1
|
Richards L, Cremin K, Coates M, Vigor F, Schäfer P, Soyer OS. Ammonia leakage can underpin nitrogen-sharing among soil microorganisms. THE ISME JOURNAL 2024; 18:wrae171. [PMID: 39236233 PMCID: PMC11440039 DOI: 10.1093/ismejo/wrae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. We found that S. indica is unable to grow with nitrate - a common nitrogen source in the soil - but this inability could be rescued, and growth restored in the presence of B. subtilis. We demonstrate that this effect is due to B. subtilis utilising nitrate and releasing ammonia, which can be used by S. indica. We refer to this type of mechanism as ammonia mediated nitrogen sharing (N-sharing). Using a mathematical model, we demonstrated that the pH dependent equilibrium between ammonia (NH3) and ammonium (NH+4) results in an inherent cellular leakiness, and that reduced amonnium uptake or assimilation rates could result in higher levels of leaked ammonia. In line with this model, a mutant B. subtilis - devoid of ammonia uptake - showed higher S. indica growth support in nitrate media. These findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.
Collapse
Affiliation(s)
- Luke Richards
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Kelsey Cremin
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Mary Coates
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Finley Vigor
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Patrick Schäfer
- Institute of Phytophathology, Justus-Liebig Universität, Heinrich-Buff-Ring 26-32 35392 Giessen, Germany
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
2
|
Hatton CE, Brotherton DH, Spencer M, Cameron AD. Structure of cytosine transport protein CodB provides insight into nucleobase-cation symporter 1 mechanism. EMBO J 2022; 41:e110527. [PMID: 35775318 PMCID: PMC9379551 DOI: 10.15252/embj.2021110527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
CodB is a cytosine transporter from the Nucleobase‐Cation‐Symport‐1 (NCS1) transporter family, a member of the widespread LeuT superfamily. Previous experiments with the nosocomial pathogen Pseudomonas aeruginosa have shown CodB as also important for the uptake of 5‐fluorocytosine, which has been suggested as a novel drug to combat antimicrobial resistance by suppressing virulence. Here we solve the crystal structure of CodB from Proteus vulgaris, at 2.4 Å resolution in complex with cytosine. We show that CodB carries out the sodium‐dependent uptake of cytosine and can bind 5‐fluorocytosine. Comparison of the substrate‐bound structures of CodB and the hydantoin transporter Mhp1, the only other NCS1 family member for which the structure is known, highlight the importance of the hydrogen bonds that the substrates make with the main chain at the breakpoint in the discontinuous helix, TM6. In contrast to other LeuT superfamily members, neither CodB nor Mhp1 makes specific interactions with residues on TM1. Comparison of the structures provides insight into the intricate mechanisms of how these proteins transport substrates across the plasma membrane.
Collapse
Affiliation(s)
| | | | - Mahalah Spencer
- School of Life Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
3
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
4
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
5
|
Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 2012; 78:4683-90. [PMID: 22522680 DOI: 10.1128/aem.00249-12] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile causes a potentially fatal diarrheal disease through the production of its principal virulence factors, toxin A and toxin B. The tcdC gene is thought to encode a negative regulator of toxin production. Therefore, increased toxin production, and hence increased virulence, is often inferred in strains with an aberrant tcdC genotype. This report describes the first allele exchange system for precise genetic manipulation of C. difficile, using the codA gene of Escherichia coli as a heterologous counterselection marker. It was used to systematically restore the Δ117 frameshift mutation and the 18-nucleotide deletion that occur naturally in the tcdC gene of C. difficile R20291 (PCR ribotype 027). In addition, the naturally intact tcdC gene of C. difficile 630 (PCR ribotype 012) was deleted and then subsequently restored with a silent nucleotide substitution, or "watermark," so the resulting strain was distinguishable from the wild type. Intriguingly, there was no association between the tcdC genotype and toxin production in either C. difficile R20291 or C. difficile 630. Therefore, an aberrant tcdC genotype does not provide a broadly applicable rationale for the perceived notion that PCR ribotype 027 strains are "high-level" toxin producers. This may well explain why several studies have reported that an aberrant tcdC gene does not predict increased toxin production or, indeed, increased virulence.
