1
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Chen XJ, Wang B, Thompson IP, Huang WE. Rational Design and Characterization of Nitric Oxide Biosensors in E. coli Nissle 1917 and Mini SimCells. ACS Synth Biol 2021; 10:2566-2578. [PMID: 34551261 DOI: 10.1021/acssynbio.1c00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is an important disease biomarker found in many chronic inflammatory diseases and cancers. A well-characterized nitric sensing system is useful to aid the rapid development of bacteria therapy and synthetic biology. In this work, we engineered a set of NO-responsive biosensors based on the PnorV promoter and its NorR regulator in the norRVW operon; the circuits were characterized and optimized in probiotic Escherichia coli Nissle 1917 and mini SimCells (minicells containing designed gene circuits for specific tasks). Interestingly, the expression level of NorR displayed an inverse correlation to the PnorV promoter activation, as a strong expression of the NorR regulator resulted in a low amplitude of NO-inducible gene expression. This could be explained by a competitive binding mechanism where the activated and inactivated NorR competitively bind to the same site on the PnorV promoter. To overcome such issues, the NO induction performance was further improved by making a positive feedback loop that fine-tuned the level of NorR. In addition, by examining two integration host factor (IHF) binding sites of the PnorV promoter, we demonstrated that the deletion of the second IHF site increased the maximum signal output by 25% (500 μM DETA/NO) with no notable increase in the basal expression level. The optimized NO-sensing gene circuit in anucleate mini SimCells exhibited increased robustness against external fluctuation in medium composition. The NO detection limit of the optimized gene circuit pPnorVβ was also improved from 25.6 to 1.3 nM in mini SimCells. Moreover, lyophilized mini SimCells can maintain function for over 2 months. Hence, SimCell-based NO biosensors could be used as safe sensor chassis for synthetic biology.
Collapse
Affiliation(s)
- Xiaoyu J. Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Baojun Wang
- Hangzhou Innovation Center and College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 311200, China
- School of Biological Sciences, University of Edinburgh, G20 Roger Land Building, The Kingʼs Buildings, Edinburgh EH9 3FF, United Kingdom
- ZJU-UoE Joint Research Centre for Engineering Biology, Zhejiang University, Haining 314400, China
| | - Ian P. Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
3
|
Lee JH, Sundin GW, Zhao Y. Identification of the HrpS binding site in the hrpL promoter and effect of the RpoN binding site of HrpS on the regulation of the type III secretion system in Erwinia amylovora. MOLECULAR PLANT PATHOLOGY 2016; 17:691-702. [PMID: 26440313 PMCID: PMC6638409 DOI: 10.1111/mpp.12324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by an RpoN-HrpL sigma factor cascade, which is activated by the bacterial alarmone (p)ppGpp. In this study, the binding site of HrpS, an enhancer binding protein, was identified for the first time in plant-pathogenic bacteria. Complementation of the hrpL mutant with promoter deletion constructs of the hrpL gene and promoter activity analyses using various lengths of the hrpL promoter fused to a promoter-less green fluorescent protein (gfp) reporter gene delineated the upstream region for HrpS binding. Sequence analysis revealed a dyad symmetry sequence between -138 and -125 nucleotides (TGCAA-N4-TTGCA) as the potential HrpS binding site, which is conserved in the promoter of the hrpL gene among plant enterobacterial pathogens. Results of quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and electrophoresis mobility shift assay coupled with site-directed mutagenesis (SDM) analysis showed that the intact dyad symmetry sequence was essential for HrpS binding, full activation of T3SS gene expression and virulence. In addition, the role of the GAYTGA motif (RpoN binding site) of HrpS in the regulation of T3SS gene expression in E. amylovora was characterized by complementation of the hrpS mutant using mutant variants generated by SDM. Results showed that a Y100F substitution of HrpS complemented the hrpS mutant, whereas Y100A and Y101A substitutions did not. These results suggest that tyrosine (Y) and phenylalanine (F) function interchangeably in the conserved GAYTGA motif of HrpS in E. amylovora.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Varela-Raposo A, Pimentel C, Morais-Silva F, Rezende A, Ruiz JC, Rodrigues-Pousada C. Role of NorR-like transcriptional regulators under nitrosative stress of the δ-proteobacterium, Desulfovibrio gigas. Biochem Biophys Res Commun 2013; 431:590-6. [PMID: 23313476 DOI: 10.1016/j.bbrc.2012.12.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 11/26/2022]
Abstract
NorR protein was shown to be responsible for the transcriptional regulation of flavorubredoxin and its associated oxidoreductase in Escherichia coli. Since Desulfovibrio gigas has a rubredoxin:oxygen oxidoreductase (ROO) that is involved in both oxidative and nitrosative stress response, a NorR-like protein was searched in D. gigas genome. We have found two putative norR coding units in its genome. To study the role of the protein designated as NorR1-like (NorR1L) in the presence of nitrosative stress, a norR1L null mutant of D. gigas was created and a phenotypic analysis was performed under the nitrosating agent GSNO. We show that under these conditions, the growth of both D. gigas mutants Δroo and ΔnorR1-like is impaired. In order to confirm that D. gigas NorR1-like may play identical function as the NorR of E. coli, we have complemented the E. coli ΔnorR mutant strain with the norR1-like gene and have evaluated growth when nitrosative stress was imposed. The growth phenotype of E. coli ΔnorR mutant strain was recovered under these conditions. We also found that induction of roo gene expression is completely abolished in the norR1L mutant strain of D. gigas subjected to nitrosative stress. It is identified in δ-proteobacteria, for the first time a transcription factor that is involved in nitrosative stress response and regulates the rd-roo gene expression.
