1
|
Salinero-Lanzarote A, Lian J, Namkoong G, Suess DLM, Rubio LM, Dean DR, Pérez-González A. Molecular sorting of nitrogenase catalytic cofactors. J Biol Chem 2025; 301:108291. [PMID: 39938800 PMCID: PMC11938142 DOI: 10.1016/j.jbc.2025.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 02/14/2025] Open
Abstract
The free-living diazotroph Azotobacter vinelandii produces three genetically distinct but functionally and mechanistically similar nitrogenase isozymes, designated as Mo-dependent, V-dependent, and Fe-only. They respectively harbor nearly identical catalytic cofactors that are distinguished by a heterometal site occupied by Mo (FeMo-cofactor), V (FeV-cofactor), or Fe (FeFe-cofactor). Completion of FeMo-cofactor and FeV-cofactor formation occurs on molecular scaffolds prior to delivery to their catalytic partners. In contrast, completion of FeFe-cofactor assembly occurs directly within its cognate catalytic partner. Because hybrid nitrogenase species that contain the incorrect cofactor type cannot reduce N2 to support diazotrophic growth, there must be a way to prevent misincorporation of an incorrect cofactor when different nitrogenase isozyme systems are produced at the same time. Here, we show that fidelity of the Fe-only nitrogenase is preserved by blocking the misincorporation of either FeMo-cofactor or FeV-cofactor during its maturation. This protection is accomplished by a two-domain protein, designated AnfO. It is shown that the N-terminal domain of AnfO binds to an immature form of the Fe-only nitrogenase and the C-terminal domain, tethered to the N-terminal domain by a flexible linker, has the capacity to capture FeMo- and FeV-cofactor. AnfO does not prevent the normal activation of Fe-only nitrogenase because completion of FeFe-cofactor assembly occurs within its catalytic partner and, therefore, is never available for capture by AnfO. These results support a post-translational mechanism involving the molecular sorting of structurally similar metallocofactors that involve both protein-protein interactions and metallocofactor binding while exploiting differential pathways for nitrogenase associated catalytic cofactor assembly.
Collapse
Affiliation(s)
- Alvaro Salinero-Lanzarote
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Josh Lian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gil Namkoong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA.
| | - Ana Pérez-González
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Salinero-Lanzarote A, Lian J, Namkoong G, Suess DLM, Rubio LM, Dean DR, Pérez-González A. Molecular sorting of nitrogenase catalytic cofactors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634024. [PMID: 39896531 PMCID: PMC11785038 DOI: 10.1101/2025.01.21.634024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The free-living diazotroph Azotobacter vinelandii produces three genetically distinct but functionally and mechanistically similar nitrogenase isozymes, designated as Mo-dependent, V-dependent, and Fe-only. They respectively harbor nearly identical catalytic cofactors that are distinguished by a heterometal site occupied by Mo (FeMo-cofactor), V (FeV-cofactor), or Fe (FeFe-cofactor). Completion of FeMo-cofactor and FeV-cofactor formation occurs on molecular scaffolds prior to delivery to their catalytic partners. In contrast, completion of FeFe-cofactor assembly occurs directly within its cognate catalytic partner. Because hybrid nitrogenase species that contain the incorrect cofactor type cannot reduce N2 to support diazotrophic growth there must be a way to prevent misincorporation of an incorrect cofactor when different nitrogenase isozyme systems are produced at the same time. Here, we show that fidelity of the Fe-only nitrogenase is preserved by blocking the misincorporation of either FeMo-cofactor or FeV-cofactor during its maturation. This protection is accomplished by a two-domain protein, designated AnfO. It is shown that the N-terminal domain of AnfO binds to an immature form of the Fe-only nitrogenase and the C-terminal domain, tethered to the N-terminal domain by a flexible linker, has the capacity to capture FeMo- and FeV-cofactor. AnfO does not prevent the normal activation of Fe-only nitrogenase because completion of FeFe-cofactor assembly occurs within its catalytic partner and, therefore, is never available for capture by AnfO. These results support a post-translational mechanism involving the molecular sorting of structurally similar metallocofactors that involve both protein-protein interactions and metallocofactor binding while exploiting differential pathways for nitrogenase associated catalytic cofactor assembly.
