1
|
Li P, Bez C, Zhang Y, Deng Y, Venturi V. N-acyl homoserine lactone cell-cell diffusible signalling in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2024; 25:e13467. [PMID: 39099210 PMCID: PMC11298618 DOI: 10.1111/mpp.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen University, Sun Yatsen UniversityShenzhenChina
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome Center, University Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| |
Collapse
|
2
|
Nuhamunada M, Mohite OS, Phaneuf P, Palsson B, Weber T. BGCFlow: systematic pangenome workflow for the analysis of biosynthetic gene clusters across large genomic datasets. Nucleic Acids Res 2024; 52:5478-5495. [PMID: 38686794 PMCID: PMC11162802 DOI: 10.1093/nar/gkae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Genome mining is revolutionizing natural products discovery efforts. The rapid increase in available genomes demands comprehensive computational platforms to effectively extract biosynthetic knowledge encoded across bacterial pangenomes. Here, we present BGCFlow, a novel systematic workflow integrating analytics for large-scale genome mining of bacterial pangenomes. BGCFlow incorporates several genome analytics and mining tools grouped into five common stages of analysis such as: (i) data selection, (ii) functional annotation, (iii) phylogenetic analysis, (iv) genome mining, and (v) comparative analysis. Furthermore, BGCFlow provides easy configuration of different projects, parallel distribution, scheduled job monitoring, an interactive database to visualize tables, exploratory Jupyter Notebooks, and customized reports. Here, we demonstrate the application of BGCFlow by investigating the phylogenetic distribution of various biosynthetic gene clusters detected across 42 genomes of the Saccharopolyspora genus, known to produce industrially important secondary/specialized metabolites. The BGCFlow-guided analysis predicted more accurate dereplication of BGCs and guided the targeted comparative analysis of selected RiPPs. The scalable, interoperable, adaptable, re-entrant, and reproducible nature of the BGCFlow will provide an effective novel way to extract the biosynthetic knowledge from the ever-growing genomic datasets of biotechnologically relevant bacterial species.
Collapse
Affiliation(s)
- Matin Nuhamunada
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Patrick V Phaneuf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bernhard O Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
3
|
Terazawa Y, Tsuzuki M, Nakajima H, Inoue K, Tateda S, Kiba A, Ohnishi K, Kai K, Hikichi Y. The Micacocidin Production-Related RSc1806 Deletion Alters the Quorum Sensing-Dependent Gene Regulation of Ralstonia pseudosolanacearum Strain OE1-1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:467-476. [PMID: 38805410 DOI: 10.1094/mpmi-12-23-0203-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The soil-borne phytopathogenic gram-negative bacterium Ralstonia solanacearum species complex (RSSC) produces staphyloferrin B and micacocidin as siderophores that scavenge for trivalent iron (Fe3+) in the environment, depending on the intracellular divalent iron (Fe2+) concentration. The staphyloferrin B-deficient mutant reportedly retains its virulence, but the relationship between micacocidin and virulence remains unconfirmed. To elucidate the effect of micacocidin on RSSC virulence, we generated the micacocidin productivity-deficient mutant (ΔRSc1806) that lacks RSc1806, which encodes a putative polyketide synthase/non-ribosomal peptide synthetase, using the RSSC phylotype I Ralstonia pseudosolanacearum strain OE1-1. When incubated in the condition without Fe2+, ΔRSc1806 showed significantly lower Fe3+-scavenging activity, compared with OE1-1. Until 8 days after inoculation on tomato plants, ΔRSc1806 was not virulent, similar to the mutant (ΔphcA) missing phcA, which encodes the LysR-type transcriptional regulator PhcA that regulates the expression of the genes responsible for quorum sensing (QS)-dependent phenotypes including virulence. The transcriptome analysis revealed that RSc1806 deletion significantly altered the expression of more than 80% of the PhcA-regulated genes in the mutant grown in medium with or without Fe2+. Among the PhcA-regulated genes, the transcript levels of the genes whose expression was affected by the deletion of RSc1806 were strongly and positively correlated between the ΔRSc1806 and the phcA-deletion mutant. Furthermore, the deletion of RSc1806 significantly modified QS-dependent phenotypes, similar to the effects of the deletion of phcA. Collectively, our findings suggest that the deletion of micacocidin production-related RSc1806 alters the regulation of PhcA-regulated genes responsible for QS-dependent phenotypes including virulence as well as Fe3+-scavenging activity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Hiroto Nakajima
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Sora Tateda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
4
|
Takemura C, Senuma W, Tsuzuki M, Terazawa Y, Inoue K, Sato M, Kiba A, Ohnishi K, Kai K, Hikichi Y. The transcription regulator ChpA affects the global transcriptome including quorum sensing-dependent genes in Ralstonia pseudosolanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2023; 24:1370-1384. [PMID: 37452484 PMCID: PMC10576176 DOI: 10.1111/mpp.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The gram-negative plant-pathogenic β-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate as a quorum sensing (QS) signal through methyltransferase PhcB and senses the chemical via the sensor histidine kinase PhcS. This leads to activation of the LysR family transcription regulator PhcA, which regulates the genes (QS-dependent genes) responsible for QS-dependent phenotypes, including virulence. The transcription regulator ChpA, which possesses a response regulator receiver domain and also a hybrid sensor histidine kinase/response regulator phosphore-acceptor domain but lacks a DNA-binding domain, is reportedly involved in QS-dependent biofilm formation and virulence of R. pseudosolanacearum strain GMI1000. To explore the function of ChpA in QS of OE1-1, we generated a chpA-deletion mutant (ΔchpA) and revealed that the chpA deletion leads to significantly altered QS-dependent phenotypes. Furthermore, ΔchpA exhibited a loss in its infectivity in xylem vessels of tomato plant roots, losing virulence on tomato plants, similar to the phcA-deletion mutant (ΔphcA). Transcriptome analysis showed that the transcript levels of phcB, phcQ, phcR, and phcA in ΔchpA were comparable to those in OE1-1. However, the transcript levels of 89.9% and 88.9% of positively and negatively QS-dependent genes, respectively, were significantly altered in ΔchpA compared with OE1-1. Furthermore, the transcript levels of these genes in ΔchpA were positively correlated with those in ΔphcA. Together, our results suggest that ChpA is involved in the regulation of these QS-dependent genes, thereby contributing to the behaviour in host plant roots and virulence of OE1-1.
Collapse
Affiliation(s)
- Chika Takemura
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Kochi Prefectural Agriculture Research CenterNankokuJapan
| | - Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Central Research Institute, Ishihara Sangyo Kaisha, Ltd.KusatsuJapan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Kumamoto Experimental Station, Sumika Agrotech Co., Ltd.KikuchiJapan
| | - Kanako Inoue
- Research Center for Ultra‐High Voltage Electron MicroscopyOsaka UniversityIbarakiJapan
- Present address:
Division of Biological Sciences Plant Immunity, Nara Institute of Science and TechnologyIkomaJapan
| | - Masanao Sato
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kenji Kai
- Graduate School of AgricultureOsaka Metropolitan UniversitySakaiJapan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| |
Collapse
|
5
|
Pandey SS. The Role of Iron in Phytopathogenic Microbe-Plant Interactions: Insights into Virulence and Host Immune Response. PLANTS (BASEL, SWITZERLAND) 2023; 12:3173. [PMID: 37687419 PMCID: PMC10563075 DOI: 10.3390/plants12173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Iron is an essential element required for the growth and survival of nearly all forms of life. It serves as a catalytic component in multiple enzymatic reactions, such as photosynthesis, respiration, and DNA replication. However, the excessive accumulation of iron can result in cellular toxicity due to the production of reactive oxygen species (ROS) through the Fenton reaction. Therefore, to maintain iron homeostasis, organisms have developed a complex regulatory network at the molecular level. Besides catalyzing cellular redox reactions, iron also regulates virulence-associated functions in several microbial pathogens. Hosts and pathogens have evolved sophisticated strategies to compete against each other over iron resources. Although the role of iron in microbial pathogenesis in animals has been extensively studied, mechanistic insights into phytopathogenic microbe-plant associations remain poorly understood. Recent intensive research has provided intriguing insights into the role of iron in several plant-pathogen interactions. This review aims to describe the recent advances in understanding the role of iron in the lifestyle and virulence of phytopathogenic microbes, focusing on bacteria and host immune responses.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India; ; Tel.: +91-361-2270095 (ext. 216)
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
6
|
Liu JY, Zhang JF, Wu HL, Chen Z, Li SY, Li HM, Zhang CP, Zhou YQ, Lu CH. Proposal to classify Ralstonia solanacearum phylotype I strains as Ralstonia nicotianae sp. nov., and a genomic comparison between members of the genus Ralstonia. Front Microbiol 2023; 14:1135872. [PMID: 37032877 PMCID: PMC10073495 DOI: 10.3389/fmicb.2023.1135872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
A Gram-negative, aerobic, rod-shaped, motile bacterium with multi-flagella, strain RST, was isolated from bacterial wilt of tobacco in Yuxi city of Yunnan province, China. The strain contains the major fatty acids of C16:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The polar lipid profile of strain RST consists of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and unidentified aminophospholipid. Strain RST contains ubiquinones Q-7 and Q-8. 16S rRNA gene sequence (1,407 bp) analysis showed that strain RST is closely related to members of the genus Ralstonia and shares the highest sequence identities with R. pseudosolanacearum LMG 9673T (99.50%), R. syzygii subsp. indonesiensis LMG 27703T (99.50%), R. solanacearum LMG 2299T (99.28%), and R. syzygii subsp. celebesensis LMG 27706T (99.21%). The 16S rRNA gene sequence identities between strain RST and other members of the genus Ralstonia were below 98.00%. Genome sequencing yielded a genome size of 5.61 Mbp and a G + C content of 67.1 mol%. The genomic comparison showed average nucleotide identity (ANIb) values between strain RST and R. pseudosolanacearum LMG 9673T, R. solanacearum LMG 2299T, and R. syzygii subsp. indonesiensis UQRS 627T of 95.23, 89.43, and 91.41%, respectively, and the corresponding digital DNA-DNA hybridization (dDDH) values (yielded by formula 2) were 66.20, 44.80, and 47.50%, respectively. In addition, strains belonging to R. solanacearum phylotype I shared both ANIb and dDDH with strain RST above the species cut-off values of 96 and 70%, respectively. The ANIb and dDDH values between the genome sequences from 12 strains of R. solanacearum phylotype III (Current R. pseudosolanacearum) and those of strain RST were below the species cut-off values. Based on these data, we concluded that strains of phylotype I, including RST, represent a novel species of the genus Ralstonia, for which the name Ralstonia nicotianae sp. nov. is proposed. The type strain of Ralstonia nicotianae sp. nov. is RST (=GDMCC 1.3533T = JCM 35814T).