Collapse
Affiliation(s)
- Ana Varela-Raposo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
SIGNIFICANCE In bacteria, transcriptional responses to reactive oxygen and nitrogen species (ROS and RNS, respectively) are typically coordinated by regulatory proteins that employ metal centers or reactive thiols to detect the presence of those species. This review is focused on the structure, function and mechanism of three regulatory proteins (Fur, PerR, and NorR) that contain non-heme iron and regulate the transcription of target genes in response to ROS and/or RNS. The targets for regulation include genes encoding detoxification activities, and genes encoding proteins involved in the repair of the damage caused by ROS and RNS. RECENT ADVANCES Three-dimensional structures of several Fur proteins and of PerR are revealing important details of the metal binding sites of these proteins, showing a surprising degree of structural diversity in the Fur family. CRITICAL ISSUES Discussion of the interaction of Fur with ROS and RNS will illustrate the difficulty that sometimes exists in distinguishing between true physiological responses and adventitious reactions of a regulatory protein with a reactive ligand. FUTURE DIRECTIONS Consideration of these three sensor proteins illuminates some of the key questions that remain unanswered, for example, the nature of the biochemical determinants that dictate the sensitivity and specificity of the interaction of the sensor proteins with their cognate signals.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | |
Collapse
|
6
|
The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. mBio 2012; 3:e00013-12. [PMID: 22511349 PMCID: PMC3345576 DOI: 10.1128/mbio.00013-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Vibrio cholerae, the cause of an often fatal infectious diarrhea, remains a large global public health threat. Little is known about the challenges V. cholerae encounters during colonization of the intestines, which genes are important for overcoming these challenges, and how these genes are regulated. In this study, we examined the V. cholerae response to nitric oxide (NO), an antibacterial molecule derived during infection from various sources, including host inducible NO synthase (iNOS). We demonstrate that the regulatory protein NorR regulates the expression of NO detoxification genes hmpA and nnrS, and that all three are critical for resisting low levels of NO stress under microaerobic conditions in vitro. We also show that prxA, a gene previously thought to be important for NO detoxification, plays no role in NO resistance under microaerobic conditions and is upregulated by H2O2, not NO. Furthermore, in an adult mouse model of prolonged colonization, hmpA and norR were important for the resistance of both iNOS- and non-iNOS-derived stresses. Our data demonstrate that NO detoxification systems play a critical role in the survival of V. cholerae under microaerobic conditions resembling those of an infectious setting and during colonization of the intestines over time periods similar to that of an actual V. cholerae infection. Little is known about what environmental stresses Vibrio cholerae, the etiologic agent of cholera, encounters during infection, and even less is known about how V. cholerae senses and counters these stresses. Most prior studies of V. cholerae infection relied on the 24-h infant mouse model, which does not allow the analysis of survival over time periods comparable to that of an actual V. cholerae infection. In this study, we used a sustained mouse colonization model to identify nitric oxide resistance as a function critical for the survival of V. cholerae in the intestines and further identified the genes responsible for sensing and detoxifying this stress.
