1
|
Naz S, Liu P, Farooq U, Ma H. Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method. Microb Cell Fact 2023; 22:161. [PMID: 37612753 PMCID: PMC10464499 DOI: 10.1186/s12934-023-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.
Collapse
Affiliation(s)
- Sadia Naz
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
2
|
Liu W, Zhang Y, Zhang B, Zou H. Expression of ZmNAGK in tobacco enhances heat stress tolerance via activation of antioxidant-associated defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107719. [PMID: 37148659 DOI: 10.1016/j.plaphy.2023.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Heat stress severely inhibits plant growth and limits crop yields. Thus, it is crucial to identify genes that are associated with plant heat stress responses. Here, we report a maize (Zea mays L.) gene, N-acetylglutamate kinase (ZmNAGK), that positively enhances plant heat stress tolerance. The ZmNAGK expression level was significantly up-regulated by heat stress in maize plants, and ZmNAGK was found to be localized in maize chloroplasts. Phenotypic analysis showed that overexpressing of ZmNAGK enhanced the tolerance of tobacco to heat stress both in the seed germination and seedling growth stages. Further physiological analysis showed that ZmNAGK overexpression in tobacco could alleviate oxidative damages that occurred during heat stress via activation of antioxidant defense signaling. Transcriptome analysis revealed that ZmNAGK could modulate the expression of antioxidant-enzyme encoding genes, such as ascorbate peroxidase 2 (APX2) and superoxide dismutase C (SODC), and heat shock network genes. Taken together, we have identified a maize gene that can provide plants with heat tolerance through the induction of antioxidant-associated defense signaling.
Collapse
Affiliation(s)
- Weijuan Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| | - Yan Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Binglin Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Huawen Zou
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
3
|
McCarthy JK, Smith SR, McCrow JP, Tan M, Zheng H, Beeri K, Roth R, Lichtle C, Goodenough U, Bowler CP, Dupont CL, Allen AE. Nitrate Reductase Knockout Uncouples Nitrate Transport from Nitrate Assimilation and Drives Repartitioning of Carbon Flux in a Model Pennate Diatom. THE PLANT CELL 2017; 29:2047-2070. [PMID: 28765511 PMCID: PMC5590495 DOI: 10.1105/tpc.16.00910] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/06/2017] [Accepted: 07/29/2017] [Indexed: 05/03/2023]
Abstract
The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO3-). To investigate the cellular and genetic basis of diatom NO3- assimilation, we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum In NR-KO cells, N-assimilation was abolished although NO3- transport remained intact. Unassimilated NO3- accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO3- chloride channel transporters plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO3- Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO3-, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO3- addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO3- replete and deplete conditions.
Collapse
Affiliation(s)
- James K McCarthy
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Sarah R Smith
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California 92037
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Maxine Tan
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Hong Zheng
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Karen Beeri
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Robyn Roth
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Christian Lichtle
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR8197 INSERM U1024, 75005 Paris, France
| | - Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Chris P Bowler
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR8197 INSERM U1024, 75005 Paris, France
| | - Christopher L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California 92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California 92037
| |
Collapse
|
4
|
Yang X. Conformational dynamics play important roles upon the function of N-acetylglutamate kinase. Appl Microbiol Biotechnol 2017; 101:3485-3492. [PMID: 28341883 DOI: 10.1007/s00253-017-8237-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022]
Abstract
N-acetylglutamate kinase (NAGK) catalyzes the phosphorylation of N-acetylglutamate. In many bacteria, NAGK catalysis is the rate controlling step in the L-arginine biosynthesis pathway from glutamate to L-arginine and is allosterically inhibited by L-arginine. Many data show that conformational dynamics of NAGKs are essential for their function. The demonstration of the conformational mechanism provides a potential way to improve the yield of arginine. Due to the lack of NAGK catalysis step in arginine synthesis route of mammals, the elucidation of the dynamic mechanism can also provide a way to design a new antivirus drug. This paper reviews how the dynamics affect the activity of NAGKs and are controlled by the effectors. X-ray crystallography and modeling data have shown that in NAGKs, the structural elements required for inhibitor and substrate binding, catalysis and product release, are highly mobile. It is possible to eliminate the inhibition of the arginine and/or block the synthesis of arginine by disturbing the flexibility of the NAGKs. Amino acid kinase family is thought to share some common dynamic features; the flexible structural elements of NAGKs have been identified, but the details of the dynamics and the signal transfer pathways are yet to be elucidated.
Collapse
Affiliation(s)
- Xiaorong Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, People's Republic of China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, People's Republic of China. .,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
5
|
Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity. Appl Microbiol Biotechnol 2015; 100:1789-1798. [DOI: 10.1007/s00253-015-7065-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/29/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
6
|
Hao N, Mu J, Hu N, Xu S, Shen P, Yan M, Li Y, Xu L. Implication of ornithine acetyltransferase activity on l-ornithine production in Corynebacterium glutamicum. Biotechnol Appl Biochem 2015; 63:15-21. [PMID: 25630515 DOI: 10.1002/bab.1353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/25/2015] [Indexed: 11/07/2022]
Abstract
l-Ornithine is an intermediate of the l-arginine biosynthetic pathway in Corynebacterium glutamicum. The effect of ornithine acetyltransferase (OATase; ArgJ) on l-ornithine production was investigated, and C. glutamicum 1006 was engineered to overproduce l-ornithine as a major product by inactivating regulatory repressor argR gene and overexpressing argJ gene. A genome sequence analysis indicated that the argF gene encoding ornithine carbamoyltransferase in C. glutamicum 1006 was mutated, resulting in the accumulation of a certain amount of l-ornithine (20.5 g/L). The assays using a crude extract of C. glutamicum 1006 indicated that the l-ornithine concentration for 50% inhibition of OAT was 5 mM. To enhance l-ornithine production, the argJ gene from C. glutamicum ATCC 13032 was overexpressed. In flask cultures, the resulting strain, C. glutamicum 1006∆argR-argJ, produced 31.6 g/L l-ornithine, which is 54.15% more than that produced by C. glutamicum 1006. The OAT activity of C. glutamicum 1006∆argR-argJ was significantly greater than that of C. glutamicum 1006, and this study achieved the highest conversion ratio of sugar to acid (0.396 g/g) compared with those of previous reports. ArgJ strongly influences the production of l-ornithine in C. glutamicum.
