1
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
2
|
Yan J, Xia Y, Yang M, Zou J, Chen Y, Zhang D, Ma L. Quantitative Proteomics Analysis of Membrane Proteins in Enterococcus faecalis With Low-Level Linezolid-Resistance. Front Microbiol 2018; 9:1698. [PMID: 30100900 PMCID: PMC6072972 DOI: 10.3389/fmicb.2018.01698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/09/2018] [Indexed: 11/26/2022] Open
Abstract
Despite increasing reports of low-level linezolid-resistant enterococci worldwide, the mechanism of this resistance remains poorly understood. Previous transcriptome studies of low-level linezolid-resistant Enterococcus faecalis isolates have demonstrated a number of significantly up-regulated genes potentially involved in mediation of drug resistance. However, whether the transcriptome faithfully reflects the proteome remains unknown. In this study, we performed quantitative proteomics analysis of membrane proteins in an E. faecalis isolate (P10748) with low-level linezolid-resistance in comparison with two linezolid-susceptible strains 3138 and ATCC 29212, all of which have been previously investigated by whole transcriptome analysis. A total of 8,197 peptides associated with 1,170 proteins were identified in all three isolates with false discovery rate (FDR) at 1% and P < 0.05. There were 14 significantly up-regulated and 6 significantly down-regulated proteins in strain P10748 compared to strains 3138 and ATCC 29212, which were in general positively correlated with transcription levels revealed in previous transcriptome studies. Our analysis suggests that the low-level linezolid-resistance in E. faecalis is conferred primarily by the ATP-binding cassette protein OptrA through ribosomal protection and, possibly, also by the enterococcal surface protein (Esp) and other proteins through biofilm formation. The genetic transfer of optrA is potentially regulated by the surface exclusion protein Sea1, conjugal transfer protein TraB, replication protein RepA and XRE family transcription regulator protein. This report represents the first investigation of the mechanisms of linezolid-resistance in E. faecalis by a quantitative proteomics approach.
Collapse
Affiliation(s)
- Jia Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mi Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaqi Zou
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Wang P, Zhu Y, Shang H, Deng Y, Sun M. A minireplicon of plasmid pBMB26 represents a new typical replicon in the megaplasmids of Bacillus cereus group. J Basic Microbiol 2017; 58:263-272. [PMID: 29243837 DOI: 10.1002/jobm.201700525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/02/2017] [Accepted: 11/19/2017] [Indexed: 11/11/2022]
Abstract
A new minireplicon (rep26 minireplicon) from pBMB26, the 188 kb indigenous plasmid related to spore-crystal association (SCA) phenotype in Bacillus thuringiensis strain YBT-020, was characterized. A 12 kb EcoRI fragment, which encoded 10 putative open reading frames (ORFs), was capable of supporting replication when cloned in a replication probe vector. Deletion and frame shift mutation analysis showed that a 4.1 kb region encompassing two putative ORFs (orf21 and orf22) was essential for the plasmid replication in B. thuringiensis. Gene orf21 encoding a 49.8 kDa protein (named Rep26) with a helix-turn-helix motif showed no homology with known replication proteins and gene orf22 encoding a protein of 82.6 kDa showed homology to bacterial PcrA helicase. The replication origin of rep26 minireplicon was proved to be located in the coding region of orf21. Plasmid stability experiments indicated that the recombinant plasmid containing rep26 minireplicon has excellent segregational stability. BLASTP analysis revealed that amino acid sequences of ORF21 and ORF22 were well conserved among Bacillus cereus group strains. The rep26 minireplicon was widely distributed and could be defined as a new typical replicon in the megaplasmids of B. cereus group.