Collapse
Affiliation(s)
- Jun-Ying Liu
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
- Institute of Biology and Environmental Engineering, Yuxi Normal University, Yuxi, China
| | - Jian-Feng Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Han-Lian Wu
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Zhen Chen
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Shu-Ying Li
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Hong-Mei Li
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Cui-Ping Zhang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Yuan-Qing Zhou
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Can-Hua Lu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
7
|
Suraby EJ, Sruthi KB, Antony G. Genome-wide identification of type III effectors and other virulence factors in Ralstonia pseudosolanacearum causing bacterial wilt in ginger (Zingiber officinale). Mol Genet Genomics 2022; 297:1371-1388. [PMID: 35879566 DOI: 10.1007/s00438-022-01925-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
Abstract
Ralstonia pseudosolanacearum causes bacterial wilt in ginger, reducing ginger production worldwide. We sequenced the whole genome of a highly virulent phylotype I, race 4, biovar 3 Ralstonia pseudosolanacearum strain GRsMep isolated from a severely infected ginger field in India. R. pseudosolanacearum GRsMep genome is organised into two replicons: chromosome and megaplasmid with a total genome size of 5,810,605 bp. This strain encodes approximately 72 effectors which include a combination of core effectors as well as highly variable, diverse repertoire of type III effectors. Comparative genome analysis with GMI1000 identified conservation in the genes involved in the general virulence mechanism. Our analysis identified type III effectors, RipBJ and RipBO as present in GRsMep but absent in the reported genomes of other strains infecting Zingiberaceae family. GRsMep contains 126 unique genes when compared to the pangenome of the Ralstonia strains that infect the Zingiberaceae family. The whole-genome data of R. pseudosolanacearum strain will serve as a resource for exploring the evolutionary processes that structure and regulate the virulence determinants of the strain. Pathogenicity testing of the transposon insertional mutant library of GRsMep through virulence assay on ginger plants identified a few candidate virulence determinants specific to bacterial wilt in ginger.
Collapse
Affiliation(s)
- Erinjery Jose Suraby
- Department of Plant Science, Central University of Kerala, Periye, 671320, Kasaragod, Kerala, India
| | - K Bharathan Sruthi
- Department of Plant Science, Central University of Kerala, Periye, 671320, Kasaragod, Kerala, India
| | - Ginny Antony
- Department of Plant Science, Central University of Kerala, Periye, 671320, Kasaragod, Kerala, India.
| |
Collapse
|
8
|
RasI/R Quorum Sensing System Controls the Virulence of Ralstonia solanacearum Strain EP1. Appl Environ Microbiol 2022; 88:e0032522. [PMID: 35876567 PMCID: PMC9361817 DOI: 10.1128/aem.00325-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Quorum sensing (QS) is a widely conserved bacterial regulatory mechanism that relies on production and perception of autoinducing chemical signals to coordinate diverse cooperative activities, such as virulence, exoenzyme secretion, and biofilm formation. In Ralstonia solanacearum, a phytopathogen causing severe bacterial wilt diseases in many plant species, previous studies identified the PhcBSR QS system, which plays a key role in regulation of its physiology and virulence. In this study, we found that R. solanacearum strain EP1 contains the genes encoding uncharacterized LuxI/LuxR (LuxI/R) QS homologues (RasI/RasR [designated RasI/R here]). To determine the roles of the RasI/R system in strain EP1, we constructed a specific reporter for the signals catalyzed by RasI. Chromatography separation and structural analysis showed that RasI synthesized primarily N-(3-hydroxydodecanoyl)-homoserine lactone (3-OH-C12-HSL). In addition, we showed that the transcriptional expression of rasI is regulated by RasR in response to 3-OH-C12-HSL. Phenotype analysis unveiled that the RasI/R system plays a critical role in modulation of cellulase production, motility, biofilm formation, oxidative stress response, and virulence of R. solanacearum EP1. We then further characterized this system by determining the RasI/R regulon using transcriptome sequencing (RNA-seq) analysis, which showed that this newly identified QS system regulates the transcriptional expression of over 154 genes associated with bacterial physiology and pathogenic properties. Taken together, the findings from this study present an essential new QS system in regulation of R. solanacearum physiology and virulence and provide new insight into the complicated regulatory mechanisms and networks in this important plant pathogen. IMPORTANCE Quorum sensing (QS) is a key regulator of virulence factors in many plant-pathogenic bacteria. Previous studies unveiled two QS systems (i.e., PhcBSR and SolI/R) in several R. solanacearum strains. The PhcBSR QS system is known for its key roles in regulation of bacterial virulence, and the LuxI/LuxR (SolI/R) QS system appears dispensable for pathogenicity in a number of R. solanacearum strains. In this study, a new functional QS system (i.e., RasI/R) was identified and characterized in R. solanacearum strain EP1 isolated from infected eggplants. Phenotype analyses showed that the RasI/R system plays an important role in regulation of a range of biological activities associated with bacterial virulence. This QS system produces and responds to the QS signal 3-OH-C12-HSL and hence regulates critical bacterial abilities in survival and infection. To date, multiple QS signaling circuits in R. solanacearum strains are still not well understood. Our findings from this study provide new insight into the complicated QS regulatory networks that govern the physiology and virulence of R. solanacearum and present a valid target and clues for the control and prevention of bacterial wilt diseases.
Collapse
|
9
|
Juma PO, Fujitani Y, Alessa O, Oyama T, Yurimoto H, Sakai Y, Tani A. Siderophore for Lanthanide and Iron Uptake for Methylotrophy and Plant Growth Promotion in Methylobacterium aquaticum Strain 22A. Front Microbiol 2022; 13:921635. [PMID: 35875576 PMCID: PMC9301485 DOI: 10.3389/fmicb.2022.921635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/09/2022] [Indexed: 11/15/2022] Open
Abstract
Methylobacterium and Methylorubrum species are facultative methylotrophic bacteria that are abundant in the plant phyllosphere. They have two methanol dehydrogenases, MxaF and XoxF, which are dependent on either calcium or lanthanides (Lns), respectively. Lns exist as insoluble minerals in nature, and their solubilization and uptake require a siderophore-like substance (lanthanophore). Methylobacterium species have also been identified as plant growth-promoting bacteria although the actual mechanism has not been well-investigated. This study aimed to reveal the roles of siderophore in Methylobacterium aquaticum strain 22A in Ln uptake, bacterial physiology, and plant growth promotion. The strain 22A genome contains an eight-gene cluster encoding the staphyloferrin B-like (sbn) siderophore. We demonstrate that the sbn siderophore gene cluster is necessary for growth under low iron conditions and was complemented by supplementation with citrate or spent medium of the wild type or other strains of the genera. The siderophore exhibited adaptive features, including tolerance to oxidative and nitrosative stress, biofilm formation, and heavy metal sequestration. The contribution of the siderophore to plant growth was shown by the repressive growth of duckweed treated with siderophore mutant under iron-limited conditions; however, the siderophore was dispensable for strain 22A to colonize the phyllosphere. Importantly, the siderophore mutant could not grow on methanol, but the siderophore could solubilize insoluble Ln oxide, suggesting its critical role in methylotrophy. We also identified TonB-dependent receptors (TBDRs) for the siderophore–iron complex, iron citrate, and Ln, among 12 TBDRs in strain 22A. Analysis of the siderophore synthesis gene clusters and TBDR genes in Methylobacterium genomes revealed the existence of diverse types of siderophores and TBDRs. Methylorubrum species have an exclusive TBDR for Ln uptake that has been identified as LutH. Collectively, the results of this study provide insight into the importance of the sbn siderophore in Ln chelation, bacterial physiology, and the diversity of siderophore and TBDRs in Methylobacterium species.
