1
|
Anderson AC, Malloch T, Clarke AJ. From structure to function: Decoding peptidoglycan O-acetylation in pathogenic bacteria. Carbohydr Res 2025; 554:109517. [PMID: 40393299 DOI: 10.1016/j.carres.2025.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Numerous pathogenic and non-pathogenic bacteria modulate the structure of their cell wall to escape the action of lytic enzymes that target it, threatening cell integrity. Of these modifications, the most taxonomically widespread is the addition of an acetyl to the C6 hydroxyl group of muramyl residues within the essential cell-wall heteropolymer peptidoglycan. This modification is found in many clinically important pathogens, including the WHO priority pathogens Neisseria gonorrhoeae, Staphylococcus aureus, Enterococcus faecium, and Streptococcus pneumoniae. In this review, we summarize the last 60 years of discoveries about the genetics, biochemistry, structural biology, and cellular metabolism that underlie this enigmatic bacterial self-defence mechanism.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tyler Malloch
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
2
|
Srinivas Ravi M, Padikasan IA. Augmenting Cr(VI) phytoremediation potential of Ricinus communis through rhizospheric crosstalk with multi stress tolerant plant growth promoting Bacillus altitudinis M1. World J Microbiol Biotechnol 2025; 41:138. [PMID: 40289221 DOI: 10.1007/s11274-025-04357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/06/2025] [Indexed: 04/30/2025]
Abstract
Plant growth promoting rhizobacteria are cost-effective and eco-friendly alternative for bioremediation of Cr(VI). This study investigated the effects of rhizobacterial strain Bacillus altitudinis M1 on Cr(VI) reduction, plant growth promotion and Cr(VI) stress mitigation in Ricinus communis. Biosorption and bioreduction of Cr(VI) up to 300 mg/l by the strain M1 was confirmed by FTIR, Raman Spectrum and TEM-EDX analysis. Moreover, the strain M1 exhibited high tolerance to temperature (up to 40 °C), pH (up to 8.0), NaCl (up to 6%) and various heavy metals (Pb, Cd, Ni, Cu, Mn and Zn). The strain M1 produced significant IAA, ammonia and EPS under higher concentration of Cr(VI). The strain improved the growth and development of test crop R. communis under higher Cr(VI) concentration. Inoculation of the strain M1 alleviated Cr(VI)-induced oxidative stress in roots and leaves of R. communis by decreasing proline (up to 24 and 33%), H2O2 (up to 56 and 43%), and MDA (up to 42 and 40%) by regulating the activity of antioxidant enzymes. These findings suggest that the strain M1 promotes plant growth under Cr(VI) stress through multiple mechanisms, including phytohormone production, nutrient mobilization, stress metabolite modulation, and antioxidant defense system regulation. Thus the application of the strain M1 potentially reduces Cr(VI) bioavailability, making it a promising candidate for Cr(VI) bioremediation.
Collapse
Affiliation(s)
- Manoj Srinivas Ravi
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Indra Arulselvi Padikasan
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, 636011, India.
| |
Collapse
|
3
|
Torrens G, Cava F. Mechanisms conferring bacterial cell wall variability and adaptivity. Biochem Soc Trans 2024; 52:1981-1993. [PMID: 39324635 PMCID: PMC11555704 DOI: 10.1042/bst20230027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
The bacterial cell wall, a sophisticated and dynamic structure predominantly composed of peptidoglycan (PG), plays a pivotal role in bacterial survival and adaptation. Bacteria actively modify their cell walls by editing PG components in response to environmental challenges. Diverse variations in peptide composition, cross-linking patterns, and glycan strand structures empower bacteria to resist antibiotics, evade host immune detection, and adapt to dynamic environments. This review comprehensively summarizes the most common modifications reported to date and their associated adaptive role and further highlights how regulation of PG synthesis and turnover provides resilience to cell lysis.
Collapse
Affiliation(s)
- Gabriel Torrens
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Kim TD, Khanal S, Bäcker LE, Lood C, Kerremans A, Gorivale S, Begyn K, Cambré A, Rajkovic A, Devlieghere F, Heyndrickx M, Michiels C, Duitama J, Aertsen A. Rapid evolutionary tuning of endospore quantity versus quality trade-off via a phase-variable contingency locus. Curr Biol 2024; 34:3077-3085.e5. [PMID: 38925118 DOI: 10.1016/j.cub.2024.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
The UV resistance of bacterial endospores is an important quality supporting their survival in inhospitable environments and therefore constitutes an essential driver of the ecological success of spore-forming bacteria. Nevertheless, the variability and evolvability of this trait are poorly understood. In this study, directed evolution and genetics approaches revealed that the Bacillus cereus pdaA gene (encoding the endospore-specific peptidoglycan-N-acetylmuramic acid deacetylase) serves as a contingency locus in which the expansion and contraction of short tandem repeats can readily compromise (PdaAOFF) or restore (PdaAON) the pdaA open reading frame. Compared with B. cereus populations in the PdaAON state, populations in the PdaAOFF state produced a lower yield of viable endospores but endowed them with vastly increased UV resistance. Moreover, selection pressures based on either quantity (i.e., yield of viable endospores) or quality (i.e., UV resistance of viable endospores) aspects could readily shift populations between PdaAON and PdaAOFF states, respectively. Bioinformatic analysis also revealed that pdaA homologs within the Bacillus and Clostridium genera are often equipped with several short tandem repeat regions, suggesting a wider implementation of the pdaA-mediated phase variability in other sporeformers as well. These results for the first time reveal (1) pdaA as a phase-variable contingency locus in the adaptive evolution of endospore properties and (2) bet-hedging between what appears to be a quantity versus quality trade-off in endospore crops.
Collapse
Affiliation(s)
- Tom Dongmin Kim
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sadhana Khanal
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Cédric Lood
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Alison Kerremans
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sayali Gorivale
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Katrien Begyn
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Frank Devlieghere
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marc Heyndrickx
- ILVO-Flanders Research Institute for Agriculture, Fishery and Food, Technology and Food Science, Unit-Food Safety, 9090 Melle, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Chris Michiels
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; Leuven Food Science and Nutritional Research Centre (LeFoRCe), Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Bonive-Boscan AD, Lopez-Garrido J. Evolution: A quantity-quality trade-off constrains the evolution of immortality in bacterial endospores. Curr Biol 2024; 34:R690-R692. [PMID: 39043143 DOI: 10.1016/j.cub.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Bacterial endospores are extremely resilient cells, capable of withstanding the most dramatic environmental challenges. New work identifies a trade-off between resistance to UV radiation and germination efficiency, a trade-off mediated by an unexpected sporulation 'contingency locus'.
Collapse
|
6
|
Cun WY, Keller PA, Pyne SG. Current and Ongoing Developments in Targeting Clostridioides difficile Infection and Recurrence. Microorganisms 2024; 12:1206. [PMID: 38930588 PMCID: PMC11205563 DOI: 10.3390/microorganisms12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming anaerobic bacterial pathogen that causes severe gastrointestinal infection in humans. This review provides background information on C. difficile infection and the pathogenesis and toxigenicity of C. difficile. The risk factors, causes, and the problem of recurrence of disease and current therapeutic treatments are also discussed. Recent therapeutic developments are reviewed including small molecules that inhibit toxin formation, disrupt the cell membrane, inhibit the sporulation process, and activate the host immune system in cells. Other treatments discussed include faecal microbiota treatment, antibody-based immunotherapies, probiotics, vaccines, and violet-blue light disinfection.