Collapse
Affiliation(s)
- Pengxia Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yiguang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hui Shang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
4
|
Structural and sequence requirements for the antisense RNA regulating replication of staphylococcal multiresistance plasmid pSK41. Plasmid 2015; 78:17-25. [PMID: 25634580 DOI: 10.1016/j.plasmid.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/22/2022]
Abstract
pSK41 is a prototypical 46-kb conjugative multiresistance plasmid of Staphylococcus aureus. The pSK41 replication initiation protein (Rep) is rate-limiting for plasmid replication, and its expression is negatively regulated by a small, non-coding antisense transcript, RNAI, that is complementary to the rep mRNA leader region. In this study, enzymatic probing was used to verify the predicted secondary structures of RNAI and its target RNA. We demonstrated that two stem-loop structures of RNAI, SLRNAI-II and SLRNAI-III, were important for inhibition. A putative U-turn motif detected in the loop of SLrep-I (5'-UUGG-3') was analysed for its significance to RNAI-mediated inhibition in vivo and Northern blotting suggested that rep mRNA was processed. Taken together, these observations support our previously proposed model but also raise new questions about the replication control mechanism.
Collapse
|
5
|
TraG encoded by the pIP501 type IV secretion system is a two-domain peptidoglycan-degrading enzyme essential for conjugative transfer. J Bacteriol 2013; 195:4436-44. [PMID: 23913323 DOI: 10.1128/jb.02263-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
pIP501 is a conjugative broad-host-range plasmid frequently present in nosocomial Enterococcus faecalis and Enterococcus faecium isolates. We focus here on the functional analysis of the type IV secretion gene traG, which was found to be essential for pIP501 conjugative transfer between Gram-positive bacteria. The TraG protein, which localizes to the cell envelope of E. faecalis harboring pIP501, was expressed and purified without its N-terminal transmembrane helix (TraGΔTMH) and shown to possess peptidoglycan-degrading activity. TraGΔTMH was inhibited by specific lytic transglycosylase inhibitors hexa-N-acetylchitohexaose and bulgecin A. Analysis of the TraG sequence suggested the presence of two domains which both could contribute to the observed cell wall-degrading activity: an N-terminal soluble lytic transglycosylase domain (SLT) and a C-terminal cysteine-, histidine-dependent amidohydrolases/peptidases (CHAP) domain. The protein domains were expressed separately, and both degraded peptidoglycan. A change of the conserved glutamate residue in the putative catalytic center of the SLT domain (E87) to glycine resulted in almost complete inactivity, which is consistent with this part of TraG being a predicted lytic transglycosylase. Based on our findings, we propose that TraG locally opens the peptidoglycan to facilitate insertion of the Gram-positive bacterial type IV secretion machinery into the cell envelope.
Collapse
|
6
|
Werner G, Coque TM, Franz CMAP, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol 2013; 303:360-79. [PMID: 23602510 DOI: 10.1016/j.ijmm.2013.03.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) and glycopeptides are therapeutically important and reported in increasing numbers. On the other hand, isolates of E. faecalis and E. faecium are commensals of the intestines of humans, many vertebrate and invertebrate animals and may also constitute an active part of the plant flora. Certain enterococcal isolates are used as starter cultures or supplements in food fermentation and food preservation. Due to their preferred intestinal habitat, their wide occurrence, robustness and ease of cultivation, enterococci are used as indicators for fecal pollution assessing hygiene standards for fresh- and bathing water and they serve as important key indicator bacteria for various veterinary and human resistance surveillance systems. Enterococci are widely prevalent and genetically capable of acquiring, conserving and disseminating genetic traits including resistance determinants among enterococci and related Gram-positive bacteria. In the present review we aimed at summarizing recent advances in the current understanding of the population biology of enterococci, the role mobile genetic elements including plasmids play in shaping the population structure and spreading resistance. We explain how these elements could be classified and discuss mechanisms of plasmid transfer and regulation and the role and cross-talk of enterococcal isolates from food and food animals to humans.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Stapyhlococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, 38855 Wernigerode, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu MA, Kwong SM, Jensen SO, Brzoska AJ, Firth N. Biology of the staphylococcal conjugative multiresistance plasmid pSK41. Plasmid 2013; 70:42-51. [PMID: 23415796 DOI: 10.1016/j.plasmid.2013.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/27/2022]
Abstract
Plasmid pSK41 is a large, low-copy-number, conjugative plasmid from Staphylococcus aureus that is representative of a family of staphylococcal plasmids that confer multiple resistances to a wide range of antimicrobial agents. The plasmid consists of a conserved plasmid backbone containing the genes for plasmid housekeeping functions, which is punctuated by copies of IS257 that flank a Tn4001-hybrid structure and cointegrated plasmids that harbour resistance genes. This review summarises the current understanding of the biology of pSK41, focussing on the systems responsible for its replication, maintenance and transmission, and their regulation.