Collapse
Affiliation(s)
- Ning Hao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Jingrui Mu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Nan Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Peng Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Ming Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Lin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Hernández VM, Girard L, Hernández-Lucas I, Vázquez A, Ortíz-Ortíz C, Díaz R, Dunn MF. Genetic and biochemical characterization of arginine biosynthesis in Sinorhizobium meliloti 1021. Microbiology (Reading) 2015; 161:1671-1682. [DOI: 10.1099/mic.0.000122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Victor M. Hernández
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Lourdes Girard
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Alejandra Vázquez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Catalina Ortíz-Ortíz
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Rafael Díaz
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Michael F. Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| |
Collapse
|
8
|
Huang Y, Zhang H, Tian H, Li C, Han S, Lin Y, Zheng S. Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 99:7527-37. [DOI: 10.1007/s00253-015-6469-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 11/24/2022]
|
9
|
Katoh H, Miyata SI, Inoue H, Iwanami T. Unique features of a Japanese 'Candidatus Liberibacter asiaticus' strain revealed by whole genome sequencing. PLoS One 2014; 9:e106109. [PMID: 25180586 PMCID: PMC4152171 DOI: 10.1371/journal.pone.0106109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/30/2014] [Indexed: 12/05/2022] Open
Abstract
Citrus greening (huanglongbing) is the most destructive disease of citrus worldwide. It is spread by citrus psyllids and is associated with phloem-limited bacteria of three species of α-Proteobacteria, namely, 'Candidatus Liberibacter asiaticus', 'Ca. L. americanus', and 'Ca. L. africanus'. Recent findings suggested that some Japanese strains lack the bacteriophage-type DNA polymerase region (DNA pol), in contrast to the Floridian psy62 strain. The whole genome sequence of the pol-negative 'Ca. L. asiaticus' Japanese isolate Ishi-1 was determined by metagenomic analysis of DNA extracted from 'Ca. L. asiaticus'-infected psyllids and leaf midribs. The 1.19-Mb genome has an average 36.32% GC content. Annotation revealed 13 operons encoding rRNA and 44 tRNA genes, but no typical bacterial pathogenesis-related genes were located within the genome, similar to the Floridian psy62 and Chinese gxpsy. In contrast to other 'Ca. L. asiaticus' strains, the genome of the Japanese Ishi-1 strain lacks a prophage-related region.
Collapse
Affiliation(s)
- Hiroshi Katoh
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan
| | | | - Hiromitsu Inoue
- Kuchinotsu Citrus Research Station, NARO Institute of Fruit Tree Science, Minami-shimabara, Nagasaki, Japan
| | - Toru Iwanami
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
de Cima S, Gil-Ortiz F, Crabeel M, Fita I, Rubio V. Insight on an arginine synthesis metabolon from the tetrameric structure of yeast acetylglutamate kinase. PLoS One 2012; 7:e34734. [PMID: 22529931 PMCID: PMC3329491 DOI: 10.1371/journal.pone.0034734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ∼150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the −110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.
Collapse
Affiliation(s)
- Sergio de Cima
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Fernando Gil-Ortiz
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Marjolaine Crabeel
- Department of Genetics and Microbiology Emeritus, Vrije Universiteit, Brussel, Belgium
| | - Ignacio Fita
- Instituto de Biologia Molecular de Barcelona IBMB-CSIC/Institute of Research in Biomedicine (IRB-Barcelona), Parc Cientific, Barcelona, Spain
- * E-mail: (VR); (IF)
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
- * E-mail: (VR); (IF)
| |
Collapse
|
11
|
Sundaresan R, Ragunathan P, Kuramitsu S, Yokoyama S, Kumarevel T, Ponnuraj K. The structure of putative N-acetyl glutamate kinase from Thermus thermophilus reveals an intermediate active site conformation of the enzyme. Biochem Biophys Res Commun 2012; 420:692-7. [DOI: 10.1016/j.bbrc.2012.03.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 03/13/2012] [Indexed: 11/26/2022]
|
12
|
Functional dissection of N-acetylglutamate synthase (ArgA) of Pseudomonas aeruginosa and restoration of its ancestral N-acetylglutamate kinase activity. J Bacteriol 2012; 194:2791-801. [PMID: 22447897 DOI: 10.1128/jb.00125-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many microorganisms, the first step of arginine biosynthesis is catalyzed by the classical N-acetylglutamate synthase (NAGS), an enzyme composed of N-terminal amino acid kinase (AAK) and C-terminal histone acetyltransferase (GNAT) domains that bind the feedback inhibitor arginine and the substrates, respectively. In NAGS, three AAK domain dimers are interlinked by their N-terminal helices, conforming a hexameric ring, whereas each GNAT domain sits on the AAK domain of an adjacent dimer. The arginine inhibition of Pseudomonas aeruginosa NAGS was strongly hampered, abolished, or even reverted to modest activation by changes in the length/sequence of the short linker connecting both domains, supporting a crucial role of this linker in arginine regulation. Linker cleavage or recombinant domain production allowed the isolation of each NAGS domain. The AAK domain was hexameric and inactive, whereas the GNAT domain was monomeric/dimeric and catalytically active although with ∼50-fold-increased and ∼3-fold-decreased K(m)(glutamate) and k(cat) values, respectively, with arginine not influencing its activity. The deletion of N-terminal residues 1 to 12 dissociated NAGS into active dimers, catalyzing the reaction with substrate kinetics and arginine insensitivity identical to those for the GNAT domain. Therefore, the interaction between the AAK and GNAT domains from different dimers modulates GNAT domain activity, whereas the hexameric architecture appears to be essential for arginine inhibition. We proved the closeness of the AAK domains of NAGS and N-acetylglutamate kinase (NAGK), the enzyme that catalyzes the next arginine biosynthesis step, shedding light on the origin of classical NAGS, by showing that a double mutation (M26K L240K) in the isolated NAGS AAK domain elicited NAGK activity.
Collapse
|
13
|
A novel N-acetylglutamate synthase architecture revealed by the crystal structure of the bifunctional enzyme from Maricaulis maris. PLoS One 2011; 6:e28825. [PMID: 22174908 PMCID: PMC3236213 DOI: 10.1371/journal.pone.0028825] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/15/2011] [Indexed: 11/19/2022] Open
Abstract
Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 Å resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26° is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.