Collapse
|
7
|
Aono E, Baba T, Ara T, Nishi T, Nakamichi T, Inamoto E, Toyonaga H, Hasegawa M, Takai Y, Okumura Y, Baba M, Tomita M, Kato C, Oshima T, Nakasone K, Mori H. Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. MOLECULAR BIOSYSTEMS 2010; 6:1216-26. [PMID: 20458400 DOI: 10.1039/c000396d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Remineralization of organic matter in deep-sea sediments is important in oceanic biogeochemical cycles, and bacteria play a major role in this process. Shewanella violacea DSS12 is a psychrophilic and piezophilic gamma-proteobacterium that was isolated from the surface layer of deep sea sediment at a depth of 5110 m. Here, we report the complete genome sequence of S. violacea and comparative analysis with the genome of S. oneidensis MR-1, isolated from sediments of a freshwater lake. Unlike S. oneidensis, this deep-sea Shewanella possesses very few terminal reductases for anaerobic respiration and no c-type cytochromes or outer membrane proteins involved in respiratory Fe(iii) reduction, which is characteristic of most Shewanella species. Instead, the S. violacea genome contains more terminal oxidases for aerobic respiration and a much greater number of putative secreted proteases and polysaccharases, in particular, for hydrolysis of collagen, cellulose and chitin, than are encoded in S. oneidensis. Transporters and assimilatory reductases for nitrate and nitrite, and nitric oxide-detoxifying mechanisms (flavohemoglobin and flavorubredoxin) are found in S. violacea. Comparative analysis of the S. violacea genome revealed the respiratory adaptation of this bacterium to aerobiosis, leading to predominantly aerobic oxidation of organic matter in surface sediments, as well as its ability to efficiently use diverse organic matter and to assimilate inorganic nitrogen as a survival strategy in the nutrient-poor deep-sea floor.
Collapse
Affiliation(s)
- Eiji Aono
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tucker NP, Ghosh T, Bush M, Zhang X, Dixon R. Essential roles of three enhancer sites in sigma54-dependent transcription by the nitric oxide sensing regulatory protein NorR. Nucleic Acids Res 2009; 38:1182-94. [PMID: 19955233 PMCID: PMC2831303 DOI: 10.1093/nar/gkp1065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The bacterial activator protein NorR binds to enhancer-like elements, upstream of the promoter site, and activates σ54-dependent transcription of genes that encode nitric oxide detoxifying enzymes (NorVW), in response to NO stress. Unique to the norVW promoter in Escherichia coli is the presence of three enhancer sites associated with a binding site for σ54-RNA polymerase. Here we show that all three sites are required for NorR-dependent catalysis of open complex formation by σ54-RNAP holoenzyme (Eσ54). We demonstrate that this is essentially due to the need for all three enhancers for maximal ATPase activity of NorR, energy from which is used to remodel the closed Eσ54 complex and allow melting of the promoter DNA. We also find that site-specific DNA binding per se promotes oligomerisation but the DNA flanking the three sites is needed to further stabilise the functional higher order oligomer of NorR at the enhancers.
Collapse
Affiliation(s)
- Nicholas P Tucker
- Department of Molecular Microbiology, John Innes Center, Colney, Norwich, NR4 7UH, UK
| | | | | | | | | |
Collapse
|
9
|
D'Autréaux B, Tucker N, Spiro S, Dixon R. Characterization of the nitric oxide-reactive transcriptional activator NorR. Methods Enzymol 2008; 437:235-51. [PMID: 18433632 DOI: 10.1016/s0076-6879(07)37013-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The prokaryotic transcriptional regulator NorR is unusual in that it utilizes a mononuclear ferrous iron center rather than a heme moiety as a means of sensing nitric oxide (NO). Binding of NO to the nonheme iron center in the amino-terminal GAF domain of NorR results in formation of a mononitrosyl iron complex and relieves intramolecular repression within NorR, allowing this regulatory protein, a member of the sigma(54)-dependent family of enhancer-binding proteins, to activate expression of genes required for NO detoxification. This chapter describes detailed protocols for measuring transcriptional activation by Escherichia coli NorR in vivo and in vitro. It also details spectroscopic methods for analysis of the interaction of NO with the nonheme iron center and determination of the NO-binding affinity constant.