Collapse
Affiliation(s)
- Michael A Liu
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
8
|
Pinto UM, Pappas KM, Winans SC. The ABCs of plasmid replication and segregation. Nat Rev Microbiol 2013; 10:755-65. [PMID: 23070556 DOI: 10.1038/nrmicro2882] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To ensure faithful transmission of low-copy plasmids to daughter cells, these plasmids must replicate once per cell cycle and distribute the replicated DNA to the nascent daughter cells. RepABC family plasmids are found exclusively in alphaproteobacteria and carry a combined replication and partitioning locus, the repABC cassette, which is also found on secondary chromosomes in this group. RepC and a replication origin are essential for plasmid replication, and RepA, RepB and the partitioning sites distribute the replicons to predivisional cells. Here, we review our current understanding of the transcriptional and post-transcriptional regulation of the Rep proteins and of their functions in plasmid replication and partitioning.
Collapse
Affiliation(s)
- Uelinton M Pinto
- Departamento de Alimentos, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais 35400-000, Brazil
| | | | | |
Collapse
|
9
|
Ohtani N, Tomita M, Itaya M. Identification of a replication initiation protein of the pVV8 plasmid from Thermus thermophilus HB8. Extremophiles 2012; 17:15-28. [PMID: 23114983 DOI: 10.1007/s00792-012-0489-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022]
Abstract
Recently, the extremely thermophilic bacterium Thermus thermophilus HB8 has been demonstrated to harbor a circular plasmid designated by pVV8 in addition to two well-known plasmids, pTT8 and pTT27, and its entire sequence has been determined. The absence of any obvious replication initiation gene in the 81.2 kb plasmid prompted us to isolate its minimum replicon. By in vivo replication assays with fragments deleted in a stepwise manner, a minimum replicon containing a single ORF, TTHV001, was identified. A protein encoded by TTHV001 showed no amino acid sequence similarity to other function-known proteins. As the results of in vivo and in vitro experiments strongly suggested that the TTHV001 protein was involved in the replication initiation of pVV8, the protein and the gene were referred to as RepV and repV, respectively. The RepV protein binds to an inverted repeat sequence within its own repV gene and then triggers the unwinding of the DNA duplex in an A + T-rich region located just downstream from the inverted repeat. The in vivo replication assays with minimum replicon mutants in the RepV binding site or the unwinding region demonstrated that the unwinding in the region by the RepV binding was essential for pVV8 replication initiation.
Collapse
Affiliation(s)
- Naoto Ohtani
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| | | | | |
Collapse
|
10
|
Liu MA, Kwong SM, Pon CK, Skurray RA, Firth N. Genetic requirements for replication initiation of the staphylococcal multiresistance plasmid pSK41. MICROBIOLOGY-SGM 2012; 158:1456-1467. [PMID: 22442303 DOI: 10.1099/mic.0.057620-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Replication of staphylococcal multiresistance plasmid pSK41 is initiated by binding of the replication initiator protein (Rep) to the Rep boxes, a series of four direct repeats located centrally within the rep gene. A Staphylococcus aureus strain was engineered to provide Rep in trans, allowing localization of the pSK41 origin of replication (oriV) to a 185 bp segment, which included the Rep boxes and a series of downstream direct repeats. Deletion analysis of individual Rep boxes revealed that all four Rep boxes are required for maximum origin activity, with the deletion of one or more Rep boxes having a significant effect on the proficiency of replication. However, a hierarchy of importance was identified among the Rep boxes, which appears to be mediated by the minor sequence variations that exist between them. DNA binding studies with truncated Rep proteins have enabled the DNA binding domain to be localized to the N-terminal 134 amino acids of the protein.