Collapse
|
14
|
Site-Directed Mutagenesis Studies on the l-Arginine-Binding Sites of Feedback Inhibition in N-Acetyl-l-glutamate Kinase (NAGK) from Corynebacterium glutamicum. Curr Microbiol 2011; 64:164-72. [DOI: 10.1007/s00284-011-0042-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 10/10/2011] [Indexed: 11/26/2022]
|
15
|
Xu M, Rao Z, Dou W, Yang J, Jin J, Xu Z. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids 2011; 43:255-66. [DOI: 10.1007/s00726-011-1069-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
16
|
The crystal structure of the cephalosporin deacetylating enzyme acetyl xylan esterase bound to paraoxon explains the low sensitivity of this serine hydrolase to organophosphate inactivation. Biochem J 2011; 436:321-30. [DOI: 10.1042/bj20101859] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Organophosphorus insecticides and nerve agents irreversibly inhibit serine hydrolase superfamily enzymes. One enzyme of this superfamily, the industrially important (for β-lactam antibiotic synthesis) AXE/CAH (acetyl xylan esterase/cephalosporin acetyl hydrolase) from the biotechnologically valuable organism Bacillus pumilus, exhibits low sensitivity to the organophosphate paraoxon (diethyl-p-nitrophenyl phosphate, also called paraoxon-ethyl), reflected in a high Ki for it (~5 mM) and in a slow formation (t½~1 min) of the covalent adduct of the enzyme and for DEP (E-DEP, enzyme–diethyl phosphate, i.e. enzyme–paraoxon). The crystal structure of the E-DEP complex determined at 2.7 Å resolution (1 Å=0.1 nm) reveals strain in the active Ser181-bound organophosphate as a likely cause for the limited paraoxon sensitivity. The strain results from active-site-size limitation imposed by bulky conserved aromatic residues that may exclude as substrates esters having acyl groups larger than acetate. Interestingly, in the doughnut-like homohexamer of the enzyme, the six active sites are confined within a central chamber formed between two 60°-staggered trimers. The exclusive access to this chamber through a hole around the three-fold axis possibly limits the size of the xylan natural substrates. The enzyme provides a rigid scaffold for catalysis, as reflected in the lack of movement associated with paraoxon adduct formation, as revealed by comparing this adduct structure with that also determined in the present study at 1.9 Å resolution for the paraoxon-free enzyme.
Collapse
|
17
|
Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo EL, Chen C, Duan Y, Zhou L, Vahling CM. The complete genome sequence of 'Candidatus Liberibacter solanacearum', the bacterium associated with potato zebra chip disease. PLoS One 2011; 6:e19135. [PMID: 21552483 PMCID: PMC3084294 DOI: 10.1371/journal.pone.0019135] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/17/2011] [Indexed: 12/21/2022] Open
Abstract
Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with 'Candidatus Liberibacter solanacearum', a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for 'Ca. L. solanacearum'. Here we present the sequence of the 1.26 Mbp metagenome of 'Ca. L. solanacearum', based on DNA isolated from potato psyllids. The coding inventory of the 'Ca. L. solanacearum' genome was analyzed and compared to related Rhizobiaceae to better understand 'Ca. L. solanacearum' physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, 'Ca. L. solanacearum' is related to 'Ca. L. asiaticus', a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to 'Ca. L. asiaticus', 'Ca. L. solanacearum' probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes.
Collapse
Affiliation(s)
- Hong Lin
- United States Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pérez-Arellano I, Carmona-Álvarez F, Gallego J, Cervera J. Molecular Mechanisms Modulating Glutamate Kinase Activity. Identification of the Proline Feedback Inhibitor Binding Site. J Mol Biol 2010; 404:890-901. [DOI: 10.1016/j.jmb.2010.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 11/16/2022]
|
19
|
Glutamate kinase from Thermotoga maritima: characterization of a thermophilic enzyme for proline biosynthesis. Extremophiles 2010; 14:409-15. [PMID: 20544237 DOI: 10.1007/s00792-010-0320-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Glutamate kinase (GK), an enzyme involved in osmoprotection in plants and microorganisms, catalyses the first and controlling step of proline biosynthesis. The proB gene encoding GK was cloned from the hyperthermophilic bacterium Thermotoga maritima and overexpressed in Escherichia coli, and the resulting protein was purified to homogeneity in three simple steps. T. maritima GK behaved as a tetramer, showing maximal activity at 83 degrees C, and was inhibited by ADP and proline. Although T. maritima GK exhibited high amino acid similarity to the mesophilic E. coli GK, it was less dependent of Mg ions and was not aggregated in the presence of proline. Moreover, it displayed a greater thermostability and higher catalytic efficiency than its mesophilic counterpart at elevated temperatures.
Collapse
|
20
|
Gil-Ortiz F, Ramón-Maiques S, Fernández-Murga ML, Fita I, Rubio V. Two crystal structures of Escherichia coli N-acetyl-L-glutamate kinase demonstrate the cycling between open and closed conformations. J Mol Biol 2010; 399:476-90. [PMID: 20403363 DOI: 10.1016/j.jmb.2010.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/18/2022]
Abstract
N-Acetyl-L-glutamate kinase (NAGK), the paradigm enzyme of the amino acid kinase family, catalyzes the second step of arginine biosynthesis. Although substrate binding and catalysis were clarified by the determination of four crystal structures of the homodimeric Escherichia coli enzyme (EcNAGK), we now determine 2 A resolution crystal structures of EcNAGK free from substrates or complexed with the product N-acetyl-L-glutamyl-5-phosphate (NAGP) and with sulfate, which reveal a novel, very open NAGK conformation to which substrates would associate and from which products would dissociate. In this conformation, the C-domain, which hosts most of the nucleotide site, rotates approximately 24 degrees -28 degrees away from the N-domain, which hosts the acetylglutamate site, whereas the empty ATP site also exhibits some changes. One sulfate is found binding in the region where the beta-phosphate of ATP normally binds, suggesting that ATP is first anchored to the beta-phosphate site, before perfect binding by induced fit, triggering the shift to the closed conformation. In contrast, the acetylglutamate site is always well formed, although its beta-hairpin lid is found here to be mobile, being closed only in the subunit of the EcNAGK-NAGP complex that binds NAGP most strongly. Lid closure appears to increase the affinity for acetylglutamate/NAGP and to stabilize the closed enzyme conformation via lid-C-domain contacts. Our finding of NAGP bound to the open conformation confirms that this product dissociates from the open enzyme form and allows reconstruction of the active center in the ternary complex with both products, delineating the final steps of the reaction, which is shown here by site-directed mutagenesis to involve centrally the invariant residue Gly11.