Collapse
Affiliation(s)
- Patrick Otieno Juma
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Yoshiko Fujitani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Ola Alessa
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Tokitaka Oyama
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroya Yurimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- *Correspondence: Akio Tani,
| |
Collapse
|
10
|
Li P, Cao X, Zhang L, Lv M, Zhang LH. PhcA and PhcR Regulate Ralsolamycin Biosynthesis Oppositely in Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2022; 13:903310. [PMID: 35712573 PMCID: PMC9197120 DOI: 10.3389/fpls.2022.903310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Ralsolamycin, one of secondary metabolites in Ralstonia solanacearum, is known to be involved in crosstalk between R. solanacearum and fungi. Ralsolamycin formation is catalyzed by two-hybrid synthetases of RmyA (non-ribosomal peptide synthetase) and RmyB (polyketide synthase). A methyltransferase PhcB catalyzes formation of 3-OH MAME or 3-OH PAME, signals for the quorum sensing (QS) in R. solanacearum, while PhcB positively modulates ralsolamycin biosynthesis. A two-component system of PhcS and PhcR can response these QS signals and activate phcA expression. Here, we experimentally demonstrated that deletion of phcA (ΔphcA) substantially impaired the ralsolamycin production and expression of rmyA and rmyB in R. solanacearum strain EP1, and failed to induce chlamydospore formation of plant fungal pathogen Fusarium oxysporum f. cubense (stran FOC4). However, deletion of phcR significantly increased ralsolamycin production and expression of rmyA and rmyB, and phcR mutants exhibited enhanced ability to induce chlamydospore formation of FOC4. Results of the electrophoretic mobility shift assay suggested that both PhcA and PhcR bind to promoter of rmy operon. Taken together, these results demonstrated that both PhcA and PhcR bind to promoter of rmy operon, but regulate ralsolamycin biosynthesis in an opposite way. It could extend our knowledge on the sophisticated regulatory networks of ralsolamycin biosynthesis in R. solanacearum.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiulan Cao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Negatively regulated aerobactin and desferrioxamine E by Fur in Pantoea ananatis are required for full siderophore production and antibacterial activity, but not for virulence. Appl Environ Microbiol 2022; 88:e0240521. [PMID: 35108090 DOI: 10.1128/aem.02405-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pantoea ananatis is an emerging plant pathogen that causes disease in economically important crops such as rice, corn, onion, melon, and pineapple, and it also infects humans and insects. In this study, we identified biosynthetic gene clusters of aerobactin and desferrioxamine E (DFO-E) siderophores using the complete genome of P. ananatis PA13 isolated from rice sheath rot. P. ananatis PA13 exhibited the strongest antibacterial activity against Erwinia amylovora and Yersinia enterocolitica (Enterobacterales). Mutants of aerobactin or DFO-E maintained antibacterial activity against E. amylovora and Y. enterocolitica, as well as in a siderophore activity assay. However, double aerobactin- and DFO-E-gene-deletion mutants completely lost siderophore and antibacterial activity. These results reveal that both siderophore biosynthetic gene clusters are essential for siderophore production and antibacterial activity in P. ananatis PA13. A ferric uptake regulator protein (Fur) mutant exhibited a significant increase in siderophore production, and a Fur-overexpressing strain completely lost antibacterial activity. Expression of the iucA, dfoJ, and foxA genes was significantly increased in the Δfur mutant background, and expression of these genes returned to wild type levels after fur compensation. These results indicate that Fur negatively regulates aerobactin and DFO-E siderophores. However, siderophore production was not required for P. ananatis virulence in plants, but it appears to be involved in the microbial ecology surrounding the plant environment. This study is the first to report the regulation and functional characteristics of siderophore biosynthetic genes in P. ananatis. IMPORTANCE Pantoea ananatis is a bacterium that causes diseases in several economically important crops, as well as in insects and humans. This bacterium has been studied extensively as a potentially dangerous pathogen due to its saprophytic ability. Recently, the types, biosynthetic gene clusters, and origin of the siderophores in the Pantoea genus were determined using genome comparative analyses. However, few genetic studies have investigated the characteristics and functions of siderophores in P. ananatis. The results of this study revealed that the production of aerobactin and desferrioxamine E in the rice pathogen P. ananatis PA13 is negatively regulated by Fur, and that these siderophores are essential for antibacterial activity against Erwinia amylovora and Yersinia enterocolitica (Enterobacterales). However, siderophore production was not required for P. ananatis virulence in plants, but it appears to be involved in the microbial ecology surrounding the plant environment.
Collapse
|
12
|
Pandey SS, Chatterjee S. Insights into the Cell-to-Cell Signaling and Iron Homeostasis in Xanthomonas Virulence and Lifestyle. PHYTOPATHOLOGY 2022; 112:209-218. [PMID: 34289715 DOI: 10.1094/phyto-11-20-0513-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Xanthomonas group of phytopathogens causes economically important diseases that lead to severe yield loss in major crops. Some Xanthomonas species are known to have an epiphytic and in planta lifestyle that is coordinated by several virulence-associated functions, cell-to-cell signaling (using diffusible signaling factor [DSF]), and environmental conditions, including iron availability. In this review, we described the role of cell-to-cell signaling by the DSF molecule and iron in the regulation of virulence-associated functions. Although DSF and iron are involved in the regulation of several virulence-associated functions, members of the Xanthomonas group of plant pathogens exhibit atypical patterns of regulation. Atypical patterns contribute to the adaptation to different lifestyles. Studies on DSF and iron biology indicate that virulence-associated functions can be regulated in completely contrasting fashions by the same signaling system in closely related xanthomonads.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | | |
Collapse
|
13
|
Takemura C, Senuma W, Hayashi K, Minami A, Terazawa Y, Kaneoka C, Sakata M, Chen M, Zhang Y, Nobori T, Sato M, Kiba A, Ohnishi K, Tsuda K, Kai K, Hikichi Y. PhcQ mainly contributes to the regulation of quorum sensing-dependent genes, in which PhcR is partially involved, in Ralstonia pseudosolanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2021; 22:1538-1552. [PMID: 34423519 PMCID: PMC8578825 DOI: 10.1111/mpp.13124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 05/29/2023]
Abstract
The gram-negative plant-pathogenic β-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate as a quorum sensing (QS) signal via the methyltransferase PhcB and senses the chemical through the sensor histidine kinase PhcS. This leads to functionalization of the LysR family transcriptional regulator PhcA, regulating QS-dependent genes responsible for the QS-dependent phenotypes including virulence. The phc operon consists of phcB, phcS, phcR, and phcQ, with the latter two encoding regulator proteins with a receiver domain and a histidine kinase domain and with a receiver domain, respectively. To elucidate the function of PhcR and PhcQ in the regulation of QS-dependent genes, we generated phcR-deletion and phcQ-deletion mutants. Though the QS-dependent phenotypes of the phcR-deletion mutant were largely unchanged, deletion of phcQ led to a significant change in the QS-dependent phenotypes. Transcriptome analysis coupled with quantitative reverse transcription-PCR and RNA-sequencing revealed that phcB, phcK, and phcA in the phcR-deletion and phcQ-deletion mutants were expressed at similar levels as in strain OE1-1. Compared with strain OE1-1, expression of 22.9% and 26.4% of positively and negatively QS-dependent genes, respectively, was significantly altered in the phcR-deletion mutant. However, expression of 96.8% and 66.9% of positively and negatively QS-dependent genes, respectively, was significantly altered in the phcQ-deletion mutant. Furthermore, a strong positive correlation of expression of these QS-dependent genes was observed between the phcQ-deletion and phcA-deletion mutants. Our results indicate that PhcQ mainly contributes to the regulation of QS-dependent genes, in which PhcR is partially involved.
Collapse
Affiliation(s)
- Chika Takemura
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Central Research InstituteIshihara Sangyo Kaisha, LTD.KusatsuShigaJapan
| | - Kazusa Hayashi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Agriculture Research CenterKochi PrefecturalNankokuJapan
| | - Ayaka Minami
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Chisaki Kaneoka
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Megumi Sakata
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Min Chen
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Tatsuya Nobori
- Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Masanao Sato
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Interdisciplinary Sciences Research Institute, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| |
Collapse
|
14
|
Nakahara H, Mori K, Mori T, Matsuzoe N. Induction of spontaneous phenotype conversion in Ralstonia solanacearum by addition of iron compounds in liquid medium. J Microbiol Methods 2021; 186:106233. [PMID: 33965508 DOI: 10.1016/j.mimet.2021.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
Ralstonia solanacearum is a soil-borne pathogen that causes bacterial wilt in plants. The wild-type strain of R. solanacearum undergoes spontaneous phenotype conversion (PC), from a fluidal to non-fluidal colony morphology. PC mutants are non-pathogenic due to reduced virulence factors, and can control wilt diseases as biological control agents. The induction factors of PC in R. solanacearum are currently unclear. Here, we investigated the effect of iron treatment on bacterial growth of wild-type strain and PC mutant, and PC of the wild-type strain in liquid medium. Interestingly, PC was frequently induced in the single cultured wild-type strain by iron treatment; however, PC was not induced in the co-culture. In a co-culture of both strains, the PC mutant showed increased growth compared to the wild-type strain by iron treatment. Furthermore, we investigated the effects of iron treatment on the bacterial growth and PC of the wild-type strain under different culture conditions of medium type (MM broth, BG broth, and water medium), iron compounds, and pH. In BG broth, PC occurred frequently regardless of iron treatment. In MM broth, the optimal conditions for high frequency induction of PC by iron treatments were treatment of iron (III) EDTA, and under pH 7-8. Conversely, PC was not induced by iron treatment in water medium and in MM broth under pH 5 conditions. Common to the culture conditions wherein PC was not induced by iron treatment, the bacterial density of the wild-type strain was as low as 106 CFU mL-1 or less. Finally, we investigated the effects on bacterial growth and PC of the wild-type strain by the iron treatment and addition of culture filtrate after cultivation of the wild-type strain at high concentration. In medium containing only the culture filtrate, PC did not occur. However, in medium containing the culture filtrate and iron, PC occurred frequently. Our results thus suggest that high-density growth of the wild-type strain as well as the presence of iron are involved in inducing PC in R. solanacearum.