Collapse
Affiliation(s)
- Michael A Liu
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Stephen M Kwong
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Cindy K Pon
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Ronald A Skurray
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Neville Firth
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Pinto UM, Flores-Mireles AL, Costa ED, Winans SC. RepC protein of the octopine-type Ti plasmid binds to the probable origin of replication within repC and functions only in cis. Mol Microbiol 2011; 81:1593-606. [PMID: 21883520 DOI: 10.1111/j.1365-2958.2011.07789.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vegetative replication and partitioning of many plasmids and some chromosomes of alphaproteobacteria are directed by their repABC operons. RepA and RepB proteins direct the partitioning of replicons to daughter cells, while RepC proteins are replication initiators, although they do not resemble any characterized replication initiation protein. Here we show that the replication origin of an Agrobacterium tumefaciens Ti plasmid resides fully within its repC gene. Purified RepC bound to a site within repC with moderate affinity, high specificity and with twofold cooperativity. The binding site was localized to an AT-rich region that contains a large number of GANTC sites, which have been implicated in replication regulation in related organisms. A fragment of RepC containing residues 26-158 was sufficient to bind DNA, although with limited sequence specificity. This portion of RepC is predicted to have structural homology to members of the MarR family of transcription factors. Overexpression of RepC in A. tumefaciens caused large increases in copy number in cis but did not change the copy number of plasmids containing the same oriV sequence in trans, confirming other observations that RepC functions only in cis.
Collapse
Affiliation(s)
- Uelinton M Pinto
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
12
|
Cervantes-Rivera R, Pedraza-López F, Pérez-Segura G, Cevallos MA. The replication origin of a repABC plasmid. BMC Microbiol 2011; 11:158. [PMID: 21718544 PMCID: PMC3155836 DOI: 10.1186/1471-2180-11-158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/30/2011] [Indexed: 11/21/2022] Open
Abstract
Background repABC operons are present on large, low copy-number plasmids and on some secondary chromosomes in at least 19 α-proteobacterial genera, and are responsible for the replication and segregation properties of these replicons. These operons consist, with some variations, of three genes: repA, repB, and repC. RepA and RepB are involved in plasmid partitioning and in the negative regulation of their own transcription, and RepC is the limiting factor for replication. An antisense RNA encoded between the repB-repC genes modulates repC expression. Results To identify the minimal region of the Rhizobium etli p42d plasmid that is capable of autonomous replication, we amplified different regions of the repABC operon using PCR and cloned the regions into a suicide vector. The resulting vectors were then introduced into R. etli strains that did or did not contain p42d. The minimal replicon consisted of a repC open reading frame under the control of a constitutive promoter with a Shine-Dalgarno sequence that we designed. A sequence analysis of repC revealed the presence of a large A+T-rich region but no iterons or DnaA boxes. Silent mutations that modified the A+T content of this region eliminated the replication capability of the plasmid. The minimal replicon could not be introduced into R. etli strain containing p42d, but similar constructs that carried repC from Sinorhizobium meliloti pSymA or the linear chromosome of Agrobacterium tumefaciens replicated in the presence or absence of p42d, indicating that RepC is an incompatibility factor. A hybrid gene construct expressing a RepC protein with the first 362 amino acid residues from p42d RepC and the last 39 amino acid residues of RepC from SymA was able to replicate in the presence of p42d. Conclusions RepC is the only element encoded in the repABC operon of the R. etli p42d plasmid that is necessary and sufficient for plasmid replication and is probably the initiator protein. The oriV of this plasmid resides within the repC gene and is located close to or inside of a large A+T region. RepC can act as an incompatibility factor, and the last 39 amino acid residues of the carboxy-terminal region of this protein are involved in promoting this phenotype.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
13
|
Clewell DB. Tales of conjugation and sex pheromones: A plasmid and enterococcal odyssey. Mob Genet Elements 2011; 1:38-54. [PMID: 22016844 PMCID: PMC3190283 DOI: 10.4161/mge.1.1.15409] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 12/11/2022] Open
Abstract
This review covers highlights of the author's experience becoming and working as a plasmid biologist. The account chronicles a progression from studies of ColE1 DNA in Escherichia coli to Gram-positive bacteria with an emphasis on conjugation in enterococci. It deals with gene amplification, conjugative transposons and sex pheromones in the context of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Don B Clewell