Collapse
Affiliation(s)
- Alvaro Salinero-Lanzarote
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Josh Lian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gil Namkoong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel L. M. Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Dennis R. Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Ana Pérez-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
3
|
Ratcliff D, Danielle Sedoh GC, Milton RD. Cross-Coupling of Mo- and V-Nitrogenases Permits Protein-Mediated Protection from Oxygen Deactivation. Chembiochem 2024:e202400585. [PMID: 39500732 DOI: 10.1002/cbic.202400585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Indexed: 11/24/2024]
Abstract
Nitrogenases catalyze dinitrogen (N2) fixation to ammonia (NH3). While these enzymes are highly sensitive to deactivation by molecular oxygen (O2) they can be produced by obligate aerobes for diazotrophy, necessitating a mechanism by which nitrogenase can be protected from deactivation. In the bacterium Azotobacter vinelandii, one mode of such protection involves an O2-responsive ferredoxin-type protein ("Shethna protein II", or "FeSII") which is thought to bind with Mo-dependent nitrogenase's two component proteins (NifH and NifDK) to form a catalytically stalled yet O2-tolerant tripartite protein complex. This protection mechanism has been reported for Mo-nitrogenase, however, in vitro assays with V-nitrogenase suggest that this mechanism is not universal to the three known nitrogenase isoforms. Here we report that the reductase of the V-nitrogenase (VnfH) can engage in this FeSII-mediated protection mechanism when cross-coupled with Mo-nitrogenase NifDK. Interestingly, the cross-coupling of the Mo-nitrogenase reductase NifH with the V-nitrogenase VnfDGK protein does not yield such protection.
Collapse
Affiliation(s)
- Daniel Ratcliff
- Department of Inorganic and Analytical Chemistry, Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - G C Danielle Sedoh
- Department of Inorganic and Analytical Chemistry, Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
- Present address: Department of Physical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| |
Collapse
|
4
|
Cuevas-Zuviría B, Garcia AK, Rivier AJ, Rucker HR, Carruthers BM, Kaçar B. Emergence of an Orphan Nitrogenase Protein Following Atmospheric Oxygenation. Mol Biol Evol 2024; 41:msae067. [PMID: 38526235 PMCID: PMC11018506 DOI: 10.1093/molbev/msae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Molecular innovations within key metabolisms can have profound impacts on element cycling and ecological distribution. Yet, much of the molecular foundations of early evolved enzymes and metabolisms are unknown. Here, we bring one such mystery to relief by probing the birth and evolution of the G-subunit protein, an integral component of certain members of the nitrogenase family, the only enzymes capable of biological nitrogen fixation. The G-subunit is a Paleoproterozoic-age orphan protein that appears more than 1 billion years after the origin of nitrogenases. We show that the G-subunit arose with novel nitrogenase metal dependence and the ecological expansion of nitrogen-fixing microbes following the transition in environmental metal availabilities and atmospheric oxygenation that began ∼2.5 billion years ago. We identify molecular features that suggest early G-subunit proteins mediated cofactor or protein interactions required for novel metal dependency, priming ancient nitrogenases and their hosts to exploit these newly diversified geochemical environments. We further examined the degree of functional specialization in G-subunit evolution with extant and ancestral homologs using laboratory reconstruction experiments. Our results indicate that permanent recruitment of the orphan protein depended on the prior establishment of conserved molecular features and showcase how contingent evolutionary novelties might shape ecologically important microbial innovations.