Collapse
Affiliation(s)
- Hiroki Nakahara
- Arid Land Research Center, Tottori University, Hamasaka 1390, Tottori 680-0001, Japan.
| | - Kento Mori
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Tsukide 3-1-100, Higashi-ku, Kumamoto 862-8502, Japan
| | - Taro Mori
- Faculty of Education, Shiga University, Hiratsu 2-5-1, Otsu, Shiga 520-0862, Japan
| | - Naotaka Matsuzoe
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Tsukide 3-1-100, Higashi-ku, Kumamoto 862-8502, Japan
| |
Collapse
|
15
|
Chen K, Wang L, Chen H, Zhang C, Wang S, Chu P, Li S, Fu H, Sun T, Liu M, Yang Q, Zou H, Zhuang W. Complete genome sequence analysis of the peanut pathogen Ralstonia solanacearum strain Rs-P.362200. BMC Microbiol 2021; 21:118. [PMID: 33874906 PMCID: PMC8056632 DOI: 10.1186/s12866-021-02157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacterial wilt caused by Ralstonia solanacearum species complex is an important soil-borne disease worldwide that affects more than 450 plant species, including peanut, leading to great yield and quality losses. However, there are no effective measures to control bacterial wilt. The reason is the lack of research on the pathogenic mechanism of bacterial wilt. RESULTS Here, we report the complete genome of a toxic Ralstonia solanacearum species complex strain, Rs-P.362200, a peanut pathogen, with a total genome size of 5.86 Mb, encoding 5056 genes and the average G + C content of 67%. Among the coding genes, 75 type III effector proteins and 12 pseudogenes were predicted. Phylogenetic analysis of 41 strains including Rs-P.362200 shows that genetic distance mainly depended on geographic origins then phylotypes and host species, which associated with the complexity of the strain. The distribution and numbers of effectors and other virulence factors changed among different strains. Comparative genomic analysis showed that 29 families of 113 genes were unique to this strain compared with the other four pathogenic strains. Through the analysis of specific genes, two homologous genes (gene ID: 2_657 and 3_83), encoding virulence protein (such as RipP1) may be associated with the host range of the Rs-P.362200 strain. It was found that the bacteria contained 30 pathogenicity islands and 6 prophages containing 378 genes, 7 effectors and 363 genes, 8 effectors, respectively, which may be related to the mechanism of horizontal gene transfer and pathogenicity evaluation. Although the hosts of HA4-1 and Rs-P.362200 strains are the same, they have specific genes to their own genomes. The number of genomic islands and prophages in HA4-1 genome is more than that in Rs-P.36220, indicating a rapid change of the bacterial wilt pathogens. CONCLUSION The complete genome sequence analysis of peanut bacterial wilt pathogen enhanced the information of R. solanacearum genome. This research lays a theoretical foundation for future research on the interaction between Ralstonia solanacearum and peanut.
Collapse
Affiliation(s)
- Kun Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lihui Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hua Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chong Zhang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shanshan Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Panpan Chu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shaokang Li
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Huiwen Fu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tao Sun
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Menghan Liu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qiang Yang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weijian Zhuang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
16
|
Genome Sequence and Adaptation Analysis of the Human and Rice Pathogenic Strain Burkholderia glumae AU6208. Pathogens 2021; 10:pathogens10020087. [PMID: 33498266 PMCID: PMC7909282 DOI: 10.3390/pathogens10020087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/01/2022] Open
Abstract
Burkholderia glumae causes rice (Oryza sativa) bacterial panicle blight, which is an increasingly economically important disease worldwide. As the first B. glumae strain isolated from patients with chronic infections, AU6208 has been reported as an opportunistic clinic pathogen. However, our understanding of the molecular mechanism underlying human pathogenesis by B. glumae remains rudimentary. In this study, we report the complete genome sequence of the human-isolated B. glumae strain AU6208 and compare this to the genome of the rice-pathogenic B. glumae type strain LMG 2196T. Analysis of the average nucleotide identity demonstrated 99.4% similarity between the human- and plant-pathogenic strains. However, the phenotypic results from this study suggest a history of niche adaptation and divergence. In particular, we found 44 genes were predicted to be horizontally transferred into AU6208, and most of these genes were upregulated in conditions that mimic clinical conditions. In these, the gene pair sbnAB encodes key enzymes in antibiotic biosynthesis. These results suggest that horizontal gene transfer in AU6208 may be responsible for selective advantages in its pathogenicity in humans. Our analysis of the AU6208 genome and comparison with that of LMG 2196T reveal the evolutionary signatures of B. glumae in the process of switching niches from plants to humans.
Collapse
|
17
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
18
|
Genetic and structural determinants on iron assimilation pathways in the plant pathogen Xanthomonas citri subsp. citri and Xanthomonas sp. Braz J Microbiol 2019; 51:1219-1231. [PMID: 31848911 DOI: 10.1007/s42770-019-00207-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
Abstract
Iron is a vital nutrient to bacteria, not only in the basal metabolism but also for virulent species in infection and pathogenicity at their hosts. Despite its relevance, the role of iron in Xanthomonas citri infection, the etiological agent of citrus canker disease, is poorly understood in contrast to other pathogens, including other members of the Xanthomonas genus. In this review, we present iron assimilation pathways in X. citri including the ones for siderophore production and siderophore-iron assimilation, proven to be key factors to virulence in many organisms like Escherichia coli and Xanthomonas campestris. Based on classical iron-related proteins previously characterized in E. coli, Pseudomonas aeruginosa, and also Xanthomonadaceae, we identified orthologs in X. citri and evaluated their sequences, structural characteristics such as functional motifs, and residues that support their putative functions. Among the identified proteins are TonB-dependent receptors, periplasmic-binding proteins, active transporters, efflux pumps, and cytoplasmic enzymes. The role of each protein for the bacterium was analyzed and complemented with proteomics data previously reported. The global view of different aspects of iron regulation and nutrition in X. citri virulence and pathogenesis may help guide future investigations aiming the development of new drug targets against this important phytopathogen.
Collapse
|
19
|
Ferro P, Vaz-Moreira I, Manaia CM. Betaproteobacteria are predominant in drinking water: are there reasons for concern? Crit Rev Microbiol 2019; 45:649-667. [PMID: 31686572 DOI: 10.1080/1040841x.2019.1680602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Betaproteobacteria include some of the most abundant and ubiquitous bacterial genera that can be found in drinking water, including mineral water. The combination of physiology and ecology traits place some Betaproteobacteria in the list of potential, yet sometimes neglected, opportunistic pathogens that can be transmitted by water or aqueous solutions. Indeed, some drinking water Betaproteobacteria with intrinsic and sometimes acquired antibiotic resistance, harbouring virulence factors and often found in biofilm structures, can persist after water disinfection and reach the consumer. This literature review summarises and discusses the current knowledge about the occurrence and implications of Betaproteobacteria in drinking water. Although the sparse knowledge on the ecology and physiology of Betaproteobacteria thriving in tap or bottled natural mineral/spring drinking water (DW) is an evidence of this review, it is demonstrated that DW holds a high diversity of Betaproteobacteria, whose presence may not be innocuous. Frequently belonging to genera also found in humans, DW Betaproteobacteria are ubiquitous in different habitats, have the potential to resist antibiotics either due to intrinsic or acquired mechanisms, and hold different virulence factors. The combination of these factors places DW Betaproteobacteria in the list of candidates of emerging opportunistic pathogens. Improved bacterial identification of clinical isolates associated with opportunistic infections and additional genomic and physiological studies may contribute to elucidate the potential impact of these bacteria.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
20
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
21
|
Siderophore-Mediated Iron Acquisition Enhances Resistance to Oxidative and Aromatic Compound Stress in Cupriavidus necator JMP134. Appl Environ Microbiol 2018; 85:AEM.01938-18. [PMID: 30366993 DOI: 10.1128/aem.01938-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 01/30/2023] Open
Abstract
Many bacteria secrete siderophores to enhance iron uptake under iron-restricted conditions. In this study, we found that Cupriavidus necator JMP134, a well-known aromatic pollutant-degrading bacterium, produces an unknown carboxylate-type siderophore named cupriabactin to overcome iron limitation. Using genome mining, targeted mutagenesis, and biochemical analysis, we discovered an operon containing six open reading frames (cubA-F) in the C. necator JMP134 genome that encodes proteins required for the biosynthesis and uptake of cupriabactin. As the dominant siderophore of C. necator JMP134, cupriabactin promotes the growth of C. necator JMP134 under iron-limited conditions via enhanced ferric iron uptake. Furthermore, we demonstrated that the iron concentration-dependent expression of the cub operon is mediated by the ferric uptake regulator (Fur). Physiological analyses revealed that the cupriabactin-mediated iron acquisition system influences swimming motility, biofilm formation, and resistance to oxidative and aromatic compound stress in C. necator JMP134. In conclusion, we identified a carboxylate-type siderophore named cupriabactin, which plays important roles in iron scavenging, bacterial motility, biofilm formation, and stress resistance.IMPORTANCE Since siderophores have been widely exploited for agricultural, environmental, and medical applications, the identification and characterization of new siderophores from different habitats and organisms will have great beneficial applications. Here, we identified a novel siderophore-producing gene cluster in C. necator JMP134. This gene cluster produces a previously unknown carboxylate siderophore, cupriabactin. Physiological analyses revealed that the cupriabactin-mediated iron acquisition system influences swimming motility, biofilm formation, and oxidative stress resistance. Most notably, this system also plays important roles in increasing the resistance of C. necator JMP134 to stress caused by aromatic compounds, which provide a promising strategy to engineer more efficient approaches to degrade aromatic pollutants.