- Biologic and Materials Sciences; School of Dentistry and Microbiology and Immunology; Medical School; The University of Michigan; Ann Arbor, MI USA
| |
Collapse
|
14
|
Kuenne C, Voget S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T. Comparative analysis of plasmids in the genus Listeria. PLoS One 2010; 5:e12511. [PMID: 20824078 PMCID: PMC2932693 DOI: 10.1371/journal.pone.0012511] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/10/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND We sequenced four plasmids of the genus Listeria, including two novel plasmids from L. monocytogenes serotype 1/2c and 7 strains as well as one from the species L. grayi. A comparative analysis in conjunction with 10 published Listeria plasmids revealed a common evolutionary background. PRINCIPAL FINDINGS All analysed plasmids share a common replicon-type related to theta-replicating plasmid pAMbeta1. Nonetheless plasmids could be broadly divided into two distinct groups based on replicon diversity and the genetic content of the respective plasmid groups. Listeria plasmids are characterized by the presence of a large number of diverse mobile genetic elements and a commonly occurring translesion DNA polymerase both of which have probably contributed to the evolution of these plasmids. We detected small non-coding RNAs on some plasmids that were homologous to those present on the chromosome of L. monocytogenes EGD-e. Multiple genes involved in heavy metal resistance (cadmium, copper, arsenite) as well as multidrug efflux (MDR, SMR, MATE) were detected on all listerial plasmids. These factors promote bacterial growth and survival in the environment and may have been acquired as a result of selective pressure due to the use of disinfectants in food processing environments. MDR efflux pumps have also recently been shown to promote transport of cyclic diadenosine monophosphate (c-di-AMP) as a secreted molecule able to trigger a cytosolic host immune response following infection. CONCLUSIONS The comparative analysis of 14 plasmids of genus Listeria implied the existence of a common ancestor. Ubiquitously-occurring MDR genes on plasmids and their role in listerial infection now deserve further attention.
Collapse
Affiliation(s)
- Carsten Kuenne
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Sonja Voget
- Goettingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August University Goettingen, Goettingen, Germany
| | - Jordan Pischimarov
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Sebastian Oehm
- Bioinformatics Resource Facility, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics Resource Facility, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rolf Daniel
- Goettingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August University Goettingen, Goettingen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
15
|
Coburn PS, Baghdayan AS, Craig N, Burroughs A, Tendolkar P, Miller K, Najar FZ, Roe BA, Shankar N. A novel conjugative plasmid from Enterococcus faecalis E99 enhances resistance to ultraviolet radiation. Plasmid 2010; 64:18-25. [PMID: 20307569 PMCID: PMC2891438 DOI: 10.1016/j.plasmid.2010.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/02/2010] [Accepted: 03/10/2010] [Indexed: 11/25/2022]
Abstract
Enterococcus faecalis has emerged as a prominent healthcare-associated pathogen frequently encountered in bacteremia, endocarditis, urinary tract infection, and as a leading cause of antibiotic-resistant infections. We recently demonstrated a capacity for high-level biofilm formation by a clinical E. faecalis isolate, E99. This high biofilm-forming phenotype was attributable to a novel locus, designated bee, specifying a pilus at the bacterial cell surface and localized to a large approximately 80 kb conjugative plasmid. To better understand the origin of the bee locus, as well as to potentially identify additional factors important to the biology and pathogenesis of strain E99, we sequenced the entire plasmid. The nucleotide sequence of the plasmid, designated pBEE99, revealed large regions of identity to the previously characterized conjugative plasmid pCF10. In addition to the bee locus, pBEE99 possesses an open reading frame potentially encoding aggregation substance, as well as open reading frames putatively encoding polypeptides with 60% to 99% identity at the amino acid level to proteins involved in regulation of the pheromone response and conjugal transfer of pCF10. However, strain E99 did not respond to the cCF10 pheromone in clumping assays. While pBEE99 was found to be devoid of any readily recognizable antibiotic resistance determinants, it carries two non-identical impB/mucB/samB-type genes, as well as genes potentially encoding a two-component bacteriocin similar to that encoded on pYI14. Although no bacteriocin activity was detected from an OG1RF transconjugant carrying pBEE99 against strain FA2-2, it was approximately an order of magnitude more resistant to ultraviolet radiation. Moreover, curing strain E99 of this plasmid significantly reduced its ability to survive UV exposure. Therefore, pBEE99 represents a novel conjugative plasmid that confers biofilm-forming and enhanced UV resistance traits that might potentially impact the virulence and/or fitness of E. faecalis.