Collapse
Affiliation(s)
- Wendy Y. Cun
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | | | - Stephen G. Pyne
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
7
|
Gilmore MC, Yadav AK, Espaillat A, Gust AA, Williams MA, Brown PJB, Cava F. A peptidoglycan N-deacetylase specific for anhydroMurNAc chain termini in Agrobacterium tumefaciens. J Biol Chem 2024; 300:105611. [PMID: 38159848 PMCID: PMC10838918 DOI: 10.1016/j.jbc.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.
Collapse
Affiliation(s)
- Michael C Gilmore
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Akhilesh K Yadav
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India; Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Akbar Espaillat
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Michelle A Williams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden.
| |
Collapse
|
8
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
9
|
Liang B, Song W, Xing R, Liu S, Yu H, Li P. The source, activity influencing factors and biological activities for future development of chitin deacetylase. Carbohydr Polym 2023; 321:121335. [PMID: 37739548 DOI: 10.1016/j.carbpol.2023.121335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Chitin deacetylase (CDA), a prominent member of the carbohydrate esterase enzyme family 4 (CE4), is found ubiquitously in bacteria, fungi, insects, and crustaceans. This metalloenzyme plays a pivotal role in recognizing and selectively removing acetyl groups from chitin, thus offering an environmentally friendly and biologically-driven preparation method for chitosan with immense industrial potential. Due to its diverse origins, CDAs sourced from different organisms exhibit unique functions, optimal pH ranges, and temperature preferences. Furthermore, certain organic reagents can induce structural changes in CDAs, influencing their catalytic activity. Leveraging CDA's capabilities extends beyond chitosan biocatalysis, as it demonstrates promising application value in agricultural pest control. In this paper, the source, reaction mechanism, influencing factors, the fermentation methods and applications of CDA are reviewed, which provides theoretical help for the research and application of CDA.
Collapse
Affiliation(s)
- Bicheng Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Wen Song
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| |
Collapse
|
10
|
Wilson SA, Tank RKJ, Hobbs JK, Foster SJ, Garner EC. An exhaustive multiple knockout approach to understanding cell wall hydrolase function in Bacillus subtilis. mBio 2023; 14:e0176023. [PMID: 37768080 PMCID: PMC10653849 DOI: 10.1128/mbio.01760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE In order to grow, bacterial cells must both create and break down their cell wall. The enzymes that are responsible for these processes are the target of some of our best antibiotics. Our understanding of the proteins that break down the wall- cell wall hydrolases-has been limited by redundancy among the large number of hydrolases many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in Bacillus subtilis and created a strain lacking 40 of them. We show that cells can survive using only a single cell wall hydrolase; this means that to understand the growth of B. subtilis in standard laboratory conditions, it is only necessary to study a very limited number of proteins, simplifying the problem substantially. We additionally show that the ∆40 strain is a research tool to characterize hydrolases, using it to identify three "helper" hydrolases that act in certain stress conditions.
Collapse
Affiliation(s)
- Sean A. Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raveen K. J. Tank
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Jamie K. Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Coullon H, Candela T. Clostridioides difficile peptidoglycan modifications. Curr Opin Microbiol 2021; 65:156-161. [PMID: 34883390 DOI: 10.1016/j.mib.2021.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
The cortex and peptidoglycan of Clostridioides difficile have been poorly investigated. This last decade, the interest increased because these two structures are highly modified and these modifications may be involved in antimicrobial resistance. For example, C. difficile peptidoglycan deacetylation was recently reported to be involved in lysozyme resistance. Modifications may also be important for spore cortex synthesis or spore germination, which is essential in C. difficile pathogenesis. As such, the enzymes responsible for modifications of the peptidoglycan and/or cortex could be new drug target candidates or used as anti-C. difficile agents, as seen for the CD11 autolysin. In this review, we focus on C. difficile peptidoglycan and cortex and compare their structures with those of other well studied bacteria.
Collapse
Affiliation(s)
- Héloise Coullon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Division of Infectious Diseases, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas Candela
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
12
|
Alves Feliciano C, Eckenroth BE, Diaz OR, Doublié S, Shen A. A lipoprotein allosterically activates the CwlD amidase during Clostridioides difficile spore formation. PLoS Genet 2021; 17:e1009791. [PMID: 34570752 PMCID: PMC8496864 DOI: 10.1371/journal.pgen.1009791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/07/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Spore-forming pathogens like Clostridioides difficile depend on germination to initiate infection. During gemination, spores must degrade their cortex layer, which is a thick, protective layer of modified peptidoglycan. Cortex degradation depends on the presence of the spore-specific peptidoglycan modification, muramic-∂-lactam (MAL), which is specifically recognized by cortex lytic enzymes. In C. difficile, MAL production depends on the CwlD amidase and its binding partner, the GerS lipoprotein. To gain insight into how GerS regulates CwlD activity, we solved the crystal structure of the CwlD:GerS complex. In this structure, a GerS homodimer is bound to two CwlD monomers such that the CwlD active sites are exposed. Although CwlD structurally resembles amidase_3 family members, we found that CwlD does not bind Zn2+ stably on its own, unlike previously characterized amidase_3 enzymes. Instead, GerS binding to CwlD promotes CwlD binding to Zn2+, which is required for its catalytic mechanism. Thus, in determining the first structure of an amidase bound to its regulator, we reveal stabilization of Zn2+ co-factor binding as a novel mechanism for regulating bacterial amidase activity. Our results further suggest that allosteric regulation by binding partners may be a more widespread mode for regulating bacterial amidase activity than previously thought. Spore germination is essential for many spore-forming pathogens to initiate infection. In order for spores to germinate, they must degrade a thick, protective layer of cell wall known as the cortex. The enzymes that digest this layer selectively recognize the spore-specific cell wall modification, muramic-∂-lactam (MAL). MAL is made in part through the activity of the CwlD amidase, which is found in all spore-forming bacteria. While Bacillus subtilis CwlD appears to have amidase activity on its own, Clostridioides difficile CwlD activity depends on its binding partner, the GerS lipoprotein. To understand why C. difficile CwlD requires GerS, we determined the X-ray crystal structure of the CwlD:GerS complex and discovered that GerS binds to a site distant from CwlD’s active site. We also found that GerS stabilizes CwlD binding to its co-factor, Zn2+, indicating that GerS allosterically activates CwlD amidase. Notably, regulation at the level of Zn2+ binding has not previously been described for bacterial amidases, and GerS is the first protein to be shown to allosterically activate an amidase. Since binding partners of bacterial amidases were only first discovered 15 years ago, our results suggest that diverse mechanisms remain to be discovered for these critical enzymes.
Collapse
Affiliation(s)
- Carolina Alves Feliciano
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Brian E. Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Oscar R. Diaz
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Planas A. Peptidoglycan Deacetylases in Bacterial Cell Wall Remodeling and Pathogenesis. Curr Med Chem 2021; 29:1293-1312. [PMID: 34525907 DOI: 10.2174/0929867328666210915113723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
The bacterial cell wall peptidoglycan (PG) is a dynamic structure that is constantly synthesized, re-modeled and degraded during bacterial division and growth. Post-synthetic modifications modulate the action of endogenous autolysis during PG lysis and remodeling for growth and sporulation, but also they are a mechanism used by pathogenic bacteria to evade the host innate immune system. Modifica-tions of the glycan backbone are limited to the C-2 amine and the C-6 hydroxyl moieties of either Glc-NAc or MurNAc residues. This paper reviews the functional roles and properties of peptidoglycan de-N-acetylases (distinct PG GlcNAc and MurNAc deacetylases) and recent progress through genetic stud-ies and biochemical characterization to elucidate their mechanism of action, 3D structures, substrate specificities and biological functions. Since they are virulence factors in pathogenic bacteria, peptidogly-can deacetylases are potential targets for the design of novel antimicrobial agents.