Collapse
Affiliation(s)
- Fernando Gil-Ortiz
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Jaime Roig 11, Valencia 46010, Spain
| | | | | | | | | |
Collapse
|
21
|
Chen M, Poulter CD. Characterization of thermophilic archaeal isopentenyl phosphate kinases. Biochemistry 2010; 49:207-17. [PMID: 19928876 DOI: 10.1021/bi9017957] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Archaea synthesize isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the essential building blocks of isoprenoid compounds, from mevalonate (MVA). However, an analysis of the genomes of several members of the Archaea failed to identify genes for the enzymes required to convert phosphomevalonate (PM) to IPP in eukaryotes. The recent discovery of an isopentenyl kinase (IPK) in Methanocaldococcus jannaschii (MJ) suggests a new variation of the MVA pathway where PM is decarboxylated to give isopentenyl phosphate (IP), which is phosphorylated to produce IPP. A blast search using the MJ protein as a probe revealed a subfamily of amino acid kinases that include the fosfomycin resistance protein fomA, which deactivates the antibiotic by phosphorylation of its phosphonate residue in a reaction similar to the conversion of IP to IPP. IPK genes were cloned from two organisms identified in the search, Methanothermobacter thermautotrophicus (MTH) and Thermoplasma acidophilum (THA), and the His-tagged recombinant proteins were purified by Ni-NTA chromatography. The enzymes catalyze the reversible phosphorylation of IP by ATP, K(eq) = 6.3 +/- 1. The catalytic efficiencies (V/K) of the proteins were approximately 2 x 10(6) M(-1) s(-1). In the reverse direction, ADP was a substrate inhibitor for THA IPK, K(i)(ADP) = 58 +/- 6 microM, but not for MTH IPK. Both enzymes were active over a broad range of pH and temperature. Five compounds, dimethylallyl phosphate, isopentenyl thiolophosphate, 1-butyl phosphate, 3-buten-1-yl phosphate, and geranyl phosphate, were evaluated as alternative substrates for the MTH and THA IP kinases. All of the compounds were phosphorylated, although the catalytic efficiency was low for geranyl phosphate.
Collapse
Affiliation(s)
- Mo Chen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
22
|
Proline reduces the binding of transcriptional regulator ArgR to upstream of argB in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2009; 86:235-42. [PMID: 19798496 DOI: 10.1007/s00253-009-2264-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
In this study, the ArgR-binding sites on the arg operon Corynbebacterium glutamicum were characterized by in vivo chromatin immunoprecipitation (ChIP). In addition, the ArgR-binding affinity in the presence of glutamate, proline, or arginine was examined to get further information on expression control. The ChIP assay showed that the ArgR protein binds specifically to the upstream regions of argC, argB, argF, and argG. Upon proline supplementation, ArgR-binding affinity was significantly reduced upstream of argB, resulting in increased ornithine production. In contrast, there was no change in the binding affinity of ArgR to the upstream regions of argC, argF, argG, or argB following the addition of glutamate and arginine. These results suggest that the upstream region of argB on the arg operon plays an important role in interacting with ArgR under proline-supplemented conditions and that proline causes an increase in the endogenous level of ornithine by reducing the binding affinity of ArgR to the upstream region of argB.
Collapse
|
23
|
Lee SY, Kim YH, Min J. The effect of ArgR-DNA binding affinity on ornithine production in Corynebacterium glutamicum. Curr Microbiol 2009; 59:483-8. [PMID: 19688381 DOI: 10.1007/s00284-009-9467-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 05/07/2009] [Accepted: 07/17/2009] [Indexed: 11/26/2022]
Abstract
pEMBTL-SY1, which can over produce the ArgR protein in Corynebacterium glutamicum, was constructed. The DNA-binding affinity of ArgR was analyzed using a Chromatin Immunoprecipitation (ChIP) assay. The level of ArgR protein expression in the plasmid-carrying C. glutamicum (pEMBTL-SY1) was higher than that in the wild-type strain. On the other hand, there was no increase in the DNA-binding affinity of ArgR on the upstream of argB and the level of ornithine production. The DNA-binding affinity of ArgR on the arg operon and the level of ornithine production in the presence of three metabolites, ornithine, arginine, and proline, were examined as feedback controlling effectors in the arginine biosynthesis pathway in C. glutamicum. The ChIP assay showed that the supplemented metabolites altered the ArgR-binding affinity on the upstream of argB, which is consistent with the change in ornithine production. This suggests that the regulation of ornithine biosynthesis by the transcriptional regulator, ArgR, depends on the DNA-binding affinity of the arg operon, which is regulated by the feedback controlling effectors, rather than on the level of ArgR protein expression.
Collapse
Affiliation(s)
- Soo Youn Lee
- Division of Chemical Engineering, Chonbuk National University, Jeonju, South Korea
| | | | | |
Collapse
|
24
|
The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats. PLoS Genet 2009; 5:e1000416. [PMID: 19283063 PMCID: PMC2652115 DOI: 10.1371/journal.pgen.1000416] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 02/10/2009] [Indexed: 11/19/2022] Open
Abstract
Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish-borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors-such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases-are present. Proteomes of L. hongkongensis HLHK9 cultured at 37 degrees C (human body temperature) and 20 degrees C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)-NAGK-20 and NAGK-37-in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20 degrees C, whereas NAGK-37 showed higher expression at 37 degrees C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other bacteria. Genome and proteome analysis of L. hongkongensis revealed novel mechanisms for adaptations to survival at different temperatures and habitats.
Collapse
|
25
|
Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 2009; 75:1635-41. [PMID: 19139237 PMCID: PMC2655454 DOI: 10.1128/aem.02027-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/06/2009] [Indexed: 11/20/2022] Open
Abstract
Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (Delta argR), the production was further increased. The best mutation set, Delta argR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical L-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance, thus allowing significantly higher productivity of arginine/citrulline even at the suboptimal 38 degrees C.
Collapse
Affiliation(s)
- Masato Ikeda
- Bioprocess Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki 305-0841, Japan. m
| | | | | | | |
Collapse
|
26
|
Abstract
When nitrogen is abundant, prokaryotic and eukaryotic oxygen-producing photosynthetic organisms store nitrogen as arginine, by relieving feedback inhibition of the arginine biosynthesis controlling enzyme, N-acetylglutamate kinase (NAGK). The signalling protein PII, an ancient and widely distributed nitrogen/carbon/ADP/ATP sensor, mediates feedback inhibition relief of NAGK by binding to this enzyme. PII phosphorylation or PII binding of ADP or 2-oxoglutarate prevents PII-NAGK complex formation. Crystal structures of NAGK, cyanobacterial and plant PII and corresponding PII-NAGK complexes have been recently determined. In these complexes, two polar PII trimers sandwich one ring-like NAGK hexamer. Each PII subunit contacts one NAGK subunit, triggering a symmetry-restricted narrowing of the NAGK ring, with concomitant adoption by the arginine sites of a low-affinity conformation.