Collapse
|
6
|
Genetic analysis of the nitrogen assimilation control protein from Klebsiella pneumoniae. J Bacteriol 2010; 192:4834-46. [PMID: 20693327 DOI: 10.1128/jb.01114-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a typical LysR-type transcriptional regulator (LTTR) in many ways. However, the lack of a physiologically relevant coeffector for NAC and the fact that NAC can carry out many of its functions as a dimer make NAC unusual among the LTTRs. In the absence of a crystal structure for NAC, we analyzed the effects of amino acid substitutions with a variety of phenotypes in an attempt to identify functionally important features of NAC. A substitution that changed the glutamine at amino acid 29 to alanine (Q29A) resulted in a NAC that was seriously defective in binding to DNA. The H26D substitution resulted in a NAC that could bind and repress transcription but not activate transcription. The I71A substitution resulted in a NAC polypeptide that remained monomeric. NAC tetramers can bind to both long and shorter binding sites (like other LTTRs). However, the absence of a coeffector to induce the conformational change needed for the switch from the former to the latter raised a question. Are there two conformations of NAC, analogous to the other LTTRs? The G217R substitution resulted in a NAC that could bind to the longer sites but had difficulty in binding to the shorter sites, and the I222R and A230R substitutions resulted in a NAC that could bind to the shorter sites but had difficulty in binding properly to the longer sites. Thus, there appear to be two conformations of NAC that can freely interconvert in the absence of a coeffector.
Collapse
|
7
|
A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. J Bacteriol 2010; 192:4801-11. [PMID: 20675498 DOI: 10.1128/jb.00266-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) is a LysR-type transcriptional regulator (LTTR) that is made under conditions of nitrogen-limited growth. NAC's synthesis is entirely dependent on phosphorylated NtrC from the two-component Ntr system and requires the unusual sigma factor σ54 for transcription of the nac gene. NAC activates the transcription of σ70-dependent genes whose products provide the cell with ammonia or glutamate. NAC represses genes whose products use ammonia and also represses its own transcription. In addition, NAC also subtly adjusts other cellular functions to keep pace with the supply of biosynthetically available nitrogen.
Collapse
|
8
|
Properties of the NAC (nitrogen assimilation control protein)-binding site within the ureD promoter of Klebsiella pneumoniae. J Bacteriol 2010; 192:4821-6. [PMID: 20622063 DOI: 10.1128/jb.00883-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) of Klebsiella pneumoniae is a LysR-type transcriptional regulator that activates transcription when bound to a DNA site (ATAA-N5-TnGTAT) centered at a variety of distances from the start of transcription. The NAC-binding site from the hutU promoter (NBShutU) is centered at -64 relative to the start of transcription but can activate the lacZ promoter from sites at -64, -54, -52, and -42 but not from sites at -47 or -59. However, the NBSs from the ureD promoter (ureDp) and codB promoter (codBp) are centered at -47 and -59, respectively, and NAC is fully functional at these promoters. Therefore, we compared the activities of the NBShutU and NBSureD within the context of ureDp as well as within codBp. The NBShutU functioned at both of these sites. The NBSureD has the same asymmetric core as the NBShutU. Inverting the NBSureD abolished more than 99% of NAC's ability to activate ureDp. The key to the activation lies in the TnG segment of the TnGTAT half of the NBSureD. Changing TnG to GnT, TnT, or GnG drastically reduced ureDp activation (to 0.5%, 6%, or 15% of wild-type activation, respectively). The function of the NBSureD, like that of the NBShutU, requires that the TnGTAT half of the NBS be on the promoter-proximal (downstream) side of the NBS. Taken together, our data suggest that the positional specificity of an NBS is dependent on the promoter in question and is more flexible than previously thought, allowing considerable latitude both in distance and on the face of the DNA helix for the NBS relative to that of RNA polymerase.