Collapse
Affiliation(s)
- Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià. University Ramon Llull, 08017 Barcelona. Spain
| |
Collapse
|
14
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
15
|
A cortex-specific penicillin-binding protein contributes to heat resistance in Clostridioides difficile spores. Anaerobe 2021; 70:102379. [PMID: 33940167 PMCID: PMC8417463 DOI: 10.1016/j.anaerobe.2021.102379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Background Sporulation is a complex cell differentiation programme shared by many members of the Firmicutes, the end result of which is a highly resistant, metabolically inert spore that can survive harsh environmental insults. Clostridioides difficile spores are essential for transmission of disease and are also required for recurrent infection. However, the molecular basis of sporulation is poorly understood, despite parallels with the well-studied Bacillus subtilis system. The spore envelope consists of multiple protective layers, one of which is a specialised layer of peptidoglycan, called the cortex, that is essential for the resistant properties of the spore. We set out to identify the enzymes required for synthesis of cortex peptidoglycan in C. difficile. Methods Bioinformatic analysis of the C. difficile genome to identify putative homologues of Bacillus subtilis spoVD was combined with directed mutagenesis and microscopy to identify and characterise cortex-specific PBP activity. Results Deletion of CDR20291_2544 (SpoVDCd) abrogated spore formation and this phenotype was completely restored by complementation in cis. Analysis of SpoVDCd revealed a three domain structure, consisting of dimerization, transpeptidase and PASTA domains, very similar to B. subtilis SpoVD. Complementation with SpoVDCd domain mutants demonstrated that the PASTA domain was dispensable for formation of morphologically normal spores. SpoVDCd was also seen to localise to the developing spore by super-resolution confocal microscopy. Conclusions We have identified and characterised a cortex specific PBP in C. difficile. This is the first characterisation of a cortex-specific PBP in C. difficile and begins the process of unravelling cortex biogenesis in this important pathogen. CDR20291_2544 encodes a C. difficile homologue of the B subtilis SpoVD. Mutation of spoVDCd completely prevents the formation of heat-resistant spores. The SpoVDCd PASTA domain was dispensable for its function. SpoVDCd localises to the developing spore.
Collapse
|
16
|
Li Y, Liu L, Yang J, Yang Q. An overall look at insect chitin deacetylases: Promising molecular targets for developing green pesticides. JOURNAL OF PESTICIDE SCIENCE 2021; 46:43-52. [PMID: 33746545 PMCID: PMC7953033 DOI: 10.1584/jpestics.d20-085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Chitin deacetylase (CDA) is a key enzyme involved in the modification of chitin and plays critical roles in molting and pupation, which catalyzes the removal of acetyl groups from N-acetyl-D-glucosamine residues in chitin to form chitosan and release acetic acid. Defects in the CDA genes or their expression may lead to stunted insect development and even death. Therefore, CDA can be used as a potential pest control target. However, there are no effective pesticides known to target CDA. Although there has been some exciting research progress on bacterial or fungal CDAs, insect CDA characteristics are less understood. This review summarizes the current understanding of insect CDAs, especially very recent advances in our understanding of crystal structures and the catalytic mechanism. Progress in developing small-molecule CDA inhibitors is also summarized. We hope the information included in this review will help facilitate new pesticide development through a novel action mode, such as targeting CDA.
Collapse
Affiliation(s)
- Yingchen Li
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
17
|
Grifoll-Romero L, Sainz-Polo MA, Albesa-Jové D, Guerin ME, Biarnés X, Planas A. Structure-function relationships underlying the dual N-acetylmuramic and N-acetylglucosamine specificities of the bacterial peptidoglycan deacetylase PdaC. J Biol Chem 2019; 294:19066-19080. [PMID: 31690626 DOI: 10.1074/jbc.ra119.009510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/01/2019] [Indexed: 01/30/2023] Open
Abstract
Bacillus subtilis PdaC (BsPdaC) is a membrane-bound, multidomain peptidoglycan N-deacetylase acting on N-acetylmuramic acid (MurNAc) residues and conferring lysozyme resistance to modified cell wall peptidoglycans. BsPdaC contains a C-terminal family 4 carbohydrate esterase (CE4) catalytic domain, but unlike other MurNAc deacetylases, BsPdaC also has GlcNAc deacetylase activity on chitooligosaccharides (COSs), characteristic of chitin deacetylases. To uncover the molecular basis of this dual activity, here we determined the X-ray structure of the BsPdaC CE4 domain at 1.54 Å resolution and analyzed its mode of action on COS substrates. We found that the minimal substrate is GlcNAc3 and that activity increases with the degree of glycan polymerization. COS deacetylation kinetics revealed that BsPdaC operates by a multiple-chain mechanism starting at the internal GlcNAc units and leading to deacetylation of all but the reducing-end GlcNAc residues. Interestingly, BsPdaC shares higher sequence similarity with the peptidoglycan GlcNAc deacetylase SpPgdaA than with other MurNAc deacetylases. Therefore, we used ligand-docking simulations to analyze the dual GlcNAc- and MurNAc-binding specificities of BsPdaC and compared them with those of SpPgdA and BsPdaA, representing peptidoglycan deacetylases highly specific for GlcNAc or MurNAc residues, respectively. BsPdaC retains the conserved Asp-His-His metal-binding triad characteristic of CE4 enzymes acting on GlcNAc residues, differing from MurNAc deacetylases that lack the metal-coordinating Asp residue. BsPdaC contains short loops similar to those in SpPgdA, resulting in an open binding cleft that can accommodate polymeric substrates. We propose that PdaC is the first member of a new subclass of peptidoglycan MurNAc deacetylases.
Collapse
Affiliation(s)
- Laia Grifoll-Romero
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| | - María Angela Sainz-Polo
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain
| | - David Albesa-Jové
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain.,Basque Foundation for Science (IKERBASQUE), 48011 Bilbao, Spain
| | - Marcelo E Guerin
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain.,Basque Foundation for Science (IKERBASQUE), 48011 Bilbao, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| |
Collapse
|
18
|
Coullon H, Rifflet A, Wheeler R, Janoir C, Boneca IG, Candela T. N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance. J Biol Chem 2018; 293:18040-18054. [PMID: 30266804 DOI: 10.1074/jbc.ra118.004273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/24/2018] [Indexed: 01/08/2023] Open
Abstract
Spores are produced by many organisms as a survival mechanism activated in response to several environmental stresses. Bacterial spores are multilayered structures, one of which is a peptidoglycan layer called the cortex, containing muramic-δ-lactams that are synthesized by at least two bacterial enzymes, the muramoyl-l-alanine amidase CwlD and the N-deacetylase PdaA. This study focused on the spore cortex of Clostridium difficile, a Gram-positive, toxin-producing anaerobic bacterial pathogen that can colonize the human intestinal tract and is a leading cause of antibiotic-associated diarrhea. Using ultra-HPLC coupled with high-resolution MS, here we found that the spore cortex of the C. difficile 630Δerm strain differs from that of Bacillus subtilis Among these differences, the muramic-δ-lactams represented only 24% in C. difficile, compared with 50% in B. subtilis CD630_14300 and CD630_27190 were identified as genes encoding the C. difficile N-deacetylases PdaA1 and PdaA2, required for muramic-δ-lactam synthesis. In a pdaA1 mutant, only 0.4% of all muropeptides carried a muramic-δ-lactam modification, and muramic-δ-lactams were absent in the cortex of a pdaA1-pdaA2 double mutant. Of note, the pdaA1 mutant exhibited decreased sporulation, altered germination, decreased heat resistance, and delayed virulence in a hamster infection model. These results suggest a much greater role for muramic-δ-lactams in C. difficile than in other bacteria, including B. subtilis In summary, the spore cortex of C. difficile contains lower levels of muramic-δ-lactams than that of B. subtilis, and PdaA1 is the major N-deacetylase for muramic-δ-lactam biosynthesis in C. difficile, contributing to sporulation, heat resistance, and virulence.
