fitness and possibly to their persistence in humans.
Collapse
Affiliation(s)
- Jutta M Loeffler
- Laboratory of Bacterial Pathogenesis, The Rockefeller University, 1230 York Ave., New York, New York 10021, USA
| | | |
Collapse
|
27
|
Abstract
Bacteriophages (prokaryotic viruses) are favourite model systems to study DNA replication in prokaryotes, and provide examples for every theoretically possible replication mechanism. In addition, the elucidation of the intricate interplay of phage-encoded replication factors with 'host' factors has always advanced the understanding of DNA replication in general. Here we review bacteriophage replication based on the long-standing observation that in most known phage genomes the replication genes are arranged as modules. This allows us to discuss established model systems--f1/fd, phiX174, P2, P4, lambda, SPP1, N15, phi29, T7 and T4--along with those numerous phages that have been sequenced but not studied experimentally. The review of bacteriophage replication mechanisms and modules is accompanied by a compendium of replication origins and replication/recombination proteins (available as supplementary material online).
Collapse
|
28
|
Delisle AL, Barcak GJ, Guo M. Isolation and expression of the lysis genes of Actinomyces naeslundii phage Av-1. Appl Environ Microbiol 2006; 72:1110-7. [PMID: 16461656 PMCID: PMC1392916 DOI: 10.1128/aem.72.2.1110-1117.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective lambda holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products.
Collapse
Affiliation(s)
- Allan L Delisle
- Department of Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
29
|
Lévesque C, Duplessis M, Labonté J, Labrie S, Fremaux C, Tremblay D, Moineau S. Genomic organization and molecular analysis of virulent bacteriophage 2972 infecting an exopolysaccharide-producing Streptococcus thermophilus strain. Appl Environ Microbiol 2005; 71:4057-68. [PMID: 16000821 PMCID: PMC1169050 DOI: 10.1128/aem.71.7.4057-4068.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 02/01/2005] [Indexed: 11/20/2022] Open
Abstract
The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed.
Collapse
Affiliation(s)
- Céline Lévesque
- GREB, Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
30
|
Brückner R, Nuhn M, Reichmann P, Weber B, Hakenbeck R. Mosaic genes and mosaic chromosomes-genomic variation in Streptococcus pneumoniae. Int J Med Microbiol 2005; 294:157-68. [PMID: 15493826 DOI: 10.1016/j.ijmm.2004.06.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genome sequences of two strains of Streptococcus pneumoniae, one of the major human pathogens, are currently available: that of the nonencapsulated laboratory strain R6, the origin of which dates back to the early 20th century, and of the serotype 4 TIGR strain isolated recently. The two genomes are not only different in size (2 versus 2.16 Mb) but differ also by approximately 10% of their genes, many of which being organized in large clusters. Their strain-specific genes and gene clusters are described here. The R6 genome contains 69 kb organized in six large regions that are absent from the TIGR strain, which in turn contains an extra 157kb in twelve clusters compared to R6. In addition, the TIGR strain contains 13 clusters of 4 kb and larger that are not shared by a variety of genetically different S. pneumoniae strains. Many regions bear signs of gene transfer events such as the presence of insertion sequences, transposable elements, and putative site-specific integrases/recombinases. Three strain-specific regions are devoted to genes encoding proteins with the cell wall anchor motif LPXTG which are important for the interaction with host cells and appear to be highly variable, similar to cell wall-associated choline-binding proteins.
Collapse
Affiliation(s)
- Reinhold Brückner
- Department of Microbiology, University of Kaiserslautern, Paul-Ehrlich-Strasse 23, 67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
31
|
López R, García E. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 2005; 28:553-80. [PMID: 15539074 DOI: 10.1016/j.femsre.2004.05.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/19/2004] [Accepted: 05/25/2004] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae has re-emerged as a major cause of morbidity and mortality throughout the world and its continuous increase in antimicrobial resistance is rapidly becoming a leading cause of concern for public health. This review is focussed on the analysis of recent insights on the study of capsular polysaccharide biosynthesis, and cell wall (murein) hydrolases, two fundamental pneumococcal virulence factors. Besides, we have also re-evaluated the molecular biology of the pneumococcal phage, their possible role in pathogenicity and in the shaping of natural populations of S. pneumoniae. Precise knowledge of the topics reviewed here should facilitate the rationale to move towards the design of alternative ways to combat pneumococcal disease.