Collapse
|
27
|
Basis of arginine sensitivity of microbial N-acetyl-L-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes. J Bacteriol 2008; 190:3018-25. [PMID: 18263723 DOI: 10.1128/jb.01831-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acetylglutamate kinase (NAGK) catalyzes the second step of arginine biosynthesis. In Pseudomonas aeruginosa, but not in Escherichia coli, this step is rate limiting and feedback and sigmoidally inhibited by arginine. Crystal structures revealed that arginine-insensitive E. coli NAGK (EcNAGK) is homodimeric, whereas arginine-inhibitable NAGKs, including P. aeruginosa NAGK (PaNAGK), are hexamers in which an extra N-terminal kinked helix (N-helix) interlinks three dimers. By introducing single amino acid replacements in PaNAGK, we prove the functionality of the structurally identified arginine site, as arginine site mutations selectively decreased the apparent affinity for arginine. N-helix mutations affecting R24 and E17 increased and decreased, respectively, the apparent affinity of PaNAGK for arginine, as predicted from enzyme structures that revealed the respective formation by these residues of bonds favoring inaccessible and accessible arginine site conformations. N-helix N-terminal deletions spanning > or = 16 residues dissociated PaNAGK to active dimers, those of < or = 20 residues decreased the apparent affinity for arginine, and complete N-helix deletion (26 residues) abolished arginine inhibition. Upon attachment of the PaNAGK N-terminal extension to the EcNAGK N terminus, EcNAGK remained dimeric and arginine insensitive. We concluded that the N-helix and its C-terminal portion after the kink are essential but not sufficient for hexamer formation and arginine inhibition, respectively; that the N-helix modulates NAGK affinity for arginine and mediates signal transmission between arginine sites, thus establishing sigmoidal arginine inhibition kinetics; that the mobile alphaH-beta16 loop of the arginine site is the modulatory signal receiver; and that the hexameric architecture is not essential for arginine inhibition but is functionally essential for physiologically relevant arginine control of NAGK.
Collapse
|
28
|
The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine. Proc Natl Acad Sci U S A 2007; 104:17644-9. [PMID: 17959776 DOI: 10.1073/pnas.0705987104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms can store nitrogen by synthesizing arginine, and, therefore, feedback inhibition of arginine synthesis must be relieved in these organisms when nitrogen is abundant. This relief is accomplished by the binding of the PII signal transduction protein to acetylglutamate kinase (NAGK), the controlling enzyme of arginine synthesis. Here, we describe the crystal structure of the complex between NAGK and PII of Synechococcus elongatus, at 2.75-A resolution. We prove the physiological relevance of the observed interactions by site-directed mutagenesis and functional studies. The complex consists of two polar PII trimers sandwiching one ring-like hexameric NAGK (a trimer of dimers) with the threefold axes of these molecules aligned. The binding of PII favors a narrow ring conformation of the NAGK hexamer that is associated with arginine sites having low affinity for this inhibitor. Each PII subunit contacts one NAGK subunit only. The contacts map in the inner circumference of the NAGK ring and involve two surfaces of the PII subunit. One surface is on the PII body and interacts with the C-domain of the NAGK subunit, helping widen the arginine site found on the other side of this domain. The other surface is at the distal region of a protruding large loop (T-loop) that presents a novel compact shape. This loop is inserted in the interdomain crevice of the NAGK subunit, contacting mainly the N-domain, and playing key roles in anchoring PII on NAGK, in activating NAGK, and in complex formation regulation by MgATP, ADP, 2-oxoglutarate, and by phosphorylation of serine-49.
Collapse
|
29
|
Takahara K, Akashi K, Yokota A. Continuous spectrophotometric assays for three regulatory enzymes of the arginine biosynthetic pathway. Anal Biochem 2007; 368:138-47. [PMID: 17651682 DOI: 10.1016/j.ab.2007.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
N-Acetylglutamate synthase (AGS), N-acetylglutamate kinase (AGK), and glutamate N-acetyltransferase (GAT) are the key enzymes in the synthesis of arginine that serves as an important precursor for the synthesis of protein, polyamines, urea, and nitric oxide. Current assays available for these three enzymes are laborious and time-consuming and do not allow continuous monitoring of enzyme activities. Here we established continuous enzyme assays for AGS, AGK, and GAT based on the coupling of AGS and GAT reactions to AGK followed by coupling of the AGK reaction to N-acetylglutamate 5-phosphate reductase (AGPR). The rate of AGPR-dependent oxidation of reduced nicotinamide adenine dinucleotide phosphate was monitored continuously as a change in absorbance at 340 nm using spectrophotometry. These methods were applied to kinetic analyses for Escherichia coli AGK, E. coli AGS, and Saccharomyces cerevisiae GAT, and the kinetic parameters obtained in the coupling assays showed nearly the same values as those obtained previously using discontinuous assays. The specificity of these coupled assays was confirmed by the lack of enzyme activity from extracts of E. coli AGS-, E. coli AGK-, and S. cerevisiae GAT-deletion mutants. Moreover, the coupled assay enabled us to measure AGS activity from mammalian liver mitochondrial extracts, known to be an important regulatory enzyme for the urea cycle. These coupled enzyme assays are rapid, highly sensitive, and reproducible.
Collapse
Affiliation(s)
- Kentaro Takahara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
30
|
Xu Y, Labedan B, Glansdorff N. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiol Mol Biol Rev 2007; 71:36-47. [PMID: 17347518 PMCID: PMC1847373 DOI: 10.1128/mmbr.00032-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major aspects of the pathway of de novo arginine biosynthesis via acetylated intermediates in microorganisms must be revised in light of recent enzymatic and genomic investigations. The enzyme N-acetylglutamate synthase (NAGS), which used to be considered responsible for the first committed step of the pathway, is present in a limited number of bacterial phyla only and is absent from Archaea. In many Bacteria, shorter proteins related to the Gcn5-related N-acetyltransferase family appear to acetylate l-glutamate; some are clearly similar to the C-terminal, acetyl-coenzyme A (CoA) binding domain of classical NAGS, while others are more distantly related. Short NAGSs can be single gene products, as in Mycobacterium spp. and Thermus spp., or fused to the enzyme catalyzing the last step of the pathway (argininosuccinase), as in members of the Alteromonas-Vibrio group. How these proteins bind glutamate remains to be determined. In some Bacteria, a bifunctional ornithine acetyltransferase (i.e., using both acetylornithine and acetyl-CoA as donors of the acetyl group) accounts for glutamate acetylation. In many Archaea, the enzyme responsible for glutamate acetylation remains elusive, but possible connections with a novel lysine biosynthetic pathway arose recently from genomic investigations. In some Proteobacteria (notably Xanthomonadaceae) and Bacteroidetes, the carbamoylation step of the pathway appears to involve N-acetylornithine or N-succinylornithine rather than ornithine. The product N-acetylcitrulline is deacetylated by an enzyme that is also involved in the provision of ornithine from acetylornithine; this is an important metabolic function, as ornithine itself can become essential as a source of other metabolites. This review insists on the biochemical and evolutionary implications of these findings.