Collapse
Affiliation(s)
- Héloise Coullon
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry
| | - Aline Rifflet
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Richard Wheeler
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Claire Janoir
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry
| | - Ivo Gomperts Boneca
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Thomas Candela
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry,.
| |
Collapse
|
19
|
Pertel SS, Seryi SA, Kakayan ES. A new approach to the synthesis of lactams of muramic, isomuramic and normuramic acids via intramolecular O-alkylation: Stereochemical features of the intramolecular nucleophilic substitution. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Yadav AK, Espaillat A, Cava F. Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats. Front Microbiol 2018; 9:2064. [PMID: 30233540 PMCID: PMC6127315 DOI: 10.3389/fmicb.2018.02064] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.
Collapse
Affiliation(s)
- Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Abstract
Germination of Clostridium difficile spores is a crucial early requirement for colonization of the gastrointestinal tract. Likewise, C. difficile cannot cause disease pathologies unless its spores germinate into metabolically active, toxin-producing cells. Recent advances in our understanding of C. difficile spore germination mechanisms indicate that this process is both complex and unique. This review defines unique aspects of the germination pathways of C. difficile and compares them to those of two other well-studied organisms, Bacillus anthracis and Clostridium perfringensC. difficile germination is unique, as C. difficile does not contain any orthologs of the traditional GerA-type germinant receptor complexes and is the only known sporeformer to require bile salts in order to germinate. While recent advances describing C. difficile germination mechanisms have been made on several fronts, major gaps in our understanding of C. difficile germination signaling remain. This review provides an updated, in-depth summary of advances in understanding of C. difficile germination and potential avenues for the development of therapeutics, and discusses the major discrepancies between current models of germination and areas of ongoing investigation.
Collapse
|
22
|
Diaz OR, Sayer CV, Popham DL, Shen A. Clostridium difficile Lipoprotein GerS Is Required for Cortex Modification and Thus Spore Germination. mSphere 2018; 3:e00205-18. [PMID: 29950380 PMCID: PMC6021603 DOI: 10.1128/msphere.00205-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile, also known as Clostridioides difficile, is a Gram-positive, spore-forming bacterium that is a leading cause of antibiotic-associated diarrhea. C. difficile infections begin when its metabolically dormant spores germinate to form toxin-producing vegetative cells. Successful spore germination depends on the degradation of the cortex, a thick layer of modified peptidoglycan that maintains dormancy. Cortex degradation is mediated by the SleC cortex lytic enzyme, which is thought to recognize the cortex-specific modification muramic-δ-lactam. C. difficile cortex degradation also depends on the Peptostreptococcaceae-specific lipoprotein GerS for unknown reasons. In this study, we tested whether GerS regulates production of muramic-δ-lactam and thus controls the ability of SleC to recognize its cortex substrate. By comparing the muropeptide profiles of ΔgerS spores to those of spores lacking either CwlD or PdaA, both of which mediate cortex modification in Bacillus subtilis, we determined that C. difficile GerS, CwlD, and PdaA are all required to generate muramic-δ-lactam. Both GerS and CwlD were needed to cleave the peptide side chains from N-acetylmuramic acid, suggesting that these two factors act in concert. Consistent with this hypothesis, biochemical analyses revealed that GerS and CwlD directly interact and that CwlD modulates GerS incorporation into mature spores. Since ΔgerS, ΔcwlD, and ΔpdaA spores exhibited equivalent germination defects, our results indicate that C. difficile spore germination depends on cortex-specific modifications, reveal GerS as a novel regulator of these processes, and highlight additional differences in the regulation of spore germination in C. difficile relative to B. subtilis and other spore-forming organisms.IMPORTANCE The Gram-positive, spore-forming bacterium Clostridium difficile is a leading cause of antibiotic-associated diarrhea. Because C. difficile is an obligate anaerobe, its aerotolerant spores are essential for transmitting disease, and their germination into toxin-producing cells is necessary for causing disease. Spore germination requires the removal of the cortex, a thick layer of modified peptidoglycan that maintains spore dormancy. Cortex degradation is mediated by the SleC hydrolase, which is thought to recognize cortex-specific modifications. Cortex degradation also requires the GerS lipoprotein for unknown reasons. In our study, we tested whether GerS is required to generate cortex-specific modifications by comparing the cortex composition of ΔgerS spores to the cortex composition of spores lacking two putative cortex-modifying enzymes, CwlD and PdaA. These analyses revealed that GerS, CwlD, and PdaA are all required to generate cortex-specific modifications. Since loss of these modifications in ΔgerS, ΔcwlD, and ΔpdaA mutants resulted in spore germination and heat resistance defects, the SleC cortex lytic enzyme depends on cortex-specific modifications to efficiently degrade this protective layer. Our results further indicate that GerS and CwlD are mutually required for removing peptide chains from spore peptidoglycan and revealed a novel interaction between these proteins. Thus, our findings provide new mechanistic insight into C. difficile spore germination.
Collapse
Affiliation(s)
- Oscar R Diaz
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- NIH Postbaccalaureate Research Education Program (PREP), Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cameron V Sayer
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Substrate Recognition and Specificity of Chitin Deacetylases and Related Family 4 Carbohydrate Esterases. Int J Mol Sci 2018; 19:ijms19020412. [PMID: 29385775 PMCID: PMC5855634 DOI: 10.3390/ijms19020412] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Carbohydrate esterases family 4 (CE4 enzymes) includes chitin and peptidoglycan deacetylases, acetylxylan esterases, and poly-N-acetylglucosamine deacetylases that act on structural polysaccharides, altering their physicochemical properties, and participating in diverse biological functions. Chitin and peptidoglycan deacetylases are not only involved in cell wall morphogenesis and remodeling in fungi and bacteria, but they are also used by pathogenic microorganisms to evade host defense mechanisms. Likewise, biofilm formation in bacteria requires partial deacetylation of extracellular polysaccharides mediated by poly-N-acetylglucosamine deacetylases. Such biological functions make these enzymes attractive targets for drug design against pathogenic fungi and bacteria. On the other side, acetylxylan esterases deacetylate plant cell wall complex xylans to make them accessible to hydrolases, making them attractive biocatalysts for biomass utilization. CE4 family members are metal-dependent hydrolases. They are highly specific for their particular substrates, and show diverse modes of action, exhibiting either processive, multiple attack, or patterned deacetylation mechanisms. However, the determinants of substrate specificity remain poorly understood. Here, we review the current knowledge on the structure, activity, and specificity of CE4 enzymes, focusing on chitin deacetylases and related enzymes active on N-acetylglucosamine-containing oligo and polysaccharides.
Collapse
|
24
|
Abstract
Bacterial endospores possess multiple integument layers, one of which is the cortex peptidoglycan wall. The cortex is essential for the maintenance of spore core dehydration and dormancy and contains structural modifications that differentiate it from vegetative cell peptidoglycan and determine its fate during spore germination. Following the engulfment stage of sporulation, the cortex is synthesized within the intermembrane space surrounding the forespore. Proteins responsible for cortex synthesis are produced in both the forespore and mother cell compartments. While some of these proteins also contribute to vegetative cell wall synthesis, others are sporulation specific. In order for the bacterial endospore to germinate and resume metabolism, the cortex peptidoglycan must first be degraded through the action of germination-specific lytic enzymes. These enzymes are present, yet inactive, in the dormant spore and recognize the muramic-δ-lactam modification present in the cortex. Germination-specific lytic enzymes across Bacillaceae and Clostridiaceae share this specificity determinant, which ensures that the spore cortex is hydrolyzed while the vegetative cell wall remains unharmed. Bacillus species tend to possess two redundant enzymes, SleB and CwlJ, capable of sufficient cortex degradation, while the clostridia have only one, SleC. Additional enzymes are often present that cannot initiate the cortex degradation process, but which can increase the rate of release of small fragments into the medium. Between the two families, the enzymes also differ in the enzymatic activities they possess and the mechanisms acting to restrict their activation until germination has been initiated.