Collapse
|
22
|
Carroll CS, Moore MM. Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit Rev Biochem Mol Biol 2018; 53:356-381. [DOI: 10.1080/10409238.2018.1476449] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Margo M. Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
23
|
Draft Genome Sequence and Annotation of the Phytopathogenic Ralstonia pickettii (Previously Burkholderia glumae) Strain ICMP-8657. GENOME ANNOUNCEMENTS 2018. [PMID: 29519834 PMCID: PMC5843731 DOI: 10.1128/genomea.00128-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strain ICMP-8657 was formerly taxonomically classified as Burkholderia glumae and reported to be the producer of an antibacterial pyrazole derivative. Here, we report the draft genome sequence of ICMP-8657, which failed to demonstrate the biosynthetic capacity to produce the stated antibacterial compound, leading to its taxonomic reclassification as Ralstonia pickettii ICMP-8657.
Collapse
|
24
|
Verstraete MM, Perez-Borrajero C, Brown KL, Heinrichs DE, Murphy MEP. SbnI is a free serine kinase that generates O -phospho-l-serine for staphyloferrin B biosynthesis in Staphylococcus aureus. J Biol Chem 2018; 293:6147-6160. [PMID: 29483190 DOI: 10.1074/jbc.ra118.001875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Staphyloferrin B (SB) is an iron-chelating siderophore produced by Staphylococcus aureus in invasive infections. Proteins for SB biosynthesis and export are encoded by the sbnABCDEFGHI gene cluster, in which SbnI, a member of the ParB/Srx superfamily, acts as a heme-dependent transcriptional regulator of the sbn locus. However, no structural or functional information about SbnI is available. Here, a crystal structure of SbnI revealed striking structural similarity to an ADP-dependent free serine kinase, SerK, from the archaea Thermococcus kodakarensis We found that features of the active sites are conserved, and biochemical assays and 31P NMR and HPLC analyses indicated that SbnI is also a free serine kinase but uses ATP rather than ADP as phosphate donor to generate the SB precursor O-phospho-l-serine (OPS). SbnI consists of two domains, and elevated B-factors in domain II were consistent with the open-close reaction mechanism previously reported for SerK. Mutagenesis of Glu20 and Asp58 in SbnI disclosed that they are required for kinase activity. The only known OPS source in bacteria is through the phosphoserine aminotransferase activity of SerC within the serine biosynthesis pathway, and we demonstrate that an S. aureus serC mutant is a serine auxotroph, consistent with a function in l-serine biosynthesis. However, the serC mutant strain could produce SB when provided l-serine, suggesting that SbnI produces OPS for SB biosynthesis in vivo These findings indicate that besides transcriptionally regulating the sbn locus, SbnI also has an enzymatic role in the SB biosynthetic pathway.
Collapse
Affiliation(s)
| | - Cecilia Perez-Borrajero
- the Genome Sciences and Technology Program Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | | | - David E Heinrichs
- the Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
25
|
Zhang Y, Li J, Zhang W, Shi H, Luo F, Hikichi Y, Shi X, Ohnishi K. A putative LysR-type transcriptional regulator PrhO positively regulates the type III secretion system and contributes to the virulence of Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2018; 19:1808-1819. [PMID: 29363870 PMCID: PMC6638147 DOI: 10.1111/mpp.12660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/21/2017] [Accepted: 01/20/2018] [Indexed: 06/01/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) are ubiquitous and abundant amongst bacteria and control a variety of cellular processes. Here, we investigated the effect of Rsc1880 (a putative LTTR, hereafter designated as PrhO) on the pathogenicity of Ralstonia solanacearum. Deletion of prhO substantially reduced the expression of the type III secretion system (T3SS) both in vitro and in planta, and resulted in significantly impaired virulence in tomato and tobacco plants. Complementary prhO completely restored the reduced virulence and T3SS expression to that of the wild-type. Moreover, PrhO-dependent T3SS and virulence were conserved amongst R. solanacearum species. However, deletion of prhO did not alter biofilm formation, swimming mobility and in planta growth. The expression of some type III effectors was significantly reduced in prhO mutants, but the hypersensitive response was not affected in tobacco leaves. Consistent with the key regulatory role of HrpB on T3SS, PrhO positively regulated the T3SS through HrpB. Furthermore, PrhO regulated hrpB expression via two close paralogues, HrpG and PrhG, which are two-component response regulators and positively regulate hrpB expression in a parallel manner. However, deletion of prhO did not alter the expression of phcA, prhJ and prhN, which are also involved in hrpB regulation. In addition, PrhO was expressed in a cell density-dependent manner, but negatively repressed by itself. No regulation was observed for HrpB, PhcA and PrhN on prhO expression. Taken together, we genetically demonstrated that PrhO is a novel virulence regulator of R. solanacearum, which positively regulates T3SS expression through HrpG, PrhG and HrpB and contributes to virulence.
Collapse
Affiliation(s)
- Yong Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Jiaman Li
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Weiqi Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Hualei Shi
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityKochi783‐8502Japan
| | - Xiaojun Shi
- College of Resources and EnvironmentSouthwest UniversityChongqing400715China
| | - Kouhei Ohnishi
- Research Institute of Molecular GeneticsKochi UniversityKochi783‐8502Japan
| |
Collapse
|
26
|
A Single Regulator Mediates Strategic Switching between Attachment/Spread and Growth/Virulence in the Plant Pathogen Ralstonia solanacearum. mBio 2017; 8:mBio.00895-17. [PMID: 28951474 PMCID: PMC5615195 DOI: 10.1128/mbio.00895-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The PhcA virulence regulator in the vascular wilt pathogen Ralstonia solanacearum responds to cell density via quorum sensing. To understand the timing of traits that enable R. solanacearum to establish itself inside host plants, we created a ΔphcA mutant that is genetically locked in a low-cell-density condition. Comparing levels of gene expression of wild-type R. solanacearum and the ΔphcA mutant during tomato colonization revealed that the PhcA transcriptome includes an impressive 620 genes (>2-fold differentially expressed; false-discovery rate [FDR], ≤0.005). Many core metabolic pathways and nutrient transporters were upregulated in the ΔphcA mutant, which grew faster than the wild-type strain in tomato xylem sap and on dozens of specific metabolites, including 36 found in xylem. This suggests that PhcA helps R. solanacearum to survive in nutrient-poor environmental habitats and to grow rapidly during early pathogenesis. However, after R. solanacearum reaches high cell densities in planta, PhcA mediates a trade-off from maximizing growth to producing costly virulence factors. R. solanacearum infects through roots, and low-cell-density-mode-mimicking ΔphcA cells attached to tomato roots better than the wild-type cells, consistent with their increased expression of several adhesins. Inside xylem vessels, ΔphcA cells formed aberrantly dense mats. Possibly as a result, the mutant could not spread up or down tomato stems as well as the wild type. This suggests that aggregating improves R. solanacearum survival in soil and facilitates infection and that it reduces pathogenic fitness later in disease. Thus, PhcA mediates a second strategic switch between initial pathogen attachment and subsequent dispersal inside the host. PhcA helps R. solanacearum optimally invest resources and correctly sequence multiple steps in the bacterial wilt disease cycle. Ralstonia solanacearum is a destructive soilborne crop pathogen that wilts plants by colonizing their water-transporting xylem vessels. It produces its costly virulence factors only after it has grown to a high population density inside a host. To identify traits that this pathogen needs in other life stages, we studied a mutant that mimics the low-cell-density condition. This mutant (the ΔphcA mutant) cannot sense its own population density. It grew faster than and used many nutrients not available to the wild-type bacterium, including metabolites present in tomato xylem sap. The mutant also attached much better to tomato roots, and yet it failed to spread once it was inside plants because it was trapped in dense mats. Thus, PhcA helps R. solanacearum succeed over the course of its complex life cycle by ensuring avid attachment to plant surfaces and rapid growth early in disease, followed by high virulence and effective dispersal later in disease.