Collapse
|
9
|
The LysR-type nitrogen assimilation control protein forms complexes with both long and short DNA binding sites in the absence of coeffectors. J Bacteriol 2010; 192:4827-33. [PMID: 20363946 DOI: 10.1128/jb.00968-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most LysR-type transcriptional regulators (LTTRs) function as tetramers when regulating gene expression. The nitrogen assimilation control protein (NAC) generally functions as a dimer when binding to DNA and activating transcription. However, at some sites, NAC binds as a tetramer. Like many LTTRs, NAC tetramers can recognize sites with long footprints (74 bp for the site at nac) with a substantial DNA bend or short footprints (56 bp for the site at cod) with less DNA bending. However, unlike other LTTRs, NAC can recognize both types of sites in the absence of physiologically relevant coeffectors, suggesting that the two conformers of the NAC tetramer (extended and compact) are interchangeable without the need for any modification to induce or stabilize the change. In order for NAC to bind as a tetramer, three interactions must exist: an interaction between the two NAC dimers and an interaction between each NAC dimer and its corresponding binding site. The interaction between one dimer and its DNA site can be weak (recognizing a half-site rather than a full dimer-binding site), but the other two interactions must be strong. Since the conformation of the NAC tetramer (extended or compact) is determined by the nature of the DNA site without the intervention of a small molecule, we argue that the coeffector that determines the conformation of the NAC tetramer is the DNA site to which it binds.
Collapse
|
10
|
Expanded role for the nitrogen assimilation control protein in the response of Klebsiella pneumoniae to nitrogen stress. J Bacteriol 2010; 192:4812-20. [PMID: 20348267 DOI: 10.1128/jb.00931-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is able to utilize many nitrogen sources, and the utilization of some of these nitrogen sources is dependent on the nitrogen assimilation control (NAC) protein. Seven NAC-regulated promoters have been characterized in K. pneumoniae, and nine NAC-regulated promoters have been found by microarray analysis in Escherichia coli. So far, all characterized NAC-regulated promoters have been directly related to nitrogen metabolism. We have used a genome-wide analysis of NAC binding under nitrogen limitation to identify the regions of the chromosome associated with NAC in K. pneumoniae. We found NAC associated with 99 unique regions of the chromosome under nitrogen limitation. In vitro, 84 of the 99 regions associate strongly enough with purified NAC to produce a shifted band by electrophoretic mobility shift assay. Primer extension analysis of the mRNA from genes associated with 17 of the fragments demonstrated that at least one gene associated with each fragment was NAC regulated under nitrogen limitation. The large size of the NAC regulon in K. pneumoniae indicates that NAC plays a larger role in the nitrogen stress response than it does in E. coli. Although a majority of the genes with identifiable functions that associated with NAC under nitrogen limitation are involved in nitrogen metabolism, smaller subsets are associated with carbon and energy acquisition (18 genes), and growth rate control (10 genes). This suggests an expanded role for NAC regulation during the nitrogen stress response, where NAC not only regulates genes involved in nitrogen metabolism but also regulates genes involved in balancing carbon and nitrogen pools and growth rate.
Collapse
|
11
|
Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida. J Bacteriol 2009; 191:2909-16. [PMID: 19251854 DOI: 10.1128/jb.01708-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a high-throughput quantitative capillary assay and demonstrated that Pseudomonas putida strains F1 and PRS2000 were attracted to cytosine, but not thymine or uracil. In contrast, Pseudomonas aeruginosa PAO1 was not chemotactic to any pyrimidines. Chemotaxis assays with a mutant strain of F1 in which the putative methyl-accepting chemotaxis protein-encoding gene Pput_0623 was deleted revealed that this gene (designated mcpC) encodes a chemoreceptor for positive chemotaxis to cytosine. P. putida F1 also responded weakly to cytidine, uridine, and thymidine, but these responses were not mediated by mcpC. Complementation of the F1 DeltamcpC mutant XLF004 with the wild-type gene restored chemotaxis to cytosine. In addition, introduction of this gene into P. aeruginosa PAO1 conferred the ability to respond to cytosine. To our knowledge, this is the first report of a chemoreceptor for cytosine.