Collapse
Affiliation(s)
- Phillip S Coburn
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73126, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sequence analysis of plasmid pIR52-1 from Lactobacillus helveticus R0052 and investigation of its origin of replication. Plasmid 2010; 63:108-17. [DOI: 10.1016/j.plasmid.2009.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 11/20/2022]
|
17
|
Weaver KE, Kwong SM, Firth N, Francia MV. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids. Plasmid 2009; 61:94-109. [PMID: 19100285 PMCID: PMC2652615 DOI: 10.1016/j.plasmid.2008.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multiresistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
18
|
Kwong SM, Lim R, LeBard RJ, Skurray RA, Firth N. Analysis of the pSK1 replicon, a prototype from the staphylococcal multiresistance plasmid family. Microbiology (Reading) 2008; 154:3084-3094. [DOI: 10.1099/mic.0.2008/017418-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Stephen M. Kwong
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - Ricky Lim
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - Rebecca J. LeBard
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - Ronald A. Skurray
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - Neville Firth
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
19
|
Criado R, Gutiérrez J, Budin-Verneuil A, Hernández PE, Hartke A, Cintas LM, Auffray Y, Benachour A. Molecular analysis of the replication region of the pCIZ2 plasmid from the multiple bacteriocin producer strain Enterococcus faecium L50. Plasmid 2008; 60:181-9. [PMID: 18692522 DOI: 10.1016/j.plasmid.2008.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/08/2008] [Accepted: 07/15/2008] [Indexed: 11/25/2022]
Abstract
The sequence analysis of the 7383 bp plasmid pCIZ2 from Enterococcus faecium L50 enabled the identification of a DNA region involved in its replication. The structural organization of the pCIZ2 replication region is highly similar to those of well-known theta-replicating plasmids. It contains an untranslated region, the putative replication origin (ori), constituted by two sets of direct repeats of 12 and 22 bp (iterons), and followed by three open-reading frames (orf8 to orf10). orf8 encodes the replication initiation protein (RepE). The transcriptional start site of the replication locus was identified 13 nucleotides upstream of the repE start codon. A two-dimensional agarose gel electrophoresis analysis revealed pCIZ2 intermediates profile typical of the theta-type replication mechanism. Subcloning of different DNA fragments of the pCIZ2 replication region in Escherichia coli and, subsequently, in the plasmidless E. faecium L50/14-2 allowed the determination of the minimal replicon on a 1.2kb DNA fragment containing only the overall ori and repE which also act in trans. The involvement of orf9 in the plasmid copy number and in the plasmid stability was investigated. The pCIZ2 recombinant plasmids constitute narrow-host range shuttle cloning vectors (E. coli-E. faecium) that could be very useful for enterococcal genes studies, allowing an easy identification due to their histochemical recognition.
Collapse
Affiliation(s)
- R Criado
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
repABC plasmids are widely distributed among alpha-proteobacteria. They are especially common in Rhizobiales. Some strains of this bacterial order can contain multiple repABC replicons indicating that this plasmid family includes several incompatibility groups. The replication and stable maintenance of these replicons depend on the presence of a repABC operon. The repABC operons sequenced to date share some general characteristics. All of them contain at least three protein-encoding genes: repA, repB and repC. The first two genes encode proteins involved in plasmid segregation, whereas repC encodes a protein crucial for replication. The origin of replication maps within the repC gene. In contrast, the centromere-like sequence (parS) can be located at various positions in the operon. In this review we will summarize current knowledge about this plasmid family, with special emphasis on their structural diversity and their complex genetic regulation. Finally, we will examine some ideas about their evolutionary origin and trends.