Collapse
Affiliation(s)
| | - Amanda K Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alex J Rivier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Holly R Rucker
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brooke M Carruthers
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Martin Del Campo JS, Rigsbee J, Bueno Batista M, Mus F, Rubio LM, Einsle O, Peters JW, Dixon R, Dean DR, Dos Santos PC. Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in Azotobacter vinelandii. Crit Rev Biochem Mol Biol 2023; 57:492-538. [PMID: 36877487 DOI: 10.1080/10409238.2023.2181309] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.
Collapse
Affiliation(s)
| | - Jack Rigsbee
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Oliver Einsle
- Department of Biochemistry, University of Freiburg, Freiburg, Germany
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
6
|
Abstract
Azotobacter vinelandii is a nitrogen-fixing free-living soil microbe that has been studied for decades in relation to biological nitrogen fixation (BNF). It is highly amenable to genetic manipulation, helping to unravel the intricate importance of different proteins involved in the process of BNF, including the biosynthesis of cofactors that are essential to assembling the complex metal cofactors that catalyze the difficult reaction of nitrogen fixation. Additionally, A. vinelandii accomplishes this feat while growing as an obligate aerobe, differentiating it from many of the nitrogen-fixing bacteria that are associated with plant roots. The ability to function in the presence of oxygen makes A. vinelandii suitable for application in various potential biotechnological schemes. In this study, we employed transposon sequencing (Tn-seq) to measure the fitness defects associated with disruptions of various genes under nitrogen-fixing dependent growth, versus growth with extraneously provided urea as a nitrogen source. The results allowed us to probe the importance of more than 3,800 genes, revealing that many genes previously believed to be important, can be successfully disrupted without impacting cellular fitness. IMPORTANCE These results provide insights into the functional redundancy in A. vinelandii, while also providing a direct measure of fitness for specific genes associated with the process of BNF. These results will serve as a valuable reference tool in future studies to uncover the mechanisms that govern this process.
Collapse
|
7
|
Specificity of NifEN and VnfEN for the Assembly of Nitrogenase Active Site Cofactors in Azotobacter vinelandii. mBio 2021; 12:e0156821. [PMID: 34281397 PMCID: PMC8406325 DOI: 10.1128/mbio.01568-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen-fixing microbe Azotobacter vinelandii has the ability to produce three genetically distinct, but mechanistically similar, components that catalyze nitrogen fixation. For two of these components, the Mo-dependent and V-dependent components, their corresponding metal-containing active site cofactors, designated FeMo-cofactor and FeV-cofactor, respectively, are preformed on separate molecular scaffolds designated NifEN and VnfEN, respectively. From prior studies, and the present work, it is now established that neither of these scaffolds can replace the other with respect to their in vivo cofactor assembly functions. Namely, a strain inactivated for NifEN cannot produce active Mo-dependent nitrogenase nor can a strain inactivated for VnfEN produce an active V-dependent nitrogenase. It is therefore proposed that metal specificities for FeMo-cofactor and FeV-cofactor formation are supplied by their respective assembly scaffolds. In the case of the third, Fe-only component, its associated active site cofactor, designated FeFe-cofactor, requires neither the NifEN nor VnfEN assembly scaffold for its formation. Furthermore, there are no other genes present in A. vinelandii that encode proteins having primary structure similarity to either NifEN or VnfEN. It is therefore concluded that FeFe-cofactor assembly is completed within its cognate catalytic protein partner without the aid of an intermediate assembly site. IMPORTANCE Biological nitrogen fixation is a complex process involving the nitrogenases. The biosynthesis of an active nitrogenase involves a large number of genes and the coordinated function of their products. Understanding the details of the assembly and activation of the different nitrogen fixation components, in particular the simplest one known so far, the Fe-only nitrogenase, would contribute to the goal of transferring the necessary genetic elements of bacterial nitrogen fixation to cereal crops to endow them with the capacity for self-fertilization. In this work, we show that there is no need for a scaffold complex for the assembly of the FeFe-cofactor, which provides the active site for Fe-only nitrogenase. These results are in agreement with previously reported genetic reconstruction experiments using a non-nitrogen-fixing microbe. In aggregate, these findings provide a high degree of confidence that the Fe-only system represents the simplest and, therefore, most attractive target for mobilizing nitrogen fixation into plants.