Collapse
|
12
|
Hasegawa A, Ogasawara H, Kori A, Teramoto J, Ishihama A. The transcription regulator AllR senses both allantoin and glyoxylate and controls a set of genes for degradation and reutilization of purines. Microbiology (Reading) 2008; 154:3366-3378. [DOI: 10.1099/mic.0.2008/020016-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Akiko Hasegawa
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Hiroshi Ogasawara
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Ayako Kori
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Jun Teramoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
13
|
Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 2008; 72:266-300, table of contents. [PMID: 18535147 DOI: 10.1128/mmbr.00001-08] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented.
Collapse
|
14
|
Gusso CL, de Souza EM, Rigo LU, de Oliveira Pedrosa F, Yates M, de M Rego FG, Klassen G. Effect of anntrCmutation on amino acid or urea utilization and on nitrogenase switch-off inHerbaspirillum seropedicae. Can J Microbiol 2008; 54:235-9. [DOI: 10.1139/w07-135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with l-alanine, l-serine, l-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol·L–1ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol·L–1urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.
Collapse
Affiliation(s)
- Claudio L. Gusso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Emanuel M. de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Liu Un Rigo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - M.G. Yates
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Fabiane G. de M Rego
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Giseli Klassen
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| |
Collapse
|
15
|
Lin WY, Chang JY, Hish CH, Pan TM. Profiling the Monascus pilosus proteome during nitrogen limitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:433-441. [PMID: 18095644 DOI: 10.1021/jf072420e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Monascus species have the unique ability to economically produce many secondary metabolites. However, the influence of nitrogen limitation on Monascus secondary metabolite production and metabolic performance remains unclear. Varying the carbon/nitrogen (C/N) ratios in the range from 20 to 60 in cultivation of Monascus pilosus by glucose nitrate medium, our resulting data showed that red pigment production was significantly suppressed and more sensitive to nitrogen limitation than cellular biomass growth at a C/N ratio of 60. Using a comparative proteomic approach, combining two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight/time-of-flight liquid chromatography-mass spectrometry, and tandem mass spectrometry, proteins with modified expression in the nitrogen-limited (C/N ratio 60) Monascus filamentous cells were identified. The results revealed that the deregulated proteins identified were involved in amino acid biosynthesis, protein translation, antioxidant-related enzymes, glycolysis, and transcriptional regulation. The results suggested that, under nitrogen limitation-induced suppression of protein translation and of expression of the related energy-generating enzymes, nitrogen limitation induced a switch of metabolic flux from glycolysis to the tricarboxylic acid (TCA) cycle for maintaining cellular energy homeostasis, resulting in repression of the metabolic shift of the polyketide biosynthesis pathway for red pigment production.