Collapse
Affiliation(s)
- Rubens López
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | |
Collapse
|
32
|
Romero P, López R, García E. Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J Bacteriol 2005; 186:8229-39. [PMID: 15576771 PMCID: PMC532422 DOI: 10.1128/jb.186.24.8229-8239.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two new temperate bacteriophages exhibiting a Myoviridae (phiB6) and a Siphoviridae (phiHER) morphology have been isolated from Streptococcus mitis strains B6 and HER 1055, respectively, and partially characterized. The lytic phage genes were overexpressed in Escherichia coli, and their encoded proteins were purified. The lytAHER and lytAB6 genes are very similar (87% identity) and appeared to belong to the group of the so-called typical LytA amidases (atypical LytA displays a characteristic two-amino-acid deletion signature). although they exhibited several differential biochemical properties with respect to the pneumococcal LytA, e.g., they were inhibited in vitro by sodium deoxycholate and showed a more acidic pH for optimal activity. However, and in sharp contrast with the pneumococcal LytA, a short dialysis of LytAHER or LytAB6 resulted in reversible deconversion to the low-activity state (E-form) of the fully active phage amidases (C-form). Comparison of the amino acid sequences of LytAHER and LytAB6 with that of the pneumococcal amidase suggested that Val317 might be responsible for at least some of the peculiar properties of S. mitis phage enzymes. Site-directed mutagenesis that changed Val317 in the pneumococcal LytA amidase to a Thr residue (characteristic of LytAB6 and LytAHER) produced a fully active pneumococcal enzyme that differs from the parental one only in that the mutant amidase can reversibly recover the low-activity E-form upon dialysis. This is the first report showing that a single amino acid residue is involved in the conversion process of the major S. pneumoniae autolysin. Our results also showed that some lysogenic S. mitis strains possess a lytA-like gene, something that was previously thought to be exclusive to Streptococcus pneumoniae. Moreover, the newly discovered phage lysins constitute a missing link between the typical and atypical pneumococcal amidases known previously.
Collapse
Affiliation(s)
- Patricia Romero
- Departmento de Microbiología Molecular, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28006 Madrid, Spain
| | | | | |
Collapse
|
33
|
Kropinski AM, Hayward M, Agnew MD, Jarrell KF. The genome of BCJA1c: a bacteriophage active against the alkaliphilic bacterium, Bacillus clarkii. Extremophiles 2004; 9:99-109. [PMID: 15841342 DOI: 10.1007/s00792-004-0425-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
The sequence of the genome of the first alkaliphilic bacteriophage has been determined. Temperate phage BCJA1 possesses a terminally redundant genome of approximately 41 kb, with a mol% G + C content of 41.7 and 59 genes arranged predominantly into two divergent transcriptons. The integrase gene of this phage is unique in that it contains a ribosomal slippage site. While this type of translational regulation occurs in the synthesis of transposase, this is the first time that it has been observed in a bacteriophage integrase. The DNA replication, recombination, packaging, and morphogenesis proteins show their greatest sequence similarity to phages and prophages from the genus Streptococcus. Host specificity, lysin, and lysogeny maintenance functions are most closely related to genes from Bacillus species.
Collapse
Affiliation(s)
- Andrew M Kropinski
- Department of Microbiology and Immunology, Queens University, Kingston, ON, K7L 3N6, Canada.