Collapse
|
8
|
Yang ZY, Jimenez-Vicente E, Kallas H, Lukoyanov DA, Yang H, Martin Del Campo JS, Dean DR, Hoffman BM, Seefeldt LC. The electronic structure of FeV-cofactor in vanadium-dependent nitrogenase. Chem Sci 2021; 12:6913-6922. [PMID: 34123320 PMCID: PMC8153082 DOI: 10.1039/d0sc06561g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
The electronic structure of the active-site metal cofactor (FeV-cofactor) of resting-state V-dependent nitrogenase has been an open question, with earlier studies indicating that it exhibits a broad S = 3/2 EPR signal (Kramers state) having g values of ∼4.3 and 3.8, along with suggestions that it contains metal-ions with valencies [1V3+, 3Fe3+, 4Fe2+]. In the present work, genetic, biochemical, and spectroscopic approaches were combined to reveal that the EPR signals previously assigned to FeV-cofactor do not correlate with active VFe-protein, and thus cannot arise from the resting-state of catalytically relevant FeV-cofactor. It, instead, appears resting-state FeV-cofactor is either diamagnetic, S = 0, or non-Kramers, integer-spin (S = 1, 2 etc.). When VFe-protein is freeze-trapped during high-flux turnover with its natural electron-donating partner Fe protein, conditions which populate reduced states of the FeV-cofactor, a new rhombic S = 1/2 EPR signal from such a reduced state is observed, with g = [2.18, 2.12, 2.09] and showing well-defined 51V (I = 7/2) hyperfine splitting, a iso = 110 MHz. These findings indicate a different assignment for the electronic structure of the resting state of FeV-cofactor: S = 0 (or integer-spin non-Kramers state) with metal-ion valencies, [1V3+, 4Fe3+, 3Fe2+]. Our findings suggest that the V3+ does not change valency throughout the catalytic cycle.
Collapse
Affiliation(s)
- Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University Logan UT 84322 USA +1-435-797-3964
| | | | - Hayden Kallas
- Department of Chemistry and Biochemistry, Utah State University Logan UT 84322 USA +1-435-797-3964
| | - Dmitriy A Lukoyanov
- Department of Chemistry, Northwestern University Evanston IL 60208 USA +1-847-491-3104
| | - Hao Yang
- Department of Chemistry, Northwestern University Evanston IL 60208 USA +1-847-491-3104
| | | | - Dennis R Dean
- Department of Biochemistry, Virginia Tech Blacksburg VA 24061 USA +1-540-231-5895
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University Evanston IL 60208 USA +1-847-491-3104
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University Logan UT 84322 USA +1-435-797-3964
| |
Collapse
|
9
|
Burén S, Jiménez-Vicente E, Echavarri-Erasun C, Rubio LM. Biosynthesis of Nitrogenase Cofactors. Chem Rev 2020; 120:4921-4968. [PMID: 31975585 PMCID: PMC7318056 DOI: 10.1021/acs.chemrev.9b00489] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/30/2022]
Abstract
Nitrogenase harbors three distinct metal prosthetic groups that are required for its activity. The simplest one is a [4Fe-4S] cluster located at the Fe protein nitrogenase component. The MoFe protein component carries an [8Fe-7S] group called P-cluster and a [7Fe-9S-C-Mo-R-homocitrate] group called FeMo-co. Formation of nitrogenase metalloclusters requires the participation of the structural nitrogenase components and many accessory proteins, and occurs both in situ, for the P-cluster, and in external assembly sites for FeMo-co. The biosynthesis of FeMo-co is performed stepwise and involves molecular scaffolds, metallochaperones, radical chemistry, and novel and unique biosynthetic intermediates. This review provides a critical overview of discoveries on nitrogenase cofactor structure, function, and activity over the last four decades.
