1
|
Grohmann E, Goessweiner-Mohr N, Brantl S. DNA-Binding Proteins Regulating pIP501 Transfer and Replication. Front Mol Biosci 2016; 3:42. [PMID: 27563645 PMCID: PMC4981023 DOI: 10.3389/fmolb.2016.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling protein) and the VirB4-like ATPase, TraE. Both proteins are actively involved in conjugative DNA transport. Moreover, the operon encodes TraN, a small cytoplasmic protein, whose specific binding to a sequence upstream of the oriT nic-site was demonstrated. TraN seems to be an effective repressor of pIP501 transfer, as conjugative transfer rates were significantly increased in an E. faecalis pIP501ΔtraN mutant.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center FreiburgFreiburg im Breisgau, Germany; Life Sciences and Technology, Beuth University of Applied Sciences BerlinBerlin, Germany
| | - Nikolaus Goessweiner-Mohr
- Center for Structural System Biology, University Medical Center Hamburg-EppendorfHamburg, Germany; Deutsches Elektronen-SynchrotronHamburg, Germany; Institute of Molecular Biotechnology, Austrian Academy of SciencesVienna, Austria; Research Institute of Molecular PathologyVienna, Austria
| | - Sabine Brantl
- Lehrstuhl für Genetik, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena Jena, Germany
| |
Collapse
|
2
|
Abstract
Plasmids are selfish genetic elements that normally constitute a burden for the bacterial host cell. This burden is expected to favor plasmid loss. Therefore, plasmids have evolved mechanisms to control their replication and ensure their stable maintenance. Replication control can be either mediated by iterons or by antisense RNAs. Antisense RNAs work through a negative control circuit. They are constitutively synthesized and metabolically unstable. They act both as a measuring device and a regulator, and regulation occurs by inhibition. Increased plasmid copy numbers lead to increasing antisense-RNA concentrations, which, in turn, result in the inhibition of a function essential for replication. On the other hand, decreased plasmid copy numbers entail decreasing concentrations of the inhibiting antisense RNA, thereby increasing the replication frequency. Inhibition is achieved by a variety of mechanisms, which are discussed in detail. The most trivial case is the inhibition of translation of an essential replication initiator protein (Rep) by blockage of the rep-ribosome binding site. Alternatively, ribosome binding to a leader peptide mRNA whose translation is required for efficient Rep translation can be prevented by antisense-RNA binding. In 2004, translational attenuation was discovered. Antisense-RNA-mediated transcriptional attenuation is another mechanism that has, so far, only been detected in plasmids of Gram-positive bacteria. ColE1, a plasmid that does not need a plasmid-encoded replication initiator protein, uses the inhibition of primer formation. In other cases, antisense RNAs inhibit the formation of an activator pseudoknot that is required for efficient Rep translation.