Collapse
Affiliation(s)
- Ying Xu
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
31
|
Llácer JL, Polo LM, Tavárez S, Alarcón B, Hilario R, Rubio V. The gene cluster for agmatine catabolism of Enterococcus faecalis: study of recombinant putrescine transcarbamylase and agmatine deiminase and a snapshot of agmatine deiminase catalyzing its reaction. J Bacteriol 2007; 189:1254-65. [PMID: 17028272 PMCID: PMC1797358 DOI: 10.1128/jb.01216-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/29/2006] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis makes ATP from agmatine in three steps catalyzed by agmatine deiminase (AgDI), putrescine transcarbamylase (PTC), and carbamate kinase (CK). An antiporter exchanges putrescine for agmatine. We have cloned the E. faecalis ef0732 and ef0734 genes of the reported gene cluster for agmatine catabolism, overexpressed them in Escherichia coli, purified the products, characterized them functionally as PTC and AgDI, and crystallized and X-ray diffracted them. The 1.65-Angstroms-resolution structure of AgDI forming a covalent adduct with an agmatine-derived amidine reactional intermediate is described. We provide definitive identification of the gene cluster for agmatine catabolism and confirm that ornithine is a genuine but poor PTC substrate, suggesting that PTC (found here to be trimeric) evolved from ornithine transcarbamylase. N-(Phosphonoacetyl)-putrescine was prepared and shown to strongly (K(i) = 10 nM) and selectively inhibit PTC and to improve PTC crystallization. We find that E. faecalis AgDI, which is committed to ATP generation, closely resembles the AgDIs involved in making polyamines, suggesting the recruitment of a polyamine-synthesizing AgDI into the AgDI pathway. The arginine deiminase (ADI) pathway of arginine catabolism probably supplied the genes for PTC and CK but not those for the agmatine/putrescine antiporter, and thus the AgDI and ADI pathways are not related by a single "en bloc" duplication event. The AgDI crystal structure reveals a tetramer with a five-blade propeller subunit fold, proves that AgDI closely resembles ADI despite a lack of sequence identity, and explains substrate affinity, selectivity, and Cys357-mediated-covalent catalysis. A three-tongued agmatine-triggered gating opens or blocks access to the active center.
Collapse
Affiliation(s)
- José L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), C/Jaime Roig 11, 46010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Pérez-Arellano I, Rubio V, Cervera J. Mapping active site residues in glutamate-5-kinase. The substrate glutamate and the feed-back inhibitor proline bind at overlapping sites. FEBS Lett 2006; 580:6247-53. [PMID: 17069808 DOI: 10.1016/j.febslet.2006.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/10/2006] [Accepted: 10/12/2006] [Indexed: 11/24/2022]
Abstract
Glutamate-5-kinase (G5K) catalyzes the controlling first step of proline biosynthesis. Substrate binding, catalysis and feed-back inhibition by proline are functions of the N-terminal approximately 260-residue domain of G5K. We study here the impact on these functions of 14 site-directed mutations affecting 9 residues of Escherichia coli G5K, chosen on the basis of the structure of the bisubstrate complex of the homologous enzyme acetylglutamate kinase (NAGK). The results support the predicted roles of K10, K217 and T169 in catalysis and ATP binding and of D150 in orienting the catalytic lysines. They support the implication of D148 and D150 in glutamate binding and of D148 and N149 in proline binding. Proline increases the S(0.5) for glutamate and appears to bind at a site overlapping with the site for glutamate. We conclude that G5K and NAGK closely resemble each other concerning substrate binding and catalysis, but that they have different mechanisms of feed-back control.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, Valencia 46013, Spain
| | | | | |
Collapse
|
33
|
Yun SH, Kim YH, Joo EJ, Choi JS, Sohn JH, Kim SI. Proteome Analysis of Cellular Response of Pseudomonas putida KT2440 to Tetracycline Stress. Curr Microbiol 2006; 53:95-101. [PMID: 16832729 DOI: 10.1007/s00284-005-0234-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 12/02/2005] [Indexed: 10/24/2022]
Abstract
Tetracycline-induced proteome of Pseudomonas putida KT2440 was analyzed by 2-D gel electrophoresis and matrix-assisted laser desorption ionization-time of flight/mass spectrum (NALDI-TOF/MS) in order to understand cellular response to tetracycline. Of the proteins upregulated in a culture medium containing subinhibitory concentration of tetracycline (50 mug/mL), we identified 38 proteins from cytosol and precipitated fractions by peptide mass fingerprinting and mass spectrum/mass spectrum analysis. Various amino acids ABC transporters, a ribose ABC transporter, and a sulfate ABC transporter were found to be upregulated. Protein synthesis-related proteins, stress proteins, energy metabolic enzymes, and unknown proteins were also strongly induced. Of the identified upregulated proteins, several proteins (isocitrate lyase, branched-chain amino acid ABC transporter, superoxide dismutase, etc.) were also upregulated under phenol-induced stress condition. These results demonstrate that tetracycline at a high concentration induced comprehensive stress in P. putida KT2440 and the global induction of proteins related to bacteria survival. Proteome analysis was found to be a useful tool for the elucidation of antibiotic-induced proteins in the present study.
Collapse
Affiliation(s)
- Sung-Ho Yun
- Proteomics Team, Korea Basic Science Institute, Daejeon, 305-333, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Xu Y, Glansdorff N, Labedan B. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes. BMC Genomics 2006; 7:4. [PMID: 16409639 PMCID: PMC1382215 DOI: 10.1186/1471-2164-7-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 01/12/2006] [Indexed: 12/04/2022] Open
Abstract
Background The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i) the classical N-acetylglutamate synthase (NAGS, gene argA) first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii) the bifunctional version of ornithine acetyltransferase (OAT, gene argJ) present in Bacteria, Archaea and many Eukaryotes. This paper focuses on a new and surprising aspect of glutamate acetylation. We recently showed that in Moritella abyssi and M. profunda, two marine gamma proteobacteria, the gene for the last enzyme in arginine biosynthesis (argH) is fused to a short sequence that corresponds to the C-terminal, N-acetyltransferase-encoding domain of NAGS and is able to complement an argA mutant of E. coli. Very recently, other authors identified in Mycobacterium tuberculosis an independent gene corresponding to this short C-terminal domain and coding for a new type of NAGS. We have investigated the two prokaryotic Domains for patterns of gene-enzyme relationships in the first committed step of arginine biosynthesis. Results The argH-A fusion, designated argH(A), and discovered in Moritella was found to be present in (and confined to) marine gamma proteobacteria of the Alteromonas- and Vibrio-like group. Most of them have a classical NAGS with the exception of Idiomarina loihiensis and Pseudoalteromonas haloplanktis which nevertheless can grow in the absence of arginine and therefore appear to rely on the arg(A) sequence for arginine biosynthesis. Screening prokaryotic genomes for virtual argH-X 'fusions' where X stands for a homologue of arg(A), we retrieved a large number of Bacteria and several Archaea, all of them devoid of a classical NAGS. In the case of Thermus thermophilus and Deinococcus radiodurans, the arg(A)-like sequence clusters with argH in an operon-like fashion. In this group of sequences, we find the short novel NAGS of the type identified in M. tuberculosis. Among these organisms, at least Thermus, Mycobacterium and Streptomyces species appear to rely on this short NAGS version for arginine biosynthesis. Conclusion The gene-enzyme relationship for the first committed step of arginine biosynthesis should now be considered in a new perspective. In addition to bifunctional OAT, nature appears to implement at least three alternatives for the acetylation of glutamate. It is possible to propose evolutionary relationships between them starting from the same ancestral N-acetyltransferase domain. In M. tuberculosis and many other bacteria, this domain evolved as an independent enzyme, whereas it fused either with a carbamate kinase fold to give the classical NAGS (as in E. coli) or with argH as in marine gamma proteobacteria. Moreover, there is an urgent need to clarify the current nomenclature since the same gene name argA has been used to designate structurally different entities. Clarifying the confusion would help to prevent erroneous genomic annotation.