Collapse
|
25
|
van Teeseling MCF, de Pedro MA, Cava F. Determinants of Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial Targeting. Front Microbiol 2017; 8:1264. [PMID: 28740487 PMCID: PMC5502672 DOI: 10.3389/fmicb.2017.01264] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial morphology is extremely diverse. Specific shapes are the consequence of adaptive pressures optimizing bacterial fitness. Shape affects critical biological functions, including nutrient acquisition, motility, dispersion, stress resistance and interactions with other organisms. Although the characteristic shape of a bacterial species remains unchanged for vast numbers of generations, periodical variations occur throughout the cell (division) and life cycles, and these variations can be influenced by environmental conditions. Bacterial morphology is ultimately dictated by the net-like peptidoglycan (PG) sacculus. The species-specific shape of the PG sacculus at any time in the cell cycle is the product of multiple determinants. Some morphological determinants act as a cytoskeleton to guide biosynthetic complexes spatiotemporally, whereas others modify the PG sacculus after biosynthesis. Accumulating evidence supports critical roles of morphogenetic processes in bacteria-host interactions, including pathogenesis. Here, we review the molecular determinants underlying morphology, discuss the evidence linking bacterial morphology to niche adaptation and pathogenesis, and examine the potential of morphological determinants as antimicrobial targets.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Miguel A de Pedro
- Centro de Biología Molecular "Severo Ochoa" - Consejo Superior de Investigaciones Científicas, Universidad Autónoma de MadridMadrid, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| |
Collapse
|
26
|
Ramírez-Guadiana FH, Meeske AJ, Wang X, Rodrigues CDA, Rudner DZ. The Bacillus subtilis germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Mol Microbiol 2017; 105:689-704. [PMID: 28605069 DOI: 10.1111/mmi.13728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
During sporulation in Bacillus subtilis, germinant receptors assemble in the inner membrane of the developing spore. In response to specific nutrients, these receptors trigger germination and outgrowth. In a transposon-sequencing screen, we serendipitously discovered that loss of function mutations in the gerA receptor partially suppress the phenotypes of > 25 sporulation mutants. Most of these mutants have modest defects in the assembly of the spore protective layers that are exacerbated in the presence of a functional GerA receptor. Several lines of evidence indicate that these mutants inappropriately trigger the activation of GerA during sporulation resulting in premature germination. These findings led us to discover that up to 8% of wild-type sporulating cells trigger premature germination during differentiation in a GerA-dependent manner. This phenomenon was observed in domesticated and undomesticated wild-type strains sporulating in liquid and on solid media. Our data indicate that the GerA receptor is poised on a knife's edge during spore development. We propose that this sensitized state ensures a rapid response to nutrient availability and also elicits premature germination of spores with improperly assembled protective layers resulting in the elimination of even mildly defective individuals from the population.
Collapse
Affiliation(s)
- Fernando H Ramírez-Guadiana
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Alexander J Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
27
|
Sarmiento KP, Panes VA, Santos MD. Molecular cloning and expression of chitin deacetylase 1 gene from the gills of Penaeus monodon (black tiger shrimp). FISH & SHELLFISH IMMUNOLOGY 2016; 55:484-489. [PMID: 27335260 DOI: 10.1016/j.fsi.2016.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/14/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Chitin deacetylases have been identified and studied in several fungi and insects but not in crustaceans. These glycoproteins function in catalyzing the conversion of chitin to chitosan by the hydrolysis of N-acetamido bonds of chitin. Here, for the first time, the full length cDNA of chitin deacetylase (CDA) gene from crustaceans was fully cloned using a partial fragment obtained from a transcriptome database of the gills of black tiger shrimp Penaeus monodon that survived White Spot Syndrome Virus (WSSV) infection employing Rapid Amplification of cDNA Ends (RACE) PCR. The shrimp CDA, named PmCDA1, was further characterized by in silico analysis, and its constitutive expression determined in apparently healthy shrimp through reverse transcription PCR (RT-PCR). Results revealed that the P. monodon chitin deacetylase (PmCDA1) is 2176 bp-long gene with an open reading frame (ORF) of 1596 bp encoding for 532 amino acids. Phylogenetic analysis revealed that PmCDA1 belongs to Group I CDAs together with CDA1 and CDA2 proteins found in insects. Moreover, PmCDA1 is composed of a conserved chitin-binding peritrophin-A domain (CBD), a low-density lipoprotein receptor class A domain (LDL-A) and a catalytic domain that is part of CE4 superfamily, all found in group I CDAs, which are known to serve critical immune function against WSSV. Finally, high expression of PmCDA1 gene in the gills of apparently healthy P. monodon was observed suggesting important basal function of the gene in this tissue. Taken together, this is a first report of the full chitin deacetylase 1 (CDA1) gene in crustaceans particularly in shrimp that exhibits putative immune function against WSSV and is distinctly highly expressed in the gills of shrimp.
Collapse
Affiliation(s)
- Katreena P Sarmiento
- Genetic Fingerprinting Laboratory, National Fisheries Research and Development Institute, Mother Ignacia Ave., South Triangle, Quezon City, Metro Manila, 1103, Philippines; Ateneo de Manila University, Katipunan Ave., Loyola Heights, Quezon City, Metro Manila, 1108, Philippines
| | - Vivian A Panes
- Ateneo de Manila University, Katipunan Ave., Loyola Heights, Quezon City, Metro Manila, 1108, Philippines
| | - Mudjekeewis D Santos
- Genetic Fingerprinting Laboratory, National Fisheries Research and Development Institute, Mother Ignacia Ave., South Triangle, Quezon City, Metro Manila, 1103, Philippines.
| |
Collapse
|
28
|
Analysis of the dynamics of a Bacillus subtilis spore germination protein complex during spore germination and outgrowth. J Bacteriol 2014; 197:252-61. [PMID: 25349160 DOI: 10.1128/jb.02274-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Germination of Bacillus subtilis spores is normally initiated when nutrients from the environment interact with germinant receptors (GRs) in the spores' inner membrane (IM), in which most of the lipids are immobile. GRs and another germination protein, GerD, colocalize in the IM of dormant spores in a small focus termed the "germinosome," and this colocalization or focus formation is dependent upon GerD, which is also essential for rapid GR-dependent spore germination. To determine the fate of the germinosome and germination proteins during spore germination and outgrowth, we employed differential interference microscopy and epifluorescence microscopy to track germinating spores with fluorescent fusions to germination proteins and used Western blot analyses to measure germination protein levels. We found that after initiation of spore germination, the germinosome foci ultimately changed into larger disperse patterns, with ≥ 75% of spore populations displaying this pattern in spores germinated for 1 h, although >80% of spores germinated for 30 min retained the germinosome foci. Western blot analysis revealed that levels of GR proteins and the SpoVA proteins essential for dipicolinic acid release changed minimally during this period, although GerD levels decreased ∼ 50% within 15 min in germinated spores. Since the dispersion of the germinosome during germination was slower than the decrease in GerD levels, either germinosome stability is not compromised by ∼ 2-fold decreases in GerD levels or other factors, such as restoration of rapid IM lipid mobility, are also significant in germinosome dispersion as spore germination proceeds.
Collapse
|
29
|
Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:212-25. [PMID: 24983526 PMCID: PMC4078662 DOI: 10.1111/1758-2229.12130] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental programme called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signalling, membrane remodelling, protein localization and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications.