Collapse
Affiliation(s)
- Benoît D'Autréaux
- Laboratoire Stress Oxydant et Cancer, Service de Biologie Intégrative et Génétique Moléculaire, Institut de Biologie et de Technologies de Saclay, CEA-Saclay, Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
10
|
Redox‐Controlled Dinitrosyl Formation at the Diiron‐Oxo Center of NorA. Methods Enzymol 2008. [DOI: 10.1016/s0076-6879(07)37006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Transcriptional activity of Pseudomonas aeruginosa fhp promoter is dependent on two regulators in addition to FhpR. Arch Microbiol 2007; 189:385-96. [PMID: 18043907 DOI: 10.1007/s00203-007-0329-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 11/09/2007] [Indexed: 12/22/2022]
Abstract
The regulation of flavohemoglobin expression is complex and depending on its host organism requires a wide variety of different transcriptional regulators. In Pseudomonas aeruginosa, the flavohemoglobin (Fhp) and its cognate regulator FhpR form an NO-sensing and detoxifying system regulated by their common bidirectional promoter Pfhp/PfhpR. The intergenic fhp-fhpR region of P. aeruginosa PAO1 was used as a bait to isolate proteins affecting the transcription of fhp and fhpR. In addition to the FhpR, we identified two previously uncharacterized P. aeruginosa proteins, PA0779 and PA3697. Both PA0779 and PA3697 were found to be essential for NO3(-) and NO2(-) induced Pfhp activity under aerobic and low-oxygen conditions, and needed for the full function of Pfhp/PfhpR as NO responsive regulatory circuit under aerobic conditions. In addition, we show that the transcriptional activity of PfhpR is highly inducible upon addition of SNP under aerobic conditions, but not by NO3(-), NO2(-) or under low-oxygen conditions, supporting the findings that FhpR is not the only factor affecting flavohemoglobin expression in P. aeruginosa.
Collapse
|
12
|
Abstract
Nitric oxide (NO) is an intermediate of the respiratory pathway known as denitrification, and is a by-product of anaerobic nitrite respiration in the enteric Bacteria. Pathogens are also exposed to NO inside host phagocytes, and possibly in other host niches as well. In recent years it has become apparent that there are multiple regulatory systems in prokaryotes that mediate responses to NO exposure. Owing to its reactivity, NO also has the potential to perturb the activities of other regulatory proteins, which are not necessarily directly involved in the response to NO. This review describes the current state of understanding of regulatory systems that respond to NO. An emerging trend is the predominance of iron proteins among the known physiological NO sensors.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA.
| |
Collapse
|
13
|
Klink A, Elsner B, Strube K, Cramm R. Characterization of the signaling domain of the NO-responsive regulator NorR from Ralstonia eutropha H16 by site-directed mutagenesis. J Bacteriol 2007; 189:2743-9. [PMID: 17277050 PMCID: PMC1855821 DOI: 10.1128/jb.01865-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Ralstonia eutropha H16, the nitric oxide (NO)-responsive transcriptional activator NorR controls the expression of a dicistronic operon that encodes a membrane-bound NO reductase, NorB, and a protein of unknown function, NorA. The N-terminal domain (NTD) of NorR is responsible for perception of the signal molecule, nitric oxide. Thirteen out of 29 conserved residues of the NTD were exchanged by site-directed mutagenesis. Replacement of R63, R72, D93, D96, C112, D130, or F137 strongly decreased NorR-dependent promoter activation, while the exchange of Y95 or H110 led to an increase in promoter activity compared to that of the wild type. A purified truncated NorR comprising only the NTD (NorR-NTD) contained one iron atom per molecule and was able to bind NO in the as-isolated state. Based on the iron content of NorR-NTD proteins with single amino acid replacements, residues R72, D93, D96, C112, and D130 are likely candidates for iron ligands. Residues R63, Y95, and H110 appear not to be involved in NO binding but may take part in subsequent steps of the signal transduction mechanism of NorR.