Collapse
Affiliation(s)
- Wun-Yuan Lin
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
| | | | | | | |
Collapse
|
16
|
Liu Q, Bender RA. Complex regulation of urease formation from the two promoters of the ure operon of Klebsiella pneumoniae. J Bacteriol 2007; 189:7593-9. [PMID: 17720785 PMCID: PMC2168754 DOI: 10.1128/jb.01096-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae can use urea as the sole source of nitrogen, thanks to a urease encoded by the ureDABCEFG operon. Expression of this operon is independent of urea and is regulated by the supply of nitrogen in the growth medium. When cells were growth rate limited for nitrogen, the specific activity of urease was about 70 times higher than that in cells grown under conditions of excess nitrogen. Much of this nitrogen regulation of urease formation depended on the nitrogen regulatory system acting through the nitrogen assimilation control protein, NAC. In a strain deleted for the nac gene, nitrogen limitation resulted in only a 7-fold increase in the specific activity of urease, in contrast to the 70-fold increase seen in that of the wild type. The ure operon was transcribed from two promoters. The proximal promoter (P1) had an absolute requirement for NAC; little or no transcription was seen in the absence of NAC. The distal promoter (P2) was independent of NAC, but its activity increased about threefold when the growth rate of the cells was limited by the nitrogen source. Transcriptional regulation of P1 and P2 accounted for most of the changes in urease activity seen under various nitrogen conditions. However, when transcription of ureDABCEFG was less than 20% of its maximum, the amount of active urease formed per transcript of ure decreased almost linearly with decreasing transcription. This may reflect a defect in the assembly of active urease and accounted for as much as a threefold activity difference under the conditions tested here. Thus, the ure operon was transcribed from a NAC-independent promoter (P2) and the most strongly NAC-dependent promoter known (P1). Most of the regulation of urease formation was transcriptional, but when ure transcription was low, assembly of active urease also was defective.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Molecular Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
17
|
Zhang Y, Pohlmann EL, Conrad MC, Roberts GP. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Mol Microbiol 2006; 61:497-510. [PMID: 16762025 DOI: 10.1111/j.1365-2958.2006.05251.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The P(II) family of proteins is found in all three domains of life and serves as a central regulator of the function of proteins involved in nitrogen metabolism, reflecting the nitrogen and carbon balance in the cell. The genetic elimination of the genes encoding these proteins typically leads to severe growth problems, but the basis of this effect has been unknown except with Escherichia coli. We have analysed a number of the suppressor mutations that correct such growth problems in Rhodospirillum rubrum mutants lacking P(II) proteins. These suppressors map to nifR3, ntrB, ntrC, amtB(1) and the glnA region and all have the common property of decreasing total activity of glutamine synthetase (GS). We also show that GS activity is very high in the poorly growing parental strains lacking P(II) proteins. Consistent with this, overexpression of GS in glnE mutants (lacking adenylyltransferase activity) also causes poor growth. All of these results strongly imply that elevated GS activity is the causative basis for the poor growth seen in R. rubrum mutants lacking P(II) and presumably in mutants of some other organisms with similar genotypes. The result underscores the importance of proper regulation of GS activity for cell growth.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology, Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
18
|
Rosario CJ, Bender RA. Importance of tetramer formation by the nitrogen assimilation control protein for strong repression of glutamate dehydrogenase formation in Klebsiella pneumoniae. J Bacteriol 2006; 187:8291-9. [PMID: 16321933 PMCID: PMC1317014 DOI: 10.1128/jb.187.24.8291-8299.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a very versatile regulatory protein. NAC activates transcription of operons such as hut (histidine utilization) and ure (urea utilization), whose products generate ammonia. NAC also represses the transcription of genes such as gdhA, whose products use ammonia. NAC exerts a weak repression at gdhA by competing with the binding of a lysine-sensitive activator. NAC also strongly represses transcription of gdhA (about 20-fold) by binding to two separated sites, suggesting a model involving DNA looping. We have identified negative control mutants that are unable to exert this strong repression of gdhA expression but still activate hut and ure expression normally. Some of these negative control mutants (e.g., NAC(86ter) and NAC(132ter)) delete the C-terminal domain, thought to be required for tetramerization. Other negative control mutants (e.g., NAC(L111K) and NAC(L125R)) alter single amino acids involved