Collapse
Affiliation(s)
- Irene S Tan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; NIH-Johns Hopkins University Graduate Partnerships Program, Baltimore, MD, 21218, USA
| | | |
Collapse
|
30
|
Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol 2014; 93:113-28. [PMID: 24806796 DOI: 10.1111/mmi.12643] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 11/28/2022]
Abstract
Rare lipoprotein A (RlpA) is a widely conserved outer membrane protein of unknown function that has previously only been studied in Escherichia coli, where it localizes to the septal ring and scattered foci along the lateral wall, but mutants have no phenotypic change. Here we show rlpA mutants of Pseudomonas aeruginosa form chains of short, fat cells when grown in low osmotic strength media. These morphological defects indicate RlpA is needed for efficient separation of daughter cells and maintenance of rod shape. Analysis of peptidoglycan sacculi from an rlpA deletion mutant revealed increased tetra and hexasaccharides that lack stem peptides (hereafter called 'naked glycans'). Incubation of these sacculi with purified RlpA resulted in release of naked glycans containing 1,6-anhydro N-acetylmuramic acid ends. RlpA did not degrade sacculi from wild-type cells unless the sacculi were subjected to a limited digestion with an amidase to remove some of the stem peptides. Thus, RlpA is a lytic transglycosylase with a strong preference for naked glycan strands. We propose that RlpA activity is regulated in vivo by substrate availability, and that amidases and RlpA work in tandem to degrade peptidoglycan in the division septum and lateral wall.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Analysis of the loss in heat and acid resistance during germination of spores of Bacillus species. J Bacteriol 2014; 196:1733-40. [PMID: 24563034 DOI: 10.1128/jb.01555-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major event in the nutrient germination of spores of Bacillus species is release of the spores' large depot of dipicolinic acid (DPA). This event is preceded by both commitment, in which spores continue through germination even if germinants are removed, and loss of spore heat resistance. The latter event is puzzling, since spore heat resistance is due largely to core water content, which does not change until DPA is released during germination. We now find that for spores of two Bacillus species, the early loss in heat resistance during germination is most likely due to release of committed spores' DPA at temperatures not lethal for dormant spores. Loss in spore acid resistance during germination also paralleled commitment and was also associated with the release of DPA from committed spores at acid concentrations not lethal for dormant spores. These observations plus previous findings that DPA release during germination is preceded by a significant release of spore core cations suggest that there is a significant change in spore inner membrane permeability at commitment. Presumably, this altered membrane cannot retain DPA during heat or acid treatments innocuous for dormant spores, resulting in DPA-less spores that are rapidly killed.
Collapse
|
33
|
Turner RD, Vollmer W, Foster SJ. Different walls for rods and balls: the diversity of peptidoglycan. Mol Microbiol 2014; 91:862-74. [PMID: 24405365 PMCID: PMC4015370 DOI: 10.1111/mmi.12513] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 01/22/2023]
Abstract
Peptidoglycan performs the essential role of resisting turgor in the cell walls of most bacteria. It determines cell shape, and its biosynthesis is the target for many important antibiotics. The fundamental chemical building blocks of peptidoglycan are conserved: repeating disaccharides cross-linked by peptides. However, these blocks come in many varieties and can be assembled in different ways. So beyond the fundamental similarity, prodigious chemical, organizational and architectural diversity is revealed. Here, we track the evolution of our current understanding of peptidoglycan and underpinning technical and methodological developments. The origin and function of chemical diversity is discussed with respect to some well-studied example species. We then explore how this chemistry is manifested in elegant and complex peptidoglycan organization and how this is interpreted in different and sometimes controversial architectural models. We contend that emerging technology brings about the possibility of achieving a complete understanding of peptidoglycan chemistry, through architecture, to the way in which diverse species and populations of cells meet the challenges of maintaining viability and growth within their environmental niches, by exploiting the bioengineering versatility of peptidoglycan.
Collapse
Affiliation(s)
- Robert D Turner
- The Krebs Institute, Department of Molecular Biology and Biotechnology, Firth Court, Western Bank, The University of Sheffield, Sheffield, S10 2TN, UK
| | | | | |
Collapse
|
34
|
Faille C, Ronse A, Dewailly E, Slomianny C, Maes E, Krzewinski F, Guerardel Y. Presence and function of a thick mucous layer rich in polysaccharides around Bacillus subtilis spores. BIOFOULING 2014; 30:845-858. [PMID: 25115519 DOI: 10.1080/08927014.2014.939073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study was designed to establish the presence and function of the mucous layer surrounding spores of Bacillus subtilis. First, an external layer of variable thickness and regularity was often observed on B. subtilis spores. Further analyses were performed on B. subtilis 98/7 spores surrounded by a thick layer. The mechanical removal of the layer did not affect their resistance to heat or their ability to germinate but rendered the spore less hydrophilic, more adherent to stainless steel, and more resistant to cleaning. This layer was mainly composed of 6-deoxyhexoses, ie rhamnose, 3-O-methyl-rhamnose and quinovose, but also of glucosamine and muramic lactam, known also to be a part of the bacterial peptidoglycan. The specific hydrolysis of the peptidoglycan using lysozyme altered the structure of the required mucous layer and affected the physico-chemical properties of the spores. Such an outermost mucous layer has also been seen on spores of B. licheniformis and B. clausii isolated from food environments.
Collapse
Affiliation(s)
- Christine Faille
- a INRA, UR638 Interface Processes and Hygiene of Materials , F-59651 Villeneuve d'Ascq , France
| | | | | | | | | | | | | |
Collapse
|
35
|
Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 2013; 9:834-9. [PMID: 24141192 PMCID: PMC3830699 DOI: 10.1038/nchembio.1363] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/10/2013] [Indexed: 11/28/2022]
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered bacterial second messenger implicated in the control of cell wall metabolism, osmotic stress responses and sporulation. However, the mechanisms by which c-di-AMP triggers these physiological responses have remained largely unknown. Notably, a candidate riboswitch class called ydaO associates with numerous genes involved in these same processes. Although a representative ydaO motif RNA recently was reported to weakly bind ATP, we report that numerous members of this noncoding RNA class selectively respond to c-di-AMP with subnanomolar affinity. Our findings resolve the mystery regarding the primary ligand for this extremely common riboswitch class and expose a major portion of the super-regulon of genes that are controlled by the widespread bacterial second messenger c-di-AMP.
Collapse
Affiliation(s)
- James W. Nelson
- Department of Chemistry, Yale University, Box 208107, New Haven, CT 06520, USA
| | - Narasimhan Sudarsan
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Kazuhiro Furukawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Zasha Weinberg
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Joy X. Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
| | - Ronald R. Breaker
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520, USA
| |
Collapse
|
36
|
Wang J, Mei H, Qian H, Tang Q, Liu X, Yu Z, He J. Expression profile and regulation of spore and parasporal crystal formation-associated genes in Bacillus thuringiensis. J Proteome Res 2013; 12:5487-501. [PMID: 24215520 DOI: 10.1021/pr4003728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus thuringiensis, a Gram-positive endospore-forming bacterium, is characterized by the formation of parasporal crystals consisting of insecticidal crystal proteins (ICPs) during sporulation. We reveal gene expression profiles and regulatory mechanisms associated with spore and parasporal crystal formation based on transcriptomics and proteomics data of B. thuringiensis strain CT-43. During sporulation, five ICP genes encoded by CT-43 were specifically transcribed; moreover, most of the spore structure-, assembly-, and maturation-associated genes were specifically expressed or significantly up-regulated, with significant characteristics of temporal regulation. These findings suggest that it is essential for the cell to maintain efficient operation of transcriptional and translational machinery during sporulation. Our results indicate that the RNA polymerase complex δ and ω subunits, cold shock proteins, sigma factors, and transcriptional factors as well as the E2 subunit of the pyruvate dehydrogenase complex could cooperatively participate in transcriptional regulation via different mechanisms. In particular, differences in processing and modification of ribosomal proteins, rRNA, and tRNA combined with derepression of translational inhibition could boost the rate of ribosome recycling and assembly as well as translation initiation, elongation, and termination efficiency, thereby compensating for the reduction in ribosomal levels. The efficient operation of translational machineries and powerful protein-quality controlling systems would thus ensure biosyntheses of a large quantity of proteins with normal biological functions during sporulation.