Collapse
|
27
|
Pandey SS, Patnana PK, Rai R, Chatterjee S. Xanthoferrin, the α-hydroxycarboxylate-type siderophore of Xanthomonas campestris pv. campestris, is required for optimum virulence and growth inside cabbage. MOLECULAR PLANT PATHOLOGY 2017; 18:949-962. [PMID: 27348422 PMCID: PMC6638303 DOI: 10.1111/mpp.12451] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/10/2016] [Accepted: 06/23/2016] [Indexed: 05/27/2023]
Abstract
Xanthomonas campestris pv. campestris causes black rot, a serious disease of crucifers. Xanthomonads encode a siderophore biosynthesis and uptake gene cluster xss (Xanthomonas siderophore synthesis) involved in the production of a vibrioferrin-type siderophore. However, little is known about the role of the siderophore in the iron uptake and virulence of X. campestris pv. campestris. In this study, we show that X. campestris pv. campestris produces an α-hydroxycarboxylate-type siderophore (named xanthoferrin), which is required for growth under low-iron conditions and for optimum virulence. A mutation in the siderophore synthesis xssA gene causes deficiency in siderophore production and growth under low-iron conditions. In contrast, the siderophore utilization ΔxsuA mutant is able to produce siderophore, but exhibits a defect in the utilization of the siderophore-iron complex. Our radiolabelled iron uptake studies confirm that the ΔxssA and ΔxsuA mutants exhibit defects in ferric iron (Fe3+ ) uptake. The ΔxssA mutant is able to utilize and transport the exogenous xanthoferrin-Fe3+ complex; in contrast, the siderophore utilization or uptake mutant ΔxsuA exhibits defects in siderophore uptake. Expression analysis of the xss operon using a chromosomal gusA fusion indicates that the xss operon is expressed during in planta growth and under low-iron conditions. Furthermore, exogenous iron supplementation in cabbage leaves rescues the in planta growth deficiency of ΔxssA and ΔxsuA mutants. Our study reveals that the siderophore xanthoferrin is an important virulence factor of X. campestris pv. campestris which promotes in planta growth by the sequestration of Fe3+ .
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Centre for DNA Fingerprinting and Diagnostics, NampallyHyderabad500001India
- Graduate StudiesManipal UniversityManipal 576104India
| | | | - Rikky Rai
- Centre for DNA Fingerprinting and Diagnostics, NampallyHyderabad500001India
- Graduate StudiesManipal UniversityManipal 576104India
| | | |
Collapse
|
28
|
Baldeweg F, Kage H, Schieferdecker S, Allen C, Hoffmeister D, Nett M. Structure of Ralsolamycin, the Interkingdom Morphogen from the Crop Plant Pathogen Ralstonia solanacearum. Org Lett 2017; 19:4868-4871. [PMID: 28846435 DOI: 10.1021/acs.orglett.7b02329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ralsolamycin, an inducer of chlamydospore formation in fungi, was recently reported from the plant pathogenic bacterium Ralstonia solanacearum. Although interpretation of tandem mass data and bioinformatics enabled a preliminary chemical characterization, the full structure of ralsolamycin was not resolved. We now report the recovery of this secondary metabolite from an engineered R. solanacearum strain. The structure of ralsolamycin was elucidated by extensive spectroscopic analyses. Chemical derivatization as well as bioinformatics were used to assign the absolute stereochemistry. Our results identified an erroneous genome sequence, thereby emphasizing the value of chemical methods to complement bioinformatics-based procedures in natural product research.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-University Jena , Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Hirokazu Kage
- Department of Biochemical and Chemical Engineering, Technical University Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Sebastian Schieferdecker
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison , 1630 Linden Drive, Madison, Wisconsin 53706, United States
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-University Jena , Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Technical University Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| |
Collapse
|
29
|
Li P, Yin W, Yan J, Chen Y, Fu S, Song S, Zhou J, Lyu M, Deng Y, Zhang LH. Modulation of Inter-kingdom Communication by PhcBSR Quorum Sensing System in Ralstonia solanacearum Phylotype I Strain GMI1000. Front Microbiol 2017; 8:1172. [PMID: 28690607 PMCID: PMC5481312 DOI: 10.3389/fmicb.2017.01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 01/16/2023] Open
Abstract
Ralstonia solanacearum is a ubiquitous soil-borne plant pathogenic bacterium, which frequently encounters and interacts with other soil cohabitants in competition for environmental niches. Ralsolamycin, which is encoded by the rmy genes, has been characterized as a novel inter-kingdom interaction signal that induces chlamydospore development in fungi. In this study, we provide the first genetic evidence that the rmy gene expression is controlled by the PhcBSR quorum sensing (QS) system in strain GMI1000. Mutation of phcB could lead to significant reduction of the expression levels of the genes involved in ralsolamycin biosynthesis. In addition, both the phcB and rmy mutants were attenuated in induction of chlamydospore formation in Fusarium oxysporum f. cubense and diminished in the ability to compete with the sugarcane pathogen Sporisorium scitamineum. Agreeable with the pattern of QS regulation, transcriptional expression analysis showed that the transcripts of the rmy genes were increased along with the increment of the bacterial population density. Taken together, the above findings provide new insights into the regulatory mechanisms that the QS system involves in governing the ralsolamycin inter-kingdom signaling system.
Collapse
Affiliation(s)
- Peng Li
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China.,School of Biological and Science Technology, University of JinanJinan, China
| | - Wenfang Yin
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Jinli Yan
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Yufan Chen
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Shuna Fu
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Shihao Song
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Mingfa Lyu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Yinyue Deng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China.,Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China.,Institute of Molecular and Cell BiologySingapore, Singapore
| |
Collapse
|
30
|
Sperb ER, Tadra-Sfeir MZ, Sperotto RA, Fernandes GDC, Pedrosa FDO, de Souza EM, Passaglia LMP. Iron deficiency resistance mechanisms enlightened by gene expression analysis in Paenibacillus riograndensis SBR5. Res Microbiol 2016; 167:501-9. [PMID: 27130283 DOI: 10.1016/j.resmic.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022]
Abstract
Despite its importance in growth and cell division, iron metabolism is still poorly understood in microorganisms, especially in Gram-positive bacteria. In this work, we used RNA sequencing technology to elucidate global mechanisms involved in iron starvation resistance in Paenibacillus riograndensis SBR5, a potential plant growth-promoting bacterium. Iron deficiency caused several changes in gene expression, and 150 differentially expressed genes were found: 71 genes were overexpressed and 79 genes were underexpressed. Eight genes for which expression was at least twice as high or twice as low in iron-limited condition compared with iron-sufficient condition were chosen for RT-qPCR analysis to validate the RNA seq data. In general, most genes exhibited the same pattern of expression after 24 h of P. riograndensis growth under iron-limiting condition. Our results suggest that, during iron deficiency, bacteria express several genes related to nutrient uptake when they start to grow to obtain all of the molecules necessary for maintaining major cellular processes. However, once iron becomes highly limiting and is no longer able to sustain exponential growth, bacteria begin to express genes related to several processes, like sporulation and DNA protection, as a way of resisting this stress.
Collapse
Affiliation(s)
- Edilena Reis Sperb
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43312, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Michelle Zibetti Tadra-Sfeir
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19046, CEP 81531-980, Curitiba, PR, Brazil.
| | - Raul Antônio Sperotto
- Setor de Genética e Biologia Molecular do Museu de Ciências Naturais (MCN), Centro de Ciências Biológicas e da Saúde (CCBS), Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Centro Universitário UNIVATES, Lajeado, RS, Brazil.
| | - Gabriela de Carvalho Fernandes
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43312, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19046, CEP 81531-980, Curitiba, PR, Brazil.
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19046, CEP 81531-980, Curitiba, PR, Brazil.
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43312, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Ailloud F, Lowe TM, Robène I, Cruveiller S, Allen C, Prior P. In planta comparative transcriptomics of host-adapted strains of Ralstonia solanacearum. PeerJ 2016; 4:e1549. [PMID: 26788428 PMCID: PMC4715432 DOI: 10.7717/peerj.1549] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023] Open
Abstract
Background. Ralstonia solanacearum is an economically important plant pathogen with an unusually large host range. The Moko (banana) and NPB (not pathogenic to banana) strain groups are closely related but are adapted to distinct hosts. Previous comparative genomics studies uncovered very few differences that could account for the host range difference between these pathotypes. To better understand the basis of this host specificity, we used RNAseq to profile the transcriptomes of an R. solanacearum Moko strain and an NPB strain under in vitro and in planta conditions. Results. RNAs were sequenced from bacteria grown in rich and minimal media, and from bacteria extracted from mid-stage infected tomato, banana and melon plants. We computed differential expression between each pair of conditions to identify constitutive and host-specific gene expression differences between Moko and NPB. We found that type III secreted effectors were globally up-regulated upon plant cell contact in the NPB strain compared with the Moko strain. Genes encoding siderophore biosynthesis and nitrogen assimilation genes were highly up-regulated in the NPB strain during melon pathogenesis, while denitrification genes were up-regulated in the Moko strain during banana pathogenesis. The relatively lower expression of oxidases and the denitrification pathway during banana pathogenesis suggests that R. solanacearum experiences higher oxygen levels in banana pseudostems than in tomato or melon xylem. Conclusions. This study provides the first report of differential gene expression associated with host range variation. Despite minimal genomic divergence, the pathogenesis of Moko and NPB strains is characterized by striking differences in expression of virulence- and metabolism-related genes.