Collapse
Affiliation(s)
- Ying Xu
- Marine Sciences Research Center, State University of New York at Stony Brook, Stony Brook, New York 11794-5000, USA
| | - Nicolas Glansdorff
- Microbiology and Genetics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Bernard Labedan
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris Sud, Bâtiment 400, 91405 Orsay Cedex, France
| |
Collapse
|
35
|
Chen YM, Ferrar TS, Lohmeier-Vogel EM, Lohmeir-Vogel E, Morrice N, Mizuno Y, Berenger B, Ng KKS, Muench DG, Moorhead GBG. The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate kinase. J Biol Chem 2005; 281:5726-33. [PMID: 16377628 DOI: 10.1074/jbc.m510945200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PII proteins are key mediators of the cellular response to carbon and nitrogen status and are found in all domains of life. In eukaryotes, PII has only been identified in red algae and plants, and in these organisms, PII localizes to the plastid. PII proteins perform their role by assessing cellular carbon, nitrogen, and energy status and conferring this information to other proteins through protein-protein interaction. We have used affinity chromatography and mass spectrometry to identify the PII-binding proteins of Arabidopsis thaliana. The major PII-interacting protein is the chloroplast-localized enzyme N-acetyl glutamate kinase, which catalyzes the key regulatory step in the pathway to arginine biosynthesis. The interaction of PII with N-acetyl glutamate kinase was confirmed through pull-down, gel filtration, and isothermal titration calorimetry experiments, and binding was shown to be enhanced in the presence of the downstream product, arginine. Enzyme kinetic analysis showed that PII increases N-acetyl glutamate kinase activity slightly, but the primary function of binding is to relieve inhibition of enzyme activity by the pathway product, arginine. Knowing the identity of PII-binding proteins across a spectrum of photosynthetic and non-photosynthetic organisms provides a framework for a more complete understanding of the function of this highly conserved signaling protein.
Collapse
Affiliation(s)
- Yan M Chen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ramón-Maiques S, Fernández-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V. Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 2005; 356:695-713. [PMID: 16376937 DOI: 10.1016/j.jmb.2005.11.079] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 11/23/2005] [Accepted: 11/24/2005] [Indexed: 11/17/2022]
Abstract
N-Acetylglutamate kinase (NAGK) catalyses the second step in the route of arginine biosynthesis. In many organisms this enzyme is inhibited by the final product of the route, arginine, and thus plays a central regulatory role. In addition, in photosynthetic organisms NAGK is the target of the nitrogen-signalling protein PII. The 3-D structure of homodimeric, arginine-insensitive, Escherichia coli NAGK, clarified substrate binding and catalysis but shed no light on arginine inhibition of NAGK. We now shed light on arginine inhibition by determining the crystal structures, at 2.75 A and 2.95 A resolution, of arginine-complexed Thermotoga maritima and arginine-free Pseudomonas aeruginosa NAGKs, respectively. Both enzymes are highly similar ring-like hexamers having a central orifice of approximately 30 A diameter. They are formed by linking three E.coli NAGK-like homodimers through the interlacing of an N-terminal mobile kinked alpha-helix, which is absent from E.coli NAGK. Arginine is bound in each subunit of T.maritima NAGK, flanking the interdimeric junction, in a site formed between the N helix and the C lobe of the subunit. This site is also present, in variable conformations, in P.aeruginosa NAGK, but is missing from E.coli NAGK. Arginine, by gluing the C lobe of each subunit to the inter-dimeric junction, may stabilize an enlarged active centre conformation, hampering catalysis. Acetylglutamate counters arginine inhibition by promoting active centre closure. The hexameric architecture justifies the observed sigmoidal arginine inhibition kinetics with a high Hill coefficient (N approximately 4), and appears essential for arginine inhibition and for NAGK-PII complex formation, since this complex may involve binding of NAGK and PII with their 3-fold axes aligned. The NAGK structures allow identification of diagnostic sequence signatures for arginine inhibition. These signatures are found also in the homologous arginine-inhibited enzyme NAG synthase. The findings on NAGK shed light on the structure, function and arginine inhibition of this synthase, for which a hexameric model is constructed.