Collapse
Affiliation(s)
- Jieping Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University , No. 1 Shizishan Street, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 2013; 9:e1003756. [PMID: 24098137 PMCID: PMC3789822 DOI: 10.1371/journal.pgen.1003756] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σ(F) and σ(G) in the forespore and σ(E) and σ(K) in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σ(F), σ(E), σ(G) and σ(K) regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σ(F) regulon, 97 σ(E)-dependent genes, 50 σ(G)-governed genes and 56 genes under σ(K) control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σ(E) or σ(K) control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σ(E) regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σ(E) regulon in the mother cell was not strictly under the control of σ(F) despite the fact that the forespore product SpoIIR was required for the processing of pro-σ(E). In addition, the σ(K) regulon was not controlled by σ(G) in C. difficile in agreement with the lack of pro-σ(K) processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes.
Collapse
Affiliation(s)
- Laure Saujet
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Fátima C. Pereira
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Monica Serrano
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Pavel V. Shelyakin
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny per, 19, Moscow, Russia
| | - Mikhail S. Gelfand
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny per, 19, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Biengineering and Bioinformatics, Vorobievy Gory 1-73, Moscow, Russia
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Adriano O. Henriques
- Microbial Development Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Balomenou S, Fouet A, Tzanodaskalaki M, Couture-Tosi E, Bouriotis V, Boneca IG. Distinct functions of polysaccharide deacetylases in cell shape, neutral polysaccharide synthesis and virulence ofBacillus anthracis. Mol Microbiol 2013; 87:867-83. [DOI: 10.1111/mmi.12137] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Mary Tzanodaskalaki
- Institute of Molecular Biology and Biotechnology; 70013; Heraklion; Crete; Greece
| | | | | | | |
Collapse
|
39
|
Ebmeier SE, Tan IS, Clapham KR, Ramamurthi KS. Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis. Mol Microbiol 2012; 84:682-96. [PMID: 22463703 DOI: 10.1111/j.1365-2958.2012.08052.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mature spores of the bacterium Bacillus subtilis are encased by two concentric shells: an inner shell (the 'cortex'), made of peptidoglycan; and an outer proteinaceous shell (the 'coat'), whose basement layer is anchored to the surface of the developing spore via a 26-amino-acid-long protein called SpoVM. During sporulation, initiation of cortex assembly depends on the successful initiation of coat assembly, but the mechanisms that co-ordinate the morphogenesis of both structures are largely unknown. Here, we describe a sporulation pathway involving SpoVM and a 37-amino-acid-long protein named 'CmpA' that is encoded by a previously un-annotated gene and is expressed under control of two sporulation-specific transcription factors (σ(E) and SpoIIID). CmpA localized to the surface of the developing spore and deletion of cmpA resulted in cells progressing through the sporulation programme more quickly. Overproduction of CmpA did not affect normal growth or cell division, but delayed entry into sporulation and abrogated cortex assembly. In those cells that had successfully initiated coat assembly, CmpA was removed by a post-translational mechanism, presumably in order to overcome the sporulation inhibition it imposed. We propose a model in which CmpA participates in a developmental checkpoint that ensures the proper orchestration of coat and cortex morphogenesis by repressing cortex assembly until coat assembly successfully initiates.
Collapse
Affiliation(s)
- Sarah E Ebmeier
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
40
|
Kobayashi K, Sudiarta IP, Kodama T, Fukushima T, Ara K, Ozaki K, Sekiguchi J. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J Biol Chem 2012; 287:9765-9776. [PMID: 22277649 DOI: 10.1074/jbc.m111.329490] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell wall metabolism and cell wall modification are very important processes that bacteria use to adjust to various environmental conditions. One of the main modifications is deacetylation of peptidoglycan. The polysaccharide deacetylase homologue, Bacillus subtilis YjeA (renamed PdaC), was characterized and found to be a unique deacetylase. The pdaC deletion mutant was sensitive to lysozyme treatment, indicating that PdaC acts as a deacetylase. The purified recombinant and truncated PdaC from Escherichia coli deacetylated B. subtilis peptidoglycan and its polymer, (-GlcNAc-MurNAc[-L-Ala-D-Glu]-)(n). Surprisingly, RP-HPLC and ESI-MS/MS analyses showed that the enzyme deacetylates N-acetylmuramic acid (MurNAc) not GlcNAc from the polymer. Contrary to Streptococcus pneumoniae PgdA, which shows high amino acid sequence similarity with PdaC and is a zinc-dependent GlcNAc deacetylase toward peptidoglycan, there was less dependence on zinc ion for deacetylation of peptidoglycan by PdaC than other metal ions (Mn(2+), Mg(2+), Ca(2+)). The kinetic values of the activity toward B. subtilis peptidoglycan were K(m) = 4.8 mM and k(cat) = 0.32 s(-1). PdaC also deacetylated N-acetylglucosamine (GlcNAc) oligomers with a K(m) = 12.3 mM and k(cat) = 0.24 s(-1) toward GlcNAc(4). Therefore, PdaC has GlcNAc deacetylase activity toward GlcNAc oligomers and MurNAc deacetylase activity toward B. subtilis peptidoglycan.
Collapse
Affiliation(s)
- Kaori Kobayashi
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - I Putu Sudiarta
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Takeko Kodama
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | - Tatsuya Fukushima
- Division of Gene Research, Department of Life Sciences, Research Center for Human and Environmental Sciences, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan and
| | - Katsutoshi Ara
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | - Katsuya Ozaki
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | - Junichi Sekiguchi
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
41
|
Zhao Y, Park RD, Muzzarelli RAA. Chitin deacetylases: properties and applications. Mar Drugs 2010; 8:24-46. [PMID: 20161969 PMCID: PMC2817921 DOI: 10.3390/md8010024] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 12/01/2022] Open
Abstract
Chitin deacetylases, occurring in marine bacteria, several fungi and a few insects, catalyze the deacetylation of chitin, a structural biopolymer found in countless forms of marine life, fungal cell and spore walls as well as insect cuticle and peritrophic matrices. The deacetylases recognize a sequence of four GlcNAc units in the substrate, one of which undergoes deacetylation: the resulting chitosan has a more regular deacetylation pattern than a chitosan treated with hot NaOH. Nevertheless plain chitin is a poor substrate, but glycolated, reprecipitated or depolymerized chitins are good ones. The marine Vibrio sp. colonize the chitin particles and decompose the chitin thanks to the concerted action of chitinases and deacetylases, otherwise they could not tolerate chitosan, a recognized antibacterial biopolymer. In fact, chitosan is used to prevent infections in fishes and crustaceans. Considering that chitin deacetylases play very important roles in the biological attack and defense systems, they may find applications for the biological control of fungal plant pathogens or insect pests in agriculture and for the biocontrol of opportunistic fungal human pathogens.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Agriculture Chemistry, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea; E-Mail:
(Y.Z.)
| | - Ro-Dong Park
- Department of Agriculture Chemistry, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea; E-Mail:
(Y.Z.)
| | | |
Collapse
|
42
|
Eichenberger P. The red-ox status of a penicillin-binding protein is an on/off switch for spore peptidoglycan synthesis in Bacillus subtilis. Mol Microbiol 2009; 75:10-2. [PMID: 19919674 DOI: 10.1111/j.1365-2958.2009.06963.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Thiol-disulphide oxidoreductases catalyse the formation or breakage of disulphide bonds to control the red-ox status of a variety of proteins. Their activity is compartmentalized, as exemplified by the distinct roles these enzymes play in the cytoplasm and periplasm of Gram-negative bacteria. In this issue of Molecular Microbiology, an article from Lars Hederstedt and collaborators at Lund University sheds light on another member of this superfamily of proteins, the thioredoxin-like protein StoA from Bacillus subtilis. Interestingly, StoA function is required in yet another subcellular compartment: the intermembrane space that separates forespores from mother cells in endospore-forming bacteria. Specifically, this study demonstrates that the high-molecular-weight penicillin-binding protein SpoVD, which contains two exposed cysteine residues and whose extracellular domain is located in the intermembrane space, is a substrate of StoA. As formation of a disulphide bond most likely inactivates SpoVD activity, the converse breakage of that bond in a process catalysed by StoA appears to be the trigger that initiates peptidoglycan synthesis in sporulating cells.