in tetramerization. In this work we used gel filtration to show that NAC(86ter) and NAC(L111K) are dimers in solution, even at high concentration (NAC(WT) is a tetramer). Moreover, using a combination of DNase I footprints and gel mobility shifts assays, we showed that when NAC(WT) binds to two adjacent sites on a DNA fragment, NAC(WT) binds as a tetramer that bends the DNA fragment significantly. NAC(L111K) binds to such a fragment as two independent dimers without inducing the strong bend. Thus, NAC(L111K) is a dimer in solution or when bound to DNA. NAC(L111K) (typical of the negative control mutants) is wild type for every other property tested: (i) it activates transcription at hut and ure; (ii) it competes with the lysine-sensitive activator for binding at gdhA; (iii) it binds to the same sites at the hut, ure, nac, and gdhA promoters as NAC(WT); (iv) the relative affinity of NAC(L111K) for these sites follows the same order as NAC(WT) (ure > gdhA > nac > hut); (v) it induces the same slight bend as dimers of NAC(WT); and (vi) its DNase I footprints at these sites are indistinguishable from those of NAC(WT) (except for features ascribed to tetramer formation). The only two phenotypes we know for negative control mutants of NAC are their inability to tetramerize and their inability to cause the strong repression of gdhA. Thus, we propose that in order for NAC(WT) to exert the strong repression, it must form a tetramer that bridges the two sites at gdhA (similar to other DNA looping models) and that the negative control mutants of NAC, which fail to tetramerize, cannot form this loop and thus fail to exert the strong repression at gdhA.
Collapse
Affiliation(s)
- Christopher J Rosario
- Department of Molecular Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
19
|
Mesa S, Ucurum Z, Hennecke H, Fischer HM. Transcription activation in vitro by the Bradyrhizobium japonicum regulatory protein FixK2. J Bacteriol 2005; 187:3329-38. [PMID: 15866917 PMCID: PMC1112000 DOI: 10.1128/jb.187.10.3329-3338.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bradyrhizobium japonicum, the N2-fixing root nodule endosymbiont of soybean, a group of genes required for microaerobic, anaerobic, or symbiotic growth is controlled by FixK2, a key regulator that is part of the FixLJ-FixK2 cascade. FixK2 belongs to the family of cyclic AMP receptor protein/fumarate and nitrate reductase (CRP/FNR) transcription factors that recognize a palindromic DNA motif (CRP/FNR box) associated with the regulated promoters. Here, we report on a biochemical analysis of FixK2 and its transcription activation activity in vitro. FixK2 was expressed in Escherichia coli and purified as a soluble N-terminally histidine-tagged protein. Gel filtration experiments revealed that increasing the protein concentration shifts the monomer-dimer equilibrium toward the dimer. Purified FixK2 productively interacted with the B. japonicum sigma80-RNA polymerase holoenzyme, but not with E. coli sigma70-RNA polymerase holoenzyme, to activate transcription from the B. japonicum fixNOQP, fixGHIS, and hemN2 promoters in vitro. Furthermore, FixK2 activated transcription from the E. coli FF(-41.5) model promoter, again only in concert with B. japonicum RNA polymerase. All of these promoters are so-called class II CRP/FNR-type promoters. We showed by specific mutagenesis that the FixK2 box at nucleotide position -40.5 in the hemN2 promoter, but not that at -78.5, is crucial for activation both in vivo and in vitro, which argues against recognition of a potential class III promoter. Given the lack of any evidence for the presence of a cofactor in purified FixK2, we surmise that FixK2 alone is sufficient to activate in vitro transcription to at least a basal level. This contrasts with all well-studied CRP/FNR-type proteins, which do require coregulators.
Collapse
Affiliation(s)
- Socorro Mesa
- Institute of Microbiology, Eidgenössische Technische Hochschule, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
20
|
Silby MW, Levy SB. Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of expressed sequences with novel genetic organization. J Bacteriol 2004; 186:7411-9. [PMID: 15489453 PMCID: PMC523206 DOI: 10.1128/jb.186.21.7411-7419.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies were undertaken to determine the genetic needs for the survival of Pseudomonas fluorescens Pf0-1, a gram-negative soil bacterium potentially important for biocontrol and bioremediation, in soil. In vivo expression technology (IVET) identified 22 genes with elevated expression in soil relative to laboratory media. Soil-induced sequences included genes with probable functions of nutrient acquisition and use, and of gene regulation. Ten sequences, lacking similarity to known genes, overlapped divergent known genes, revealing a novel genetic organization at those soil-induced loci. Mutations in three soil-induced genes led to impaired early growth in soil but had no impact on growth in laboratory media. Thus, IVET studies have identified sequences important for soil growth and have revealed a gene organization that was undetected by traditional laboratory approaches.