Collapse
|
21
|
Francia MV, Weaver KE, Goicoechea P, Tille P, Clewell DB. Characterization of an active partition system for the Enterococcus faecalis pheromone-responding plasmid pAD1. J Bacteriol 2007; 189:8546-55. [PMID: 17905984 PMCID: PMC2168961 DOI: 10.1128/jb.00719-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis plasmid pAD1 is a 60-kb conjugative, low-copy-number plasmid that encodes a mating response to the peptide sex pheromone cAD1 and a cytolytic exotoxin that contributes to virulence. Although aspects of conjugation have been studied extensively, relatively little is known about the control of pAD1 maintenance. Previous work on pAD1 identified a 5-kb region of DNA sufficient to support replication, copy control, and stable inheritance (K. E. Weaver, D. B. Clewell, and F. An, J. Bacteriol. 175:1900-1909, 1993), and recently, the pAD1 replication initiator (RepA) and the origin of vegetative replication (oriV) were characterized (M. V. Francia, S. Fujimoto, P. Tille, K. E. Weaver, and D. B. Clewell, J. Bacteriol. 186:5003-5016, 2004). The present study focuses on the adjacent determinants repB and repC, as well as a group of 25 8-bp direct repeats (iterons with the consensus sequence TAGTARRR) located between the divergently transcribed repA and repB. Through mutagenesis and trans-complementation experiments, RepB (a 33-kDa protein, a member of the ParA superfamily of ATPases) and RepC (a protein of 14.4 kDa) were shown to be required for maximal stabilization. Both were active in trans. The iteron region was shown to act as the pAD1 centromere-like site. Purified RepC was shown by DNA mobility shift and DNase I footprinting analyses to interact in a sequence-specific manner with the iteron repeats upstream of the repBC locus. The binding of RepC to the iteron region was shown to be modified by RepB in the presence of ATP via a possible interaction with the RepC-iteron complex. RepB did not bind to the iteron region in the absence of RepC.
Collapse
Affiliation(s)
- Maria Victoria Francia
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Avda. de Valdecilla s/n, 39008 Santander, Cantabria, Spain.
| | | | | | | | | |
Collapse
|
22
|
Clewell DB. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 2007; 58:205-27. [PMID: 17590438 DOI: 10.1016/j.plasmid.2007.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/02/2007] [Accepted: 05/12/2007] [Indexed: 11/23/2022]
Abstract
The 60-kb pAD1 represents a large and widely disseminated family of conjugative, pheromone-responding, virulence plasmids commonly found in clinical isolates of Enterococcus faecalis. It encodes a hemolysin/bacteriocin (cytolysin) shown to contribute to virulence in animal models, and the related bacteriocin is active against a wide variety of Gram-positive bacteria. This review summarizes what is currently known about the molecular biology of pAD1, including aspects of its cytolytic, UV-resistance, replication, maintenance, and conjugative properties.
Collapse
Affiliation(s)
- Don B Clewell
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
23
|
Weaver KE. Emerging plasmid-encoded antisense RNA regulated systems. Curr Opin Microbiol 2007; 10:110-6. [PMID: 17376732 DOI: 10.1016/j.mib.2007.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/08/2007] [Indexed: 11/23/2022]
Abstract
Classic antisense RNA research has focused on detailed examination of a few plasmid-encoded systems whilst more recent efforts have focused on chromosomally encoded small RNAs. Recent work on newly identified plasmid-encoded antisense RNAs suggest that there is still much to learn from them about the versatility of regulatory RNAs. The alpha-proteobacterial repABC plasmids produce an antisense RNA that regulates the replication initiator independently of the partition proteins encoded in the same operon. The Staphylococcus aureus plasmid pSK41 produces an antisense RNA that regulates the replication initiator protein by a translational attenuation mechanism. Enterococcus faecalis pheromone-responsive plasmids produce plasmid-specific variants of an antisense RNA that regulates conjugation structural genes by a transcriptional attenuation mechanism. E. faecalis plasmid pAD1 encodes an antisense RNA-regulated addiction module that combines features of classic plasmid-encoded and trans-regulated chromosomally encoded antisense systems. Studies on these systems will expand our understanding of the repertoire of small RNA regulators.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| |
Collapse
|
24
|