Collapse
Affiliation(s)
- Florent Ailloud
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération International en Recherche Agronomique pour le Développement, Saint-Pierre, France; Laboratoire de la Santé des Végétaux, Agence Nationale Sécurité Sanitaire Alimentaire Nationale, Saint-Pierre, France
| | - Tiffany M Lowe
- Department of Plant Pathology, University of Wisconsin-Madison , Madison, WI , United States
| | - Isabelle Robène
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération International en Recherche Agronomique pour le Développement , Saint-Pierre , France
| | - Stéphane Cruveiller
- Laboratoire d'Analyses Bioinformatiques pour la Genomique et le Metabolisme, Commissariat à l'Energie Atomique et aux Energies Alternatives, Evry, France; UMR CNRS 8030 - Génomique Métabolique, Centre National de la Recherche Scientifique, Evry, France
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison , Madison, WI , United States
| | - Philippe Prior
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération International en Recherche Agronomique pour le Développement, Saint-Pierre, France; Département de Santé des Plantes et Environnement, Institut National de la Recherche Agronomique, Sophia Antipolis, France
| |
Collapse
|
32
|
Pluháček T, Lemr K, Ghosh D, Milde D, Novák J, Havlíček V. Characterization of microbial siderophores by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:35-47. [PMID: 25980644 DOI: 10.1002/mas.21461] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/19/2014] [Indexed: 05/28/2023]
Abstract
Siderophores play important roles in microbial iron piracy, and are applied as infectious disease biomarkers and novel pharmaceutical drugs. Inductively coupled plasma and molecular mass spectrometry (ICP-MS) combined with high resolution separations allow characterization of siderophores in complex samples taking advantages of mass defect data filtering, tandem mass spectrometry, and iron-containing compound quantitation. The enrichment approaches used in siderophore analysis and current ICP-MS technologies are reviewed. The recent tools for fast dereplication of secondary metabolites and their databases are reported. This review on siderophores is concluded with their recent medical, biochemical, geochemical, and agricultural applications in mass spectrometry context.
Collapse
Affiliation(s)
- Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Dipankar Ghosh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Novák
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Vladimír Havlíček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| |
Collapse
|
33
|
Laakso HA, Marolda CL, Pinter TB, Stillman MJ, Heinrichs DE. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus. J Biol Chem 2015; 291:29-40. [PMID: 26534960 DOI: 10.1074/jbc.m115.696625] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD-I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis.
Collapse
Affiliation(s)
| | | | | | | | - David E Heinrichs
- From the Departments of Microbiology and Immunology and Centre for Human Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
34
|
Madsen JLH, Johnstone TC, Nolan EM. Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus. J Am Chem Soc 2015; 137:9117-27. [DOI: 10.1021/jacs.5b04557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julie L. H. Madsen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl Environ Microbiol 2014; 81:139-48. [PMID: 25326304 DOI: 10.1128/aem.02503-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Iron is a key micronutrient for microbial growth but is often present in low concentrations or in biologically unavailable forms. Many microorganisms overcome this challenge by producing siderophores, which are ferric-iron chelating compounds that enable the solubilization and acquisition of iron in a bioactive form. Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a siderophore under iron-limiting conditions. The proteins involved in the biosynthesis and export of this siderophore are encoded by the iucABCD-iutA operon, which is homologous to the aerobactin biosynthetic gene cluster found in a number of enteric pathogens. Mutations in iucA and iutA resulted in a decrease in surface-based motility that P. stewartii utilizes during the early stages of biofilm formation, indicating that active iron acquisition impacts surface motility for P. stewartii. Furthermore, bacterial movement in planta is also dependent on a functional siderophore biosynthesis and uptake pathway. Most notably, siderophore-mediated iron acquisition is required for full virulence in the sweet corn host, indicating that active iron acquisition is essential for pathogenic fitness for this important xylem-dwelling bacterial pathogen.
Collapse
|
36
|
Kai K, Ohnishi H, Mori Y, Kiba A, Ohnishi K, Hikichi Y. Involvement of Ralfuranone Production in the Virulence ofRalstonia solanacearumOE1-1. Chembiochem 2014; 15:2590-7. [DOI: 10.1002/cbic.201402404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 12/18/2022]
|
37
|
Pauly J, Nett M, Hoffmeister D. Ralfuranone Is Produced by an Alternative Aryl-Substituted γ-Lactone Biosynthetic Route in Ralstonia solanacearum. JOURNAL OF NATURAL PRODUCTS 2014; 77:1967-1971. [PMID: 25033087 DOI: 10.1021/np500263r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aryl-substituted γ-lactones ralfuranones A and B were isolated after feeding L-[1-(13)C]-phenylalanine to a liquid culture of the plant pathogenic bacterium Ralstonia solanacearum. (13)C NMR analysis demonstrated specific enrichment of the label at position 2 of the γ-lactone. This labeling pattern is consistent with a biosynthetic mechanism that includes direct cyclization of two monomeric phenylpyruvate precursors into an α,β-substituted lactone, but incompatible with a terphenylquinone intermediate. As the latter was shown as an intermediate in allantofuranone biosynthesis, we conclude that aryl-substituted γ-lactones can be assembled via divergent biosynthetic routes.
Collapse
Affiliation(s)
- Julia Pauly
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität , Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
38
|
Pauly J, Spiteller D, Linz J, Jacobs J, Allen C, Nett M, Hoffmeister D. Ralfuranone Thioether Production by the Plant PathogenRalstonia solanacearum. Chembiochem 2013; 14:2169-78. [DOI: 10.1002/cbic.201300364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 12/18/2022]
|
39
|
Chellemi DO, Rosskopf EN, Kokalis-Burelle N. The effect of transitional organic production practices on soilborne pests of tomato in a simulated microplot study. PHYTOPATHOLOGY 2013; 103:792-801. [PMID: 23837543 DOI: 10.1094/phyto-09-12-0243-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The perceived risk of pest resurgence upon transition from conventional to organic-based farming systems remains a critical obstacle to expanding organic vegetable production, particularly where chemical fumigants have provided soilborne pest and disease control. Microplots were used to study the effects of soil amendments and cropping sequences applied over a 2-year transitional period from conventional to organic tomato (Solanum lycopersicum) cultivation on the incidence of bacterial wilt caused by Ralstonia solanacearum, purple nutsedge (Cyperus rotundus) reproduction, root galling by Meloidogyne incognita, and soil nematode populations. A continuation of tomato monoculture during the transitional period resulted in a disease incidence of 33%, as compared with 9% in microplots that were rotated with sunn hemp (Crotalaria juncea) and Japanese millet (Echinochloa crusgalli var. frumentacea). The benefits of disease control from a crop rotation extended into to a second season of organic tomato cultivation season, where bacterial wilt declined from 40% in microplots with a tomato monoculture to 17% in plots with a crop rotation sequence. Combining applications of urban plant debris with a continued tomato monoculture increased the incidence of bacterial wilt to 60%. During the transition period, tomato plants following a cover crop regime also had significantly lower levels of root galling from root-knot nematode infection compared with plants in the continuous tomato monoculture. Nutsedge tuber production was significantly increased in plots amended with broiler litter but not urban plant debris. Compared with a continuous monoculture, the results illustrate the importance of a systems-based approach to implementing transitional organic practices that is cognizant of their interactive effects on resident soilborne disease, weed, and pest complexes.
Collapse
Affiliation(s)
- Dan O Chellemi
- United State Department of Agriculture- Agriculture Research Service, Fort Pierce, FL, USA.
| | | | | |
Collapse
|
40
|
Fones H, Preston GM. The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 2013; 37:495-519. [DOI: 10.1111/1574-6976.12004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 12/24/2022] Open
|
41
|
Franza T, Expert D. Role of iron homeostasis in the virulence of phytopathogenic bacteria: an 'à la carte' menu. MOLECULAR PLANT PATHOLOGY 2013; 14:429-38. [PMID: 23171271 PMCID: PMC6638640 DOI: 10.1111/mpp.12007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The interaction between pathogenic microbes and their hosts is determined by survival strategies on both sides. As a result of its redox properties, iron is vital for the growth and proliferation of nearly all organisms, including pathogenic bacteria. In bacteria-vertebrate interactions, competition for this essential metal is critical for the outcome of the infection. The role of iron in the virulence of plant pathogenic bacteria has only been explored in a few pathosystems in the past. However, in the last 5 years, intensive research has provided new insights into the mechanisms of iron homeostasis in phytopathogenic bacteria that are involved in virulence. This review, which includes important plant pathosystems, discusses the recent advances in the understanding of iron transport and homeostasis during plant pathogenesis. By summarizing the recent progress, we wish to provide an updated view clarifying the various roles played by this metal in the virulence of bacterial phytopathogens as a nutritional and regulatory element. The complex intertwining of iron metabolism and oxidative stress during infection is emphasized.
Collapse
Affiliation(s)
- Thierry Franza
- Laboratoire des Interactions Plantes Pathogènes UMR 217, AgroParisTech/INRA/UMPC, 16 rue Claude Bernard 75005, Paris, France.
| | | |
Collapse
|
42
|
Vicente CSL, Nascimento F, Espada M, Barbosa P, Mota M, Glick BR, Oliveira S. Characterization of bacteria associated with pinewood nematode Bursaphelenchus xylophilus. PLoS One 2012; 7:e46661. [PMID: 23091599 PMCID: PMC3473040 DOI: 10.1371/journal.pone.0046661] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022] Open
Abstract
Pine wilt disease (PWD) is a complex disease integrating three major agents: the pathogenic agent, the pinewood nematode Bursaphelenchus xylophilus; the insect-vector Monochamus spp.; and the host pine tree, Pinus sp. Since the early 80's, the notion that another pathogenic agent, namely bacteria, may play a role in PWD has been gaining traction, however the role of bacteria in PWD is still unknown. The present work supports the possibility that some B. xylophilus-associated bacteria may play a significant role in the development of this disease. This is inferred as a consequence of: (i) the phenotypic characterization of a collection of 35 isolates of B. xylophilus-associated bacteria, in different tests broadly used to test plant pathogenic and plant growth promoting bacteria, and (ii) greenhouse experiments that infer the pathogenicity of these bacteria in maritime pine, Pinus pinaster. The results illustrate the presence of a heterogeneous microbial community associated with B. xylophilus and the traits exhibited by at least, some of these bacteria, appear to be related to PWD symptoms. The inoculation of four specific B. xylophilus-associated bacteria isolates in P. pinaster seedlings resulted in the development of some PWD symptoms suggesting that these bacteria likely play an active role with B. xylophilus in PWD.