Collapse
Affiliation(s)
- Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Emilio Jiménez-Vicente
- Department
of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, United States
| | - Carlos Echavarri-Erasun
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
10
|
Addo MA, Dos Santos PC. Distribution of Nitrogen‐Fixation Genes in Prokaryotes Containing Alternative Nitrogenases. Chembiochem 2020; 21:1749-1759. [DOI: 10.1002/cbic.202000022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/04/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Maame A. Addo
- Department of Chemistry Wake Forest University Winston-Salem NC 27106 USA
| | | |
Collapse
|
11
|
Abstract
Azotobacters have been used as biofertilizer since more than a century. Azotobacters fix nitrogen aerobically, elaborate plant hormones, solubilize phosphates and also suppress phytopathogens or reduce their deleterious effect. Application of wild type Azotobacters results in better yield of cereals like corn, wheat, oat, barley, rice, pearl millet and sorghum, of oil seeds like mustard and sunflower, of vegetable crops like tomato, eggplant, carrot, chillies, onion, potato, beans and sugar beet, of fruits like mango and sugar cane, of fiber crops like jute and cotton and of tree like oak. In addition to the structural genes of the enzyme nitrogenase and of other accessory proteins, A. vinelandii chromosomes contain the regulatory genes nifL and nifA. NifA must bind upstream of the promoters of all nif operons for enabling their expression. NifL on activation by oxygen or ammonium, interacts with NifA and neutralizes it. Nitrogen fixation has been enhanced by deletion of nifL and by bringing nifA under the control of a constitutive promoter, resulting in a strain that continues to fix nitrogen in presence of urea fertilizer. Additional copies of nifH (the gene for the Fe-protein of nitrogenase) have been introduced into A. vinelandii, thereby augmenting nitrogen fixation. The urease gene complex ureABC has been deleted, the ammonia transport gene amtB has been disrupted and the expression of the glutamine synthase gene has been regulated to enhance urea and ammonia excretion. Gluconic acid has been produced by introducing the glucose dehydrogenase gene, resulting in enhanced solubilization of phosphate.
Collapse
|
12
|
Yadav SK, Soni R, Rajput AS. Role of Microbes in Organic Farming for Sustainable Agro-Ecosystem. MICROORGANISMS FOR SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7146-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW. Exploring the alternatives of biological nitrogen fixation. Metallomics 2018; 10:523-538. [DOI: 10.1039/c8mt00038g] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most biological nitrogen fixation (BNF) results from the activity of the molybdenum nitrogenase (Mo-nitrogenase, Nif), an oxygen-sensitive metalloenzyme complex found in all known diazotrophs.
Collapse
Affiliation(s)
- Florence Mus
- Institute of Biological Chemistry, Washington State University
- Pullman
- USA
| | | | - Natasha Pence
- Department of Chemistry and Biochemistry, Montana State University
- Bozeman
- USA
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University
- Logan
- USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University
- Pullman
- USA
| |
Collapse
|
14
|
Pratte BS, Sheridan R, James JA, Thiel T. Regulation of V-nitrogenase genes inAnabaena variabilisby RNA processing and by dual repressors. Mol Microbiol 2013; 88:413-24. [DOI: 10.1111/mmi.12197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Brenda S. Pratte
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| | - Ryan Sheridan
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| | - Jessie A. James
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| | - Teresa Thiel
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| |
Collapse
|
15
|
Abstract
Advances in sequencing technology in the past decade have enabled the sequencing of genomes of thousands of organisms including diazotrophs. Genomics have enabled thorough analysis of the gene organization of nitrogen-fixing species, the identification of new genes involved in nitrogen fixation, and the identification of new diazotrophic species. This chapter reviews key characteristics of nitrogen-fixing genomes and methods to identify and analyze genomes of new diazotrophs using genome scanning. This chapter refers to Azotobacter vinelandii, a well-studied nitrogen-fixing organism, as a model for studying nitrogen-fixing genomes. We discuss the main nitrogen fixation genes as well as accessory genes that contribute to diazotrophy. We also review approaches that can be used to modify genomes in order to study nitrogen fixation at the genetic, biochemical, and biophysical level.