| | | | | | | |
Collapse
|
34
|
Romero P, López R, García E. Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Virology 2004; 322:239-52. [PMID: 15110522 DOI: 10.1016/j.virol.2004.01.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 01/09/2004] [Accepted: 01/31/2004] [Indexed: 10/26/2022]
Abstract
We report the complete genomic sequence of EJ-1, an inducible prophage isolated from an atypical Streptococcus pneumoniae strain that belongs to the Myoviridae morphology family. The phage and bacterial recombinational sites (attachment sites) have been also determined. The genome of the EJ-1 prophage (42935 bp) is organized in 73 open reading frames (ORFs) and in at least five major clusters. Bioinformatic and N-terminal amino acid sequence analyses enabled the assignment of possible functions to 52 ORFs. The predicted proteins coded for the EJ-1 genome revealed similarities in the lysogeny, DNA replication, regulation, packaging, and head morphogenesis protein clusters with those from several siphoviruses infecting lactic acid bacteria. However, the proteins encoded by genes orf53 to orf64, corresponding to putative tail proteins of the virion, were very similar to those of the defective Bacillus subtilis myovirus PBSX with the notable exception of the gene product of orf56 (the tape measure tail protein) that was similar to proteins from phages infecting Gram-negative bacteria. The first description of the genome of a myovirus infecting a low G + C content Gram-positive bacterium, a member of a group embracing important human pathogens and industrial relevant species, will contribute to expand our current knowledge on phage biology and evolution.
Collapse
Affiliation(s)
- Patricia Romero
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | | | | |
Collapse
|
35
|
Siboo IR, Bensing BA, Sullam PM. Genomic organization and molecular characterization of SM1, a temperate bacteriophage of Streptococcus mitis. J Bacteriol 2004; 185:6968-75. [PMID: 14617660 PMCID: PMC262713 DOI: 10.1128/jb.185.23.6968-6975.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The direct binding of Streptococcus mitis to human platelets is mediated in part by two proteins (PblA and PblB) encoded by a lysogenic bacteriophage (SM1). Since SM1 is the first prophage of S. mitis that has been identified and because of the possible role of these phage-encoded proteins in virulence, we sought to characterize SM1 in greater detail. Sequencing of the SM1 genome revealed that it consisted of 34,692 bp, with an overall G+C content of 39 mol%. Fifty-six genes encoding proteins of 40 or more amino acids were identified. The genes of SM1 appear to be arranged in a modular, life cycle-specific organization. BLAST analysis also revealed that the proteins of SM1 have homologies to proteins from a wide variety of lambdoid phages. Bioinformatic analyses, in addition to N-terminal sequencing of the proteins, led to the assignment of possible functions to a number of proteins, including the integrase, the terminase, and two major structural proteins. Examination of the phage structural components indicates that the phage head may assemble using stable multimers of the major capsid protein, in a process similar to that of phage r1t. These findings indicate that SM1 may be part of a discrete subfamily of the Siphoviridae that includes at least phages r1t of Lactococcus lactis and SF370.3 of Streptococcus pyogenes.
Collapse
Affiliation(s)
- Ian R Siboo
- Veterans Affairs Medical Center and University of California, San Francisco, California 94121, USA
| | | | | |
Collapse
|
36
|
Obregón V, García P, López R, García JL. VO1, a temperate bacteriophage of the type 19A multiresistant epidemic 8249 strain of Streptococcus pneumoniae: analysis of variability of lytic and putative C5 methyltransferase genes. Microb Drug Resist 2003; 9:7-15. [PMID: 12705678 DOI: 10.1089/107662903764736292] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A temperate bacteriophage (VO1) has been isolated from the Streptococcus pneumoniae type 19F multiresistant epidemic 8249 strain (South African strain). Structural analysis of the specific integration site, protein composition, restriction patterns, and molecular dissection of the lytic system of this phage revealed high sequence similarity with MM1, a temperate phage from the Spain23F-1 strain of pneumococcus, another multiresistant epidemic clone. The different pneumococcal strains sequenced so far exhibit an identical and single attB located in the same site of the genome. Remarkably, the LytA amidase coded by VO1 showed clear differences with that of the host bacterium in contrast with the situation previously documented for bacterial- and phage-coded amidases of pneumococcus. In addition, a new gene (orfmet) putatively coding for a C5 methyltransferase has been identified. A noticeable variability affecting the presence (or absence) of this supernumerary gene(s) in the same region of the genomes of three otherwise highly similar phages (i.e., VO1, MM1, and HB-3) suggests frequent recombinational events leading to introduce variability in this genome region. The peculiarities of genes like lytA and orfmet in VO1 provide interesting insights on mechanisms of horizontal transfer and lysogenic state co-evolution.
Collapse
|