Collapse
Affiliation(s)
- Andrea Klink
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Rodrigues R, Vicente JB, Félix R, Oliveira S, Teixeira M, Rodrigues-Pousada C. Desulfovibrio gigas flavodiiron protein affords protection against nitrosative stress in vivo. J Bacteriol 2006; 188:2745-51. [PMID: 16585735 PMCID: PMC1446983 DOI: 10.1128/jb.188.8.2745-2751.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Desulfovibrio gigas flavodiiron protein (FDP), rubredoxin:oxygen oxidoreductase (ROO), was proposed to be the terminal oxidase of a soluble electron transfer chain coupling NADH oxidation to oxygen reduction. However, several members from the FDP family, to which ROO belongs, revealed nitric oxide (NO) reductase activity. Therefore, the protection afforded by ROO against the cytotoxic effects of NO was here investigated. The NO and oxygen reductase activities of recombinant ROO in vitro were tested by amperometric methods, and the enzyme was shown to effectively reduce NO and O(2). Functional complementation studies of an Escherichia coli mutant strain lacking the ROO homologue flavorubredoxin, an NO reductase, showed that ROO restores the anaerobic growth phenotype of cultures exposed to otherwise-toxic levels of exogenous NO. Additional studies in vivo using a D. gigas roo-deleted strain confirmed an increased sensitivity to NO of the mutant strain in comparison to the wild type. This effect is more pronounced when using the nitrosating agent S-nitrosoglutathione (GSNO), which effectively impairs the growth of the D. gigas Deltaroo strain. roo is constitutively expressed in D. gigas under all conditions tested. However, real-time reverse transcription-PCR analysis revealed a twofold induction of mRNA levels upon exposure to GSNO, suggesting regulation at the transcription level by NO. The newly proposed role of D. gigas ROO as an NO reductase combined with the O(2) reductase activity reveals a versatility which appears to afford protection to D. gigas at the onset of both oxidative and nitrosative stresses.
Collapse
Affiliation(s)
- Rute Rodrigues
- Instituto de Tecnologia Química e Biológica, Apartado 127, 2780-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
Cramm R, Büsch A, Strube K. NO-dependent transcriptional activation of gene expression in Ralstonia eutropha H16. Biochem Soc Trans 2006; 34:182-4. [PMID: 16417516 DOI: 10.1042/bst0340182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sigma54-dependent transcriptional regulator NorR of Ralstonia eutropha H16 activates gene expression in response to nitric oxide (NO). The N-terminal domain of NorR is thought to be involved in signal perception. A C112S exchange within this domain abolished promoter activation by the mutated protein, indicating that Cys(112) is essential for the signalling mechanism of NorR. The DNA region recognized by NorR contains three copies of a conserved element termed the NorR-box. Alteration of bases within any of the NorR-boxes resulted in a significant decrease in promoter activation. Therefore all three boxes have to be recognized by NorR to activate its target promoter. NorR controls expression of an operon that encodes a redox-active non-haem-iron protein NorA and an NO reductase NorB. NorA exerts a negative effect on signal-dependent promoter activation by NorR. Optical spectroscopy of purified NorA indicates that the reduced protein can react with NO to form a ferrous nitrosyl adduct. Hence, NO binding by NorA opens up the possibility that NorA and NorR compete for NO in the cytoplasm.
Collapse
Affiliation(s)
- R Cramm
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany.
| | | | | |
Collapse
|
16
|
Tucker NP, D'autréaux B, Spiro S, Dixon R. Mechanism of transcriptional regulation by the Escherichia coli nitric oxide sensor NorR. Biochem Soc Trans 2006; 34:191-4. [PMID: 16417519 DOI: 10.1042/bst0340191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nitric oxide (NO) is a highly reactive water-soluble gas encountered by bacteria endogenously as an intermediate of denitrification and exogenously as one of the radical species deployed by macrophages against invading pathogens. Bacteria therefore require a mechanism to detoxify NO. Escherichia coli flavorubredoxin and its associated oxidoreductase, encoded by the norV and norW genes respectively, reduces NO to nitrous oxide under anaerobic conditions. Transcription of the norVW genes is activated in response to NO by the sigma(54)-dependent regulator NorR, a member of the prokaryotic enhancer binding protein family. NorR binds co-operatively to three enhancer sites to regulate transcription of both norVW and the divergently transcribed norR gene. In the present paper, we show that disruption of any one of the three GT-(N(7))-AC NorR binding sites in the norR-norVW intergenic region prevents both activation of norVW expression and autogenous repression of the norR promoter by NorR. We have recently demonstrated that the N-terminal GAF (cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA) domain of NorR contains a non-haem mononuclear iron centre and senses NO by formation of a mono-nitrosyl iron complex. Site-directed mutagenesis has identified candidate protein ligands to the ferrous iron centre in the GAF domain.