Collapse
|
3
|
Brantl S. Antisense-RNA mediated control of plasmid replication - pIP501 revisited. Plasmid 2014; 78:4-16. [PMID: 25108234 DOI: 10.1016/j.plasmid.2014.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 02/02/2023]
Abstract
Over the past decade, a wealth of small noncoding RNAs (sRNAs) have been discovered in the genomes of almost all bacterial species, where they constitute the most abundant class of posttranscriptional regulators. These sRNAs are key-players in prokaryotic metabolism, stress response and virulence. However, the first bona-fide antisense RNAs had been found already in 1981 in plasmids, where they regulate replication or maintenance. Antisense RNAs involved in plasmid replication control - meanwhile investigated in depth for almost 35 years - employ a variety of mechanisms of action: They regulate primer maturation, inhibit translation of essential replication initiator proteins (Rep proteins) as well as leader peptides or the formation of activator pseudoknots required for efficient rep translation. Alternatively they attenuate transcription or translation of rep mRNAs. Some antisense RNAs collaborate with transcriptional repressors to ensure proper copy-number control. Here, I summarize our knowledge on replication control of the broad-host range plasmid pIP501 that was originally isolated from Streptococcus agalactiae. Plasmid pIP501 uses two copy number-control elements, RNAIII, a cis-encoded antisense RNA, and transcriptional repressor CopR. RNA III mediates transcription attenuation, a rather widespread concept that found its culmination in the recent discovery of riboswitches. A peculiarity of pIP501 is the unusual stability of RNA III, which requires a second function of CopR: CopR does not only repress transcription from the essential repR promoter, but also prevents convergent transcription between rep mRNA and RNAIII, thereby indirectly increasing the amount of RNAIII. The concerted action of these two control elements is necessary to prevent plasmid loss at dangerously low copy numbers.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| |
Collapse
|
4
|
Atherton J, Boley N, Brown B, Ogawa N, Davidson SM, Eisen MB, Biggin MD, Bickel P. A model for sequential evolution of ligands by exponential enrichment (SELEX) data. Ann Appl Stat 2012. [DOI: 10.1214/12-aoas537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Licht A, Freede P, Brantl S. Transcriptional repressor CopR acts by inhibiting RNA polymerase binding. MICROBIOLOGY-SGM 2011; 157:1000-1008. [PMID: 21252280 DOI: 10.1099/mic.0.047209-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CopR is a transcriptional repressor encoded by the broad-host-range streptococcal plasmid pIP501, which also replicates in Bacillus subtilis. It acts in concert with the antisense RNA, RNAIII, to control pIP501 replication. CopR represses transcription of the essential repR mRNA about 10- to 20-fold. In previous work, DNA binding and dimerization constants were determined and the motifs responsible localized. The C terminus of CopR was shown to be required for stability. Furthermore, SELEX of the copR operator revealed that in vivo evolution was for maximal binding affinity. Here, we elucidate the repression mechanism of CopR. Competition assays showed that CopR-operator complexes are 18-fold less stable than RNA polymerase (RNAP)-pII complexes. DNase I footprinting revealed that the binding sites for CopR and RNAP overlap. Gel-shift assays demonstrated that CopR and B. subtilis RNAP cannot bind simultaneously, but compete for binding at promoter pII. Due to its higher intracellular concentration CopR inhibits RNAP binding. Additionally, KMnO(4) footprinting experiments indicated that prevention of open complex formation at pII does not further contribute to the repression effect of CopR.
Collapse
Affiliation(s)
- Andreas Licht
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena D-07743, Germany
| | - Peggy Freede
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena D-07743, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
6
|
Plasmid pSM19035, a model to study stable maintenance in Firmicutes. Plasmid 2010; 64:1-17. [PMID: 20403380 DOI: 10.1016/j.plasmid.2010.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 12/15/2022]
Abstract
pSM19035 is a low-copy-number theta-replicating plasmid, which belongs to the Inc18 family. Plasmids of this family, which show a modular organization, are functional in evolutionarily diverse bacterial species of the Firmicutes Phylum. This review summarizes our understanding, accumulated during the last 20 years, on the genetics, biochemistry, cytology and physiology of the five pSM19035 segregation (seg) loci, which map outside of the minimal replicon. The segA locus plays a role both in maximizing plasmid random segregation, and in avoiding replication fork collapses in those plasmids with long inverted repeated regions. The segB1 locus, which acts as the ultimate determinant of plasmid maintenance, encodes a short-lived epsilon(2) antitoxin protein and a long-lived zeta toxin protein, which form a complex that neutralizes zeta toxicity. The cells that do not receive a copy of the plasmid halt their proliferation upon decay of the epsilon(2) antitoxin. The segB2 locus, which encodes two trans-acting, ParA- and ParB-like proteins and six cis-acting parS centromeres, actively ensures equal or roughly equal distribution of plasmid copies to daughter cells. The segC locus includes functions that promote the shift from the use of DNA polymerase I to the replicase (PolC-PolE DNA polymerases). The segD locus, which encodes a trans-acting transcriptional repressor, omega(2), and six cis-acting cognate sites, coordinates the expression of genes that control copy number, better-than-random segregation and partition, and assures the proper balance of these different functions. Working in concert the five different loci achieve almost absolute plasmid maintenance with a minimal growth penalty.