Collapse
|
16
|
Hamilton TL, Ludwig M, Dixon R, Boyd ES, Dos Santos PC, Setubal JC, Bryant DA, Dean DR, Peters JW. Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii. J Bacteriol 2011; 193:4477-86. [PMID: 21724999 PMCID: PMC3165507 DOI: 10.1128/jb.05099-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/25/2011] [Indexed: 11/20/2022] Open
Abstract
Most biological nitrogen (N(2)) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandii cultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N(2) fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N(2) fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo.
Collapse
Affiliation(s)
- Trinity L. Hamilton
- Department of Chemistry and Biochemistry and Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717
| | - Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Eric S. Boyd
- Department of Chemistry and Biochemistry and Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717
| | | | - João C. Setubal
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Donald A. Bryant
- Department of Chemistry and Biochemistry and Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Dennis R. Dean
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - John W. Peters
- Department of Chemistry and Biochemistry and Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717
- Department of Microbiology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
17
|
Abstract
The iron-molybdenum cofactor (FeMo-co), located at the active site of the molybdenum nitrogenase, is one of the most complex metal cofactors known to date. During the past several years, an intensive effort has been made to purify the proteins involved in FeMo-co synthesis and incorporation into nitrogenase. This effort is starting to provide insights into the structures of the FeMo-co biosynthetic intermediates and into the biochemical details of FeMo-co synthesis.
Collapse
Affiliation(s)
- Luis M Rubio
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
18
|
Andreesen JR, Makdessi K. Tungsten, the surprisingly positively acting heavy metal element for prokaryotes. Ann N Y Acad Sci 2007; 1125:215-29. [PMID: 18096847 DOI: 10.1196/annals.1419.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The history and changing function of tungsten as the heaviest element in biological systems is given. It starts from an inhibitory element/anion, especially for the iron molybdenum-cofactor (FeMoCo)-containing enzyme nitrogenase involved in dinitrogen fixation, as well as for the many "metal binding pterin" (MPT)-, also known as tricyclic pyranopterin- containing classic molybdoenzymes, such as the sulfite oxidase and the xanthine dehydrogenase family of enzymes. They are generally involved in the transformation of a variety of carbon-, nitrogen- and sulfur-containing compounds. But tungstate can serve as a potential positively acting element for some enzymes of the dimethyl sulfoxide (DMSO) reductase family, especially for CO(2)-reducing formate dehydrogenases (FDHs), formylmethanofuran dehydrogenases and acetylene hydratase (catalyzing only an addition of water, but no redox reaction). Tungsten even becomes an essential element for nearly all enzymes of the aldehyde oxidoreductase (AOR) family. Due to the close chemical and physical similarities between molybdate and tungstate, the latter was thought to be only unselectively cotransported or cometabolized with other tetrahedral anions, such as molybdate and also sulfate. However, it has now become clear that it can also be very selectively transported compared to molybdate into some prokaryotic cells by two very selective ABC-type of transporters that contain a binding protein TupA or WtpA. Both proteins exhibit an extremely high affinity for tungstate (K(D) < 1 nM) and can even discriminate between tungstate and molybdate. By that process, tungsten finally becomes selectively incorporated into the few enzymes noted above.
Collapse
Affiliation(s)
- Jan R Andreesen
- Institute of Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| | | |
Collapse
|
19
|
Affiliation(s)
- Luis M Rubio
- Department of Plant and Microbial Biology, University of California-Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
20
|
Dos Santos PC, Dean DR, Hu Y, Ribbe MW. Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem Rev 2004; 104:1159-73. [PMID: 14871152 DOI: 10.1021/cr020608l] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|