Huang J, Guo S, Mahillon J, Van der Auwera GA, Wang L, Han D, Yu Z, Sun M. Molecular characterization of a DNA fragment harboring the replicon of pBMB165 from Bacillus thuringiensis subsp. tenebrionis. BMC Genomics 2006; 7:270. [PMID: 17059605 PMCID: PMC1626470 DOI: 10.1186/1471-2164-7-270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/23/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus thuringiensis belongs to the Bacillus cereus sensu lato group of Gram-positive and spore-forming bacteria. Most isolates of B. thuringiensis can bear many endogenous plasmids, and the number and size of these plasmids can vary widely among strains or subspecies. As far as we know, the replicon of the plasmid pBMB165 is the first instance of a plasmid replicon being isolated from subsp. tenebrionis and characterized. RESULTS A 20 kb DNA fragment containing a plasmid replicon was isolated from B. thuringiensis subsp. tenebrionis YBT-1765 and characterized. By Southern blot analysis, this replicon region was determined to be located on pBMB165, the largest detected plasmid (about 82 kb) of strain YBT-1765. Deletion analysis revealed that a replication initiation protein (Rep165), an origin of replication (ori165) and an iteron region were required for replication. In addition, two overlapping ORFs (orf6 and orf10) were found to be involved in stability control of plasmid. Sequence comparison showed that the replicon of pBMB165 was homologous to the pAMbeta1 family replicons, indicating that the pBMB165 replicon belongs to this family. The presence of five transposable elements or remnants thereof in close proximity to and within the replicon control region led us to speculate that genetic exchange and recombination are potentially responsible for the divergence among the replicons of this plasmid family. CONCLUSION The replication and stability features of the pBMB165 from B. thuringiensis subsp. tenebrionis YBT-1765 were identified. Of particular interest is the homology and divergence shared between the pBMB165 replicon and other pAMbeta1 family replicons.
Collapse
Affiliation(s)
- Junyan Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Suxia Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Dongmei Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| |
Collapse
|
25
|
Tanaka T, Ishida H, Maehara T. Characterization of the replication region of plasmid pLS32 from the Natto strain of Bacillus subtilis. J Bacteriol 2005; 187:4315-26. [PMID: 15968040 PMCID: PMC1151765 DOI: 10.1128/jb.187.13.4315-4326.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid pL32 from the Natto strain of Bacillus subtilis belongs to a group of low-copy-number plasmids in gram-positive bacteria that replicate via a theta mechanism of replication. We studied the DNA region encoding the replication protein, RepN, of pLS32, and obtained the following results. Transcription of the repN gene starts 167 nucleotides upstream from the translational start site of repN. The copy number of repN-coding plasmid pHDCS2, in which the repN gene was placed downstream of the IPTG (isopropyl-1-thio-beta-D-galactopyranoside)-inducible Pspac promoter, was increased 100 fold by the addition of IPTG. Histidine-tagged RepN bound to a specific region in the repN gene containing five 22-bp tandem repeats (iterons) with partial mismatches, as shown by gel retardation and foot printing analyses. Sequence alterations in the first three iterons resulted in an increase in plasmid copy number, whereas those in either the forth or fifth iteron resulted in the failure of plasmid replication. The iterons expressed various degrees of incompatibility with an incoming repN-driven replicon pSEQ243, with the first three showing the strongest incompatibility. Finally, by using a plasmid, pHDMAEC21, carrying the sequence alterations in all the five iterons in repN and thus unable to replicate but encoding intact RepN, the region necessary for replication was confined to a 96-bp sequence spanning the 3'-terminal half of the fourth iteron to an A+T-rich region located downstream of the fifth iteron. From these results, we conclude that the iterons in repN are involved in both the control of plasmid copy number and incompatibility, and we suggest that the binding of RepN to the last two iterons triggers replication by melting the A+T-rich DNA sequence.
Collapse
Affiliation(s)
- Teruo Tanaka
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Shimizuorido, Shizuoka 424-8610, Japan.
| | | | | |
Collapse
|
26
|
Van der Auwera GA, Andrup L, Mahillon J. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 2005; 6:103. [PMID: 16042811 PMCID: PMC1196294 DOI: 10.1186/1471-2164-6-103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/26/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. RESULTS The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI) containing the anthrax capsule genes. CONCLUSION The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis serovar konkukian strain 97-27.
Collapse
Affiliation(s)
- Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Lars Andrup
- National Institute of Occupational Health, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|