Collapse
Affiliation(s)
- Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of Biology, New York University, 1009 Silver Center, New York, NY 10003, USA.
| |
Collapse
|
43
|
Mohan A, Dunn J, Hunt MC, Sizer CE. Inactivation of Bacillus atrophaeus Spores with Surface-Active Peracids and Characterization of Formed Free Radicals Using Electron Spin Resonance Spectroscopy. J Food Sci 2009; 74:M411-7. [DOI: 10.1111/j.1750-3841.2009.01293.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
|
45
|
Development of natto with germination-defective mutants of Bacillus subtilis (natto). Appl Microbiol Biotechnol 2009; 82:741-8. [PMID: 19205688 DOI: 10.1007/s00253-009-1894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
The effects of cortex-lysis related genes with the pdaA, sleB, and cwlD mutations of Bacillus subtilis (natto) NAFM5 on sporulation and germination were investigated. Single or double mutations did not prevent normal sporulation, but did affect germination. Germination was severely inhibited by the double mutation of sleB and cwlD. The quality of natto made with the sleB cwlD double mutant was tested, and the amounts of glutamic acid and ammonia were very similar to those in the wild type. The possibility of industrial development of natto containing a reduced number of viable spores is presented.
Collapse
|
46
|
Deng DM, Urch JE, ten Cate JM, Rao VA, van Aalten DMF, Crielaard W. Streptococcus mutans SMU.623c codes for a functional, metal-dependent polysaccharide deacetylase that modulates interactions with salivary agglutinin. J Bacteriol 2009; 191:394-402. [PMID: 18978064 PMCID: PMC2612446 DOI: 10.1128/jb.00838-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 10/21/2008] [Indexed: 01/09/2023] Open
Abstract
The genome sequence of the oral pathogen Streptococcus mutans predicts the presence of two putative polysaccharide deacetylases. The first, designated PgdA in this paper, shows homology to the catalytic domains of peptidoglycan deacetylases from Streptococcus pneumoniae and Listeria monocytogenes, which are both thought to be involved in the bacterial defense mechanism against human mucosal lysozyme and are part of the CAZY family 4 carbohydrate esterases. S. mutans cells in which the pgdA gene was deleted displayed a different colony texture and a slightly increased cell surface hydrophobicity and yet did not become hypersensitive to lysozyme as shown previously for S. pneumoniae. To understand this apparent lack of activity, the high-resolution X-ray structure of S. mutans PgdA was determined; it showed the typical carbohydrate esterase 4 fold, with metal bound in a His-His-Asp triad. Analysis of the protein surface showed that an extended groove lined with aromatic residues is orientated toward the active-site residues. The protein exhibited metal-dependent de-N-acetylase activity toward a hexamer of N-acetylglucosamine. No activity was observed toward shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. In agreement with the lysozyme data this would suggest that S. mutans PgdA does not act on peptidoglycan but on an as-yet-unidentified polysaccharide within the bacterial cell surface. Strikingly, the pgdA-knockout strain showed a significant increase in aggregation/agglutination by salivary agglutinin, in agreement with this gene acting as a deacetylase of a cell surface glycan.
Collapse
Affiliation(s)
- Dong Mei Deng
- Department of Cariology Endodontology Pedodontology, ACTA, Louwesweg 1, 1066 EA Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Shah IM, Laaberki MH, Popham DL, Dworkin J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 2008; 135:486-96. [PMID: 18984160 PMCID: PMC2892110 DOI: 10.1016/j.cell.2008.08.039] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/08/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
Bacteria can respond to adverse environmental conditions by drastically reducing or even ceasing metabolic activity. They must then determine that conditions have improved before exiting dormancy, and one indication of such a change is the growth of other bacteria in the local environment. Growing bacteria release muropeptide fragments of the cell wall into the extracellular milieu, and we report here that these muropeptides are potent germinants of dormant Bacillus subtilis spores. The ability of a muropeptide to act as a germinant is determined by the identity of a single amino acid. A well-conserved, eukaryotic-like Ser/Thr membrane kinase containing an extracellular domain capable of binding peptidoglycan is necessary for this response, and a small molecule that stimulates related eukaryotic kinases is sufficient to induce germination. Another small molecule, staurosporine, that inhibits related eukaryotic kinases blocks muropeptide-dependent germination. Thus, in contrast to traditional antimicrobials that inhibit metabolically active cells, staurosporine acts by blocking germination of dormant spores.
Collapse
Affiliation(s)
- Ishita M. Shah
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Maria-Halima Laaberki
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jonathan Dworkin
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
48
|
Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32:259-86. [PMID: 18266855 DOI: 10.1111/j.1574-6976.2007.00099.x] [Citation(s) in RCA: 647] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most bacteria have multiple peptidoglycan hydrolases capable of cleaving covalent bonds in peptidoglycan sacculi or its fragments. An overview of the different classes of peptidoglycan hydrolases and their cleavage sites is provided. The physiological functions of these enzymes include the regulation of cell wall growth, the turnover of peptidoglycan during growth, the separation of daughter cells during cell division and autolysis. Specialized hydrolases enlarge the pores in the peptidoglycan for the assembly of large trans-envelope complexes (pili, flagella, secretion systems), or they specifically cleave peptidoglycan during sporulation or spore germination. Moreover, peptidoglycan hydrolases are involved in lysis phenomena such as fratricide or developmental lysis occurring in bacterial populations. We will also review the current view on the regulation of autolysins and on the role of cytoplasm hydrolases in peptidoglycan recycling and induction of beta-lactamase.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
49
|
Abstract
The normal, unmodified glycan strands of bacterial peptidoglycan consist of alternating residues of beta-1,4-linked N-acetylmuramic acid and N-acetylglucosamine. In many species the glycan strands become modified after their insertion into the cell wall. This review describes the structure of secondary modifications and of attachment sites of surface polymers in the glycan strands of peptidoglycan. It also provides an overview of the occurrence of these modifications in various bacterial species. Recently, enzymes responsible for the N-deacetylation, N-glycolylation and O-acetylation of the glycan strands were identified. The presence of these modifications affects the hydrolysis of peptidoglycan and its enlargement during cell growth. Glycan strands are frequently deacetylated and/or O-acetylated in pathogenic species. These alterations affect the recognition of bacteria by host factors, and contribute to the resistance of bacteria to host defence factors such as lysozyme.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| |
Collapse
|
50
|
Hett EC, Chao MC, Steyn AJ, Fortune SM, Deng LL, Rubin EJ. A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis. Mol Microbiol 2007; 66:658-68. [DOI: 10.1111/j.1365-2958.2007.05945.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|