Collapse
Affiliation(s)
- N P Tucker
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
17
|
Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 2005; 1:e55. [PMID: 16261196 PMCID: PMC1274295 DOI: 10.1371/journal.pcbi.0010055] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 09/29/2005] [Indexed: 12/30/2022] Open
Abstract
Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr) and nipC (dnrN), thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the result, we demonstrate considerable interconnection between various nitrogen-oxides-responsive regulatory systems for the denitrification and NO detoxification genes and evolutionary plasticity of this transcriptional network. Comparative genomics is the analysis and comparison of genomes from different species. More then 100 complete genomes of bacteria are now available. Comparative analysis of binding sites for transcriptional regulators is a powerful approach for functional gene annotation. Knowledge of transcriptional regulatory networks is essential for understanding cellular processes in bacteria. The global nitrogen cycle includes interconversion of nitrogen oxides between a number of redox states. Despite the importance of bacterial nitrogen oxides' metabolism for ecology and medicine, our understanding of their regulation is limited. In this study, the researchers have applied comparative genomic approaches to describe a regulatory network of genes involved in the nitrogen oxides' metabolism in bacteria. The described regulatory network involves five nitric oxide−responsive transcription factors with different DNA recognition motifs. Different combinations of these regulators appear to regulate expression of dozens of genes involved in nitric oxide detoxification and denitrification. The reconstructed network demonstrates considerable interconnection and evolutionary plasticity. Not only are genes shuffled between regulons in different genomes, but there is also considerable interaction between regulators. Overall, the system seems to be quite conserved; however, many regulatory interactions in the identified core regulatory network are taxon-specific. This study demonstrates the power of comparative genomics in the analysis of complex regulatory networks and their evolution.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
18
|
Arai H, Hayashi M, Kuroi A, Ishii M, Igarashi Y. Transcriptional regulation of the flavohemoglobin gene for aerobic nitric oxide detoxification by the second nitric oxide-responsive regulator of Pseudomonas aeruginosa. J Bacteriol 2005; 187:3960-8. [PMID: 15937158 PMCID: PMC1151720 DOI: 10.1128/jb.187.12.3960-3968.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Accepted: 03/09/2005] [Indexed: 11/20/2022] Open
Abstract
The regulatory gene for a sigma54-dependent-type transcriptional regulator, fhpR, is located upstream of the fhp gene for flavohemoglobin in Pseudomonas aeruginosa. Transcription of fhp was induced by nitrate, nitrite, nitric oxide (NO), and NO-generating reagents. Analysis of the fhp promoter activity in mutant strains deficient in the denitrification enzymes indicated that the promoter was regulated by NO or related reactive nitrogen species. The NO-responsive regulation was operative in a mutant strain deficient in DNR (dissimilatory nitrate respiration regulator), which is the NO-responsive regulator required for expression of the denitrification genes. A binding motif for sigma54 was found in the promoter region of fhp, but an FNR (fumarate nitrate reductase regulator) box was not. The fhp promoter was inactive in the fhpR or rpoN mutant strain, suggesting that the NO-sensing regulation of the fhp promoter was mediated by FhpR. The DNR-dependent denitrification promoters (nirS, norC, and nosR) were active in the fhpR or rpoN mutants. These results indicated that P. aeruginosa has at least two independent NO-responsive regulatory systems. The fhp or fhpR mutant strains showed sensitivity to NO-generating reagents under aerobic conditions but not under anaerobic conditions. These mutants also showed significantly low aerobic NO consumption activity, indicating that the physiological role of flavohemoglobin in P. aeruginosa is detoxification of NO under aerobic conditions.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Biotechnology, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
19
|
Justino MC, Gonçalves VMM, Saraiva LM. Binding of NorR to three DNA sites is essential for promoter activation of the flavorubredoxin gene, the nitric oxide reductase of Escherichia coli. Biochem Biophys Res Commun 2005; 328:540-4. [PMID: 15694381 DOI: 10.1016/j.bbrc.2005.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 11/19/2022]
Abstract
NorR is a nitric oxide sensor that in Escherichia coli regulates the gene encoding for flavorubredoxin, an enzyme involved in nitrosative detoxification. The present work shows that although purified NorR can bind independently to each of three binding sites in the flavorubredoxin gene promoter, the presence of all sites is required for in vivo nitric oxide-dependent induction of the flavorubredoxin gene. Furthermore, trimerization of NorR upon binding to the three sites was observed by protein cross-linking experiments. These results reveal the importance of the multiple DNA binding sites present on NorR-dependent promoters and suggest that the functional form of NorR is a trimer.
Collapse
Affiliation(s)
- Marta C Justino
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127 Avenida da República, 2781-901 Oeiras, Portugal
| | | | | |
Collapse
|