Collapse
Affiliation(s)
- Mark W Silby
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | |
Collapse
|
21
|
Bron PA, Grangette C, Mercenier A, de Vos WM, Kleerebezem M. Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J Bacteriol 2004; 186:5721-9. [PMID: 15317777 PMCID: PMC516819 DOI: 10.1128/jb.186.17.5721-5729.2004] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of environmental niches, including the human gastrointestinal (GI) tract. Moreover, this lactic acid bacterium can survive passage through the human or mouse stomach in an active form. To investigate the genetic background of this persistence, resolvase-based in vivo expression technology (R-IVET) was performed in L. plantarum WCFS1 by using the mouse GI tract as a model system. This approach identified 72 L. plantarum genes whose expression was induced during passage through the GI tract as compared to laboratory media. Nine of these genes encode sugar-related functions, including ribose, cellobiose, sucrose, and sorbitol transporter genes. Another nine genes encode functions involved in acquisition and synthesis of amino acids, nucleotides, cofactors, and vitamins, indicating their limited availability in the GI tract. Four genes involved in stress-related functions were identified, reflecting the harsh conditions that L. plantarum encounters in the GI tract. The four extracellular protein encoding genes identified could potentially be involved in interaction with host specific factors. The rest of the genes are part of several functionally unrelated pathways or encode (conserved) hypothetical proteins. Remarkably, a large number of the functions or pathways identified here have previously been identified in pathogens as being important in vivo during infection, strongly suggesting that survival rather than virulence is the explanation for the importance of these genes during host residence.
Collapse
Affiliation(s)
- Peter A Bron
- Wageningen Centre for Food Sciences, Ede, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Hua Q, Yang C, Oshima T, Mori H, Shimizu K. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl Environ Microbiol 2004; 70:2354-66. [PMID: 15066832 PMCID: PMC383082 DOI: 10.1128/aem.70.4.2354-2366.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Studies of steady-state metabolic fluxes in Escherichia coli grown in nutrient-limited chemostat cultures suggest remarkable flux alterations in response to changes of growth-limiting nutrient in the medium (Hua et al., J. Bacteriol. 185:7053-7067, 2003). To elucidate the physiological adaptation of cells to the nutrient condition through the flux change and understand the molecular mechanisms underlying the change in the flux, information on gene expression is of great importance. DNA microarray analysis was performed to investigate the global transcriptional responses of steady-state cells grown in chemostat cultures with limited glucose or ammonia while other environmental conditions and the growth rate were kept constant. In slow-growing cells (specific growth rate of 0.10 h(-1)), 9.8% of a total of 4,071 genes investigated, especially those involved in amino acid metabolism, central carbon and energy metabolism, transport system and cell envelope, were observed to be differentially expressed between the two nutrient-limited cultures. One important characteristic of E. coli grown under nutrient limitation was its capacity to scavenge carbon or nitrogen from the medium through elevating the expression of the corresponding transport and assimilation genes. The number of differentially expressed genes in faster-growing cells (specific growth rate of 0.55 h(-1)), however, decreased to below half of that in slow-growing cells, which could be explained by diverse transcriptional responses to the growth rate under different nutrient limitations. Independent of the growth rate, 92 genes were identified as being differentially expressed. Genes tightly related to the culture conditions were highlighted, some of which may be used to characterize nutrient-limited growth.
Collapse
Affiliation(s)
- Qiang Hua
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | | | | | | | | |
Collapse
|