Collapse
Affiliation(s)
- Claudia S L Vicente
- NemaLab, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal
| | | | | | | | | | | | | |
Collapse
|
43
|
Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS, Pierson EA, Lindow SE, Kobayashi DY, Raaijmakers JM, Weller DM, Thomashow LS, Allen AE, Paulsen IT. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 2012; 8:e1002784. [PMID: 22792073 PMCID: PMC3390384 DOI: 10.1371/journal.pgen.1002784] [Citation(s) in RCA: 414] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022] Open
Abstract
We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45–52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire. We sequenced the genomes of seven strains of the Pseudomonas fluorescens group that colonize plant surfaces and function as biological control agents, protecting plants from disease. In this study, we demonstrated the genomic diversity of the group by comparing these strains to each other and to three other strains that were sequenced previously. Only about half of the genes in each strain are present in all of the other strains, and each strain has hundreds of unique genes that are not present in the other genomes. We mapped the genes that contribute to biological control in each genome and found that most of the biological control genes are in the variable regions of the genome, which are not shared by all of the other strains. This finding is consistent with our knowledge of the distinctive biology of each strain. Finally, we looked for new genes that are likely to confer antimicrobial traits needed to suppress plant pathogens, but have not been identified previously. In each genome, we discovered many of these new genes, which provide avenues for future discovery of new traits with the potential to manage plant diseases in agriculture or natural ecosystems.
Collapse
Affiliation(s)
- Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, Corvallis, Oregon, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kreutzer MF, Nett M. Genomics-driven discovery of taiwachelin, a lipopeptide siderophore from Cupriavidus taiwanensis. Org Biomol Chem 2012; 10:9338-43. [DOI: 10.1039/c2ob26296g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Genin S, Denny TP. Pathogenomics of the Ralstonia solanacearum species complex. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:67-89. [PMID: 22559068 DOI: 10.1146/annurev-phyto-081211-173000] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ralstonia solanacearum is a major phytopathogen that attacks many crops and other plants over a broad geographical range. The extensive genetic diversity of strains responsible for the various bacterial wilt diseases has in recent years led to the concept of an R. solanacearum species complex. Genome sequencing of more than 10 strains representative of the main phylogenetic groups has broadened our knowledge of the evolution and speciation of this pathogen and led to the identification of novel virulence-associated functions. Comparative genomic analyses are now opening the way for refined functional studies. The many molecular determinants involved in pathogenicity and host-range specificity are described, and we also summarize current understanding of their roles in pathogenesis and how their expression is tightly controlled by an intricate virulence regulatory network.
Collapse
Affiliation(s)
- Stéphane Genin
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France.
| | | |
Collapse
|
46
|
|
47
|
Beasley FC, Cheung J, Heinrichs DE. Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus. BMC Microbiol 2011; 11:199. [PMID: 21906287 PMCID: PMC3179956 DOI: 10.1186/1471-2180-11-199] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Staphylococcus aureus synthesizes two siderophores, staphyloferrin A and staphyloferrin B, that promote iron-restricted growth. Previous work on the biosynthesis of staphyloferrin B has focused on the role of the synthetase enzymes, encoded from within the sbnA-I operon, which build the siderophore from the precursor molecules citrate, alpha-ketoglutarate and L-2,3-diaminopropionic acid. However, no information yet exists on several other enzymes, expressed from the biosynthetic cluster, that are thought to be involved in the synthesis of the precursors (or synthetase substrates) themselves. RESULTS Using mutants carrying insertions in sbnA and sbnB, we show that these two genes are essential for the synthesis of staphyloferrin B, and that supplementation of the growth medium with L-2,3-diaminopropionic acid can bypass the block in staphyloferrin B synthesis displayed by the mutants. Several mechanisms are proposed for how the enzymes SbnA, with similarity to cysteine synthase enzymes, and SbnB, with similarity to amino acid dehydrogenases and ornithine cyclodeaminases, function together in the synthesis of this unusual nonproteinogenic amino acid L-2,3-diaminopropionic acid. CONCLUSIONS Mutation of either sbnA or sbnB result in abrogation of synthesis of staphyloferrin B, a siderophore that contributes to iron-restricted growth of S. aureus. The loss of staphyloferrin B synthesis is due to an inability to synthesize the unusual amino acid L-2,3-diaminopropionic acid which is an important, iron-liganding component of the siderophore structure. It is proposed that SbnA and SbnB function together as an L-Dap synthase in the S. aureus cell.
Collapse
Affiliation(s)
- Federico C Beasley
- Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5C1, Canada
| | | | | |
Collapse
|
48
|
Biosynthesis of a complex yersiniabactin-like natural product via the mic locus in phytopathogen Ralstonia solanacearum. Appl Environ Microbiol 2011; 77:6117-24. [PMID: 21724891 DOI: 10.1128/aem.05198-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A genome mining study in the plant pathogenic bacterium Ralstonia solanacearum GMI1000 unveiled a polyketide synthase/nonribosomal peptide synthetase gene cluster putatively involved in siderophore biosynthesis. Insertional mutagenesis confirmed the respective locus to be operational under iron-deficient conditions and spurred the isolation of the associated natural product. Bioinformatic analyses of the gene cluster facilitated the structural characterization of this compound, which was subsequently identified as the antimycoplasma agent micacocidin. The metal-chelating properties of micacocidin were evaluated in competition experiments, and the cellular uptake of gallium-micacocidin complexes was demonstrated in R. solanacearum GMI1000, indicating a possible siderophore role. Comparative genomics revealed a conservation of the micacocidin gene cluster in defined, but globally dispersed phylotypes of R. solanacearum.
Collapse
|
49
|
Jones AM, Wildermuth MC. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. J Bacteriol 2011; 193:2767-75. [PMID: 21441525 PMCID: PMC3133136 DOI: 10.1128/jb.00069-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/11/2011] [Indexed: 11/20/2022] Open
Abstract
High-affinity iron scavenging through the use of siderophores is a well-established virulence determinant in mammalian pathogenesis. However, few examples have been reported for plant pathogens. Here, we use a genetic approach to investigate the role of siderophores in Pseudomonas syringae pv. tomato DC3000 (DC3000) virulence in tomato. DC3000, an agronomically important pathogen, has two known siderophores for high-affinity iron scavenging, yersiniabactin and pyoverdin, and we uncover a third siderophore, citrate, required for growth when iron is limiting. Though growth of a DC3000 triple mutant unable to either synthesize or import these siderophores is severely restricted in iron-limited culture, it is fully pathogenic. One explanation for this phenotype is that the DC3000 triple mutant is able to directly pirate plant iron compounds such as heme/hemin or iron-nicotianamine, and our data indicate that DC3000 can import iron-nicotianamine with high affinity. However, an alternative explanation, supported by data from others, is that the pathogenic environment of DC3000 (i.e., leaf apoplast) is not iron limited but is iron replete, with available iron of >1 μM. Growth of the triple mutant in culture is restored to wild-type levels by supplementation with a variety of iron chelates at >1 μM, including iron(III) dicitrate, a dominant chelate of the leaf apoplast. This suggests that lower-affinity iron import would be sufficient for DC3000 iron nutrition in planta and is in sharp contrast to the high-affinity iron-scavenging mechanisms required in mammalian pathogenesis.
Collapse
Affiliation(s)
| | - Mary C. Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
50
|
Grigg JC, Cheung J, Heinrichs DE, Murphy MEP. Specificity of Staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus. J Biol Chem 2010; 285:34579-88. [PMID: 20810662 PMCID: PMC2966073 DOI: 10.1074/jbc.m110.172924] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Many organisms use sophisticated systems to acquire growth-limiting iron. Iron limitation is especially apparent in bacterial pathogens of mammalian hosts where free iron concentrations are physiologically negligible. A common strategy is to secrete low molecular weight iron chelators, termed siderophores, and express high affinity receptors for the siderophore-iron complex. Staphylococcus aureus, a widespread pathogen, produces two siderophores, staphyloferrin A (SA) and staphyloferrin B (SB). We have determined the crystal structure of the staphyloferrin B receptor, SirA, at high resolution in both the apo and Fe(III)-SB (FeSB)-bound forms. SirA, a member of the class III binding protein family of metal receptors, has N- and C-terminal domains, each composed of mainly a β-stranded core and α-helical periphery. The domains are bridged by a single α-helix and together form the FeSB binding site. SB coordinates Fe(III) through five oxygen atoms and one nitrogen atom in distorted octahedral geometry. SirA undergoes conformational change upon siderophore binding, largely securing two loops from the C-terminal domain to enclose FeSB with a low nanomolar dissociation constant. The staphyloferrin A receptor, HtsA, homologous to SirA, also encloses its cognate siderophore (FeSA); however, the largest conformational rearrangements involve a different region of the C-terminal domain. FeSB is uniquely situated in the binding pocket of SirA with few of the contacting residues being conserved with those of HtsA interacting with FeSA. Although both SirA and HtsA bind siderophores from the same α-hydroxycarboxylate class, the unique structural features of each receptor provides an explanation for their distinct specificity.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | | | | | | |
Collapse
|