Collapse
|
7
|
Jerg B, Gerischer U. Relevance of nucleotides of the PcaU binding site from Acinetobacter baylyi. MICROBIOLOGY-SGM 2008; 154:756-766. [PMID: 18310022 DOI: 10.1099/mic.0.2007/013508-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Results from a random mutagenesis procedure on the PcaU binding site from Acinetobacter baylyi followed by in vivo and in vitro screening are presented. PcaU is an IclR-type transcriptional regulator from the soil bacterium A. baylyi and is required for the regulated expression of enzymes for protocatechuate and quinate degradation encoded by the pca-qui operon. It binds to a 45 bp area located in the pcaU-pcaI intergenic region which consists of three perfect 10 bp sequence repeats forming one palindrome (R1, R2) and an additional direct sequence repeat (R3). In vivo selection for pca-qui gene expression revealed that mutations within the three sequence motifs are tolerated to different extents. The functional requirement for conserved nucleotides was greatest in the external half of the palindrome (R1). Four positions within and directly adjacent to this 10 bp sequence never acquired a mutation, and are therefore considered to be the most important for transcriptional regulation by PcaU. Transcriptional output is affected in different ways; for some of these changes there is a correlation with a reduction in the affinity of PcaU for these sites. Two of these positions were also preserved when in vitro screening was performed for PcaU binding alone. Additional conserved residues are detected by the in vitro approach, indicating that the regions of the PcaU binding site involved in binding differ, at least in part, from those required for functional gene expression.
Collapse
Affiliation(s)
- Bettina Jerg
- Institute for Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Ulrike Gerischer
- Institute for Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
8
|
TraM protein of plasmid R1: In vitro selection of the target region reveals two consensus 7bp binding motifs spaced by a 4bp linker of defined sequence. Plasmid 2008; 59:20-35. [DOI: 10.1016/j.plasmid.2007.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 09/18/2007] [Accepted: 10/12/2007] [Indexed: 11/23/2022]
|
9
|
Bai G, McCue LA, McDonough KA. Characterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a cyclic AMP receptor protein-like DNA binding protein. J Bacteriol 2005; 187:7795-804. [PMID: 16267303 PMCID: PMC1280308 DOI: 10.1128/jb.187.22.7795-7804.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 08/29/2005] [Indexed: 01/13/2023] Open
Abstract
Little is known about cyclic AMP (cAMP) function in Mycobacterium tuberculosis, despite its ability to encode 15 adenylate cyclases and 10 cNMP-binding proteins. M. tuberculosis Rv3676, which we have designated CRP(Mt), is predicted to be a cAMP-dependent transcription factor. In this study, we characterized CRP(Mt)'s interactions with DNA and cAMP, using experimental and computational approaches. We used Gibbs sampling to define a CRP(Mt) DNA motif that resembles the cAMP receptor protein (CRP) binding motif model for Escherichia coli. CRP(Mt) binding sites were identified in a total of 73 promoter regions regulating 114 genes in the M. tuberculosis genome, which are being explored as a regulon. Specific CRP(Mt) binding caused DNA bending, and the substitution of highly conserved nucleotides in the binding site resulted in a complete loss of binding to CRP(Mt). cAMP enhanced CRP(Mt)'s ability to bind DNA and caused allosteric alterations in CRP(Mt) conformation. These results provide the first direct evidence for cAMP binding to a transcription factor in M. tuberculosis, suggesting a role for cAMP signal transduction in M. tuberculosis and implicating CRP(Mt) as a cAMP-responsive global regulator.
Collapse
Affiliation(s)
- Guangchun Bai
- Wadsworth Center, New York State Department of Health, Albany, 12201-2002, USA
| | | | | |
Collapse
|