Collapse
|
37
|
Pérez-Arellano I, Rubio V, Cervera J. Dissection of Escherichia coli glutamate 5-kinase: functional impact of the deletion of the PUA domain. FEBS Lett 2005; 579:6903-8. [PMID: 16337196 DOI: 10.1016/j.febslet.2005.11.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 11/30/2022]
Abstract
Glutamate 5-kinase (G5K) catalyzes the controlling first step of the synthesis of the osmoprotective amino acid proline, which feed-back inhibits G5K. Microbial G5K generally consists of one amino acid kinase (AAK) and one PUA (named after pseudo uridine synthases and archaeosine-specific transglycosylases) domain. To investigate the role of the PUA domain, we have deleted it from Escherichia coli G5K. We show that wild-type G5K requires free Mg for activity, it is tetrameric, and it aggregates to higher forms in a proline-dependent way. G5K lacking the PUA domain remains tetrameric, active, and proline-inhibitable, but the Mg requirement and the proline-triggered aggregation are greatly diminished and abolished, respectively, and more proline is needed for inhibition. We propose that the PUA domain modulates the function of the AAK domain, opening the way to potential PUA domain-mediated regulation of G5K; and that this domain moves, exposing new surfaces upon proline binding.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler, 16, Valencia 46013, Spain
| | | | | |
Collapse
|
38
|
Marco-Marín C, Gil-Ortiz F, Rubio V. The crystal structure of Pyrococcus furiosus UMP kinase provides insight into catalysis and regulation in microbial pyrimidine nucleotide biosynthesis. J Mol Biol 2005; 352:438-54. [PMID: 16095620 DOI: 10.1016/j.jmb.2005.07.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 07/12/2005] [Accepted: 07/14/2005] [Indexed: 11/21/2022]
Abstract
UMP kinase (UMPK), the enzyme responsible for microbial UMP phosphorylation, plays a key role in pyrimidine nucleotide biosynthesis, regulating this process via feed-back control and via gene repression of carbamoyl phosphate synthetase (the first enzyme of the pyrimidine biosynthesis pathway). We present crystal structures of Pyrococcus furiosus UMPK, free or complexed with AMPPNP or AMPPNP and UMP, at 2.4 A, 3 A and 2.55 A resolution, respectively, providing a true snapshot of the catalytically competent bisubstrate complex. The structure proves that UMPK does not resemble other nucleoside monophosphate kinases, including the UMP/CMP kinase found in animals, and thus UMPK may be a potential antimicrobial target. This enzyme has a homohexameric architecture centred around a hollow nucleus, and is organized as a trimer of dimers. The UMPK polypeptide exhibits the amino acid kinase family (AAKF) fold that has been reported in carbamate kinase and acetylglutamate kinase. Comparison with acetylglutamate kinase reveals that the substrates bind within each subunit at equivalent, adequately adapted sites. The UMPK structure contains two bound Mg ions, of which one helps stabilize the transition state, thus having the same catalytic role as one lysine residue found in acetylglutamate kinase, which is missing from P.furiosus UMPK. Relative to carbamate kinase and acetylglutamate kinase, UMPK presents a radically different dimer architecture, lacking the characteristic 16-stranded beta-sheet backbone that was considered a signature of AAKF enzymes. Its hexameric architecture, also a novel trait, results from equatorial contacts between the A and B subunits of adjacent dimers combined with polar contacts between A or B subunits, and may be required for the UMPK regulatory functions, such as gene regulation, proposed here to be mediated by hexamer-hexamer interactions with the DNA-binding protein PepA.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig 11,Valencia 46010, Spain
| | | | | |
Collapse
|
39
|
Lohmeier-Vogel EM, Loukanina N, Ferrar TS, Moorhead GBG, Thorpe TA. N-acetyl glutamate kinase from Daucus carota suspension cultures: embryogenic expression profile, purification and characterization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:854-61. [PMID: 16289950 DOI: 10.1016/j.plaphy.2005.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/13/2005] [Accepted: 07/26/2005] [Indexed: 05/05/2023]
Abstract
In Daucus carota, N-acetylglutamate-5-phosphotransferase (NAGK; E.C. 2.7.2.8) specific activity was shown to correlate with the progression of somatic embryogenesis and was highest in the latter stages, where growth was most rapid. The enzyme was subsequently purified greater than 1200-fold using heat treatment, ammonium sulfate fractionation, gel filtration, anion exchange and dye ligand chromatography. Carrot NAGK was shown to have a subunit molecular weight of 31 kDa and form a hexamer. The Kms for NAG and ATP are 5.24 and 2.11 mM, respectively. Arginine (Arg) is a K-type allosteric inhibitor of the enzyme, and Hill coefficients in the order of 5 in the presence of Arg suggest that the enzyme is highly cooperative. D. carota NAGK does not bind to Arabidopsis thaliana PII affinity columns, nor does the A. thaliana PII increase NAGK specific activity, indicating its cellular location is probably different.
Collapse
Affiliation(s)
- Elke M Lohmeier-Vogel
- Biochemistry Division, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada T2N 1N4
| | | | | | | | | |
Collapse
|
40
|
Slocum RD. Genes, enzymes and regulation of arginine biosynthesis in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:729-45. [PMID: 16122935 DOI: 10.1016/j.plaphy.2005.06.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 06/17/2005] [Indexed: 05/04/2023]
Abstract
Arabidopsis genes encoding enzymes for each of the eight steps in L-arginine (Arg) synthesis were identified, based upon sequence homologies with orthologs from other organisms. Except for N-acetylglutamate synthase (NAGS; EC 2.3.1.1), which is encoded by two genes, all remaining enzymes are encoded by single genes. Targeting predictions for these enzymes, based upon their deduced sequences, and subcellular fractionation studies, suggest that most enzymes of Arg synthesis reside within the plastid. Synthesis of the L-ornthine (Orn) intermediate in this pathway from L-glutamate occurs as a series of acetylated intermediates, as in most other organisms. An N-acetylornithine:glutamate acetyltransferase (NAOGAcT; EC 2.3.1.35) facilitates recycling of the acetyl moiety during Orn formation (cyclic pathway). A putative N-acetylornithine deacetylase (NAOD; EC 3.5.1.16), which participates in the "linear" pathway for Orn synthesis in some organisms, was also identified. Previous biochemical studies have indicated that allosteric regulation of the first and, especially, the second steps in Orn synthesis (NAGS; N-acetylglutamate kinase (NAGK), EC 2.7.2.8) by the Arg end-product are the major sites of metabolic control of the pathway in organisms using the cyclic pathway. Gene expression profiling for pathway enzymes further suggests that NAGS, NAGK, NAOGAcT and NAOD are coordinately regulated in response to changes in Arg demand during plant growth and development. Synthesis of Arg from Orn is further coordinated with pyrimidine nucleotide synthesis, at the level of allocation of the common carbamoyl-P intermediate.
Collapse
Affiliation(s)
- Robert D Slocum
- Department of Biological Sciences, Goucher College, Baltimore, MD 21204-2794, USA.
| |
Collapse
|
41
|
Maheswaran M, Urbanke C, Forchhammer K. Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from Synechococcus elongatus strain PCC 7942. J Biol Chem 2004; 279:55202-10. [PMID: 15502156 DOI: 10.1074/jbc.m410971200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal transduction protein P(II) from the cyanobacterium Synechococcus elongatus strain PCC 7942 forms a complex with the key enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK). Here we report the effect of complex formation on the catalytic properties of NAGK. Although pH and ion dependence are not affected, the catalytic efficiency of NAGK is strongly enhanced by binding of P(II), with K(m) decreasing by a factor of 10 and V(max) increasing 4-fold. In addition, arginine feedback inhibition of NAGK is strongly decreased in the presence of P(II), resulting in a tight control of NAGK activity under physiological conditions by P(II). Analysis of the NAGK-P(II) complex suggests that one P(II) trimer binds to one NAGK hexamer with a K(d) of approximately 3 nm. Complex formation is strongly affected by ATP and ADP. ADP is a strong inhibitor of complex formation, whereas ATP inhibits complex formation only in the absence of divalent cations or in the presence of Mg(2+) ions, together with increased 2-oxoglutarate concentrations. Ca(2+) is able to antagonize the negative effect of ATP and 2-oxoglutarate. ADP and ATP exert their adverse effect on NAGK-P(II) complex formation through binding to the P(II) protein.
Collapse
Affiliation(s)
- Mani Maheswaran
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | |
Collapse
|