1
|
Etter D, Schelin J, Schuppler M, Johler S. Staphylococcal Enterotoxin C-An Update on SEC Variants, Their Structure and Properties, and Their Role in Foodborne Intoxications. Toxins (Basel) 2020; 12:E584. [PMID: 32927913 PMCID: PMC7551944 DOI: 10.3390/toxins12090584] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal enterotoxins are the most common cause of foodborne intoxications (staphylococcal food poisoning) and cause a wide range of diseases. With at least six variants staphylococcal enterotoxin C (SEC) stands out as particularly diverse amongst the 25 known staphylococcal enterotoxins. Some variants present unique and even host-specific features. Here, we review the role of SEC in human and animal health with a particular focus on its role as a causative agent for foodborne intoxications. We highlight structural features unique to SEC and its variants, particularly, the emetic and superantigen activity, as well as the roles of SEC in mastitis and in dairy products. Information about the genetic organization as well as regulatory mechanisms including the accessory gene regulator and food-related stressors are provided.
Collapse
Affiliation(s)
- Danai Etter
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland;
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland;
| | - Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, 22100 Lund, Sweden;
| | - Markus Schuppler
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland;
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland;
| |
Collapse
|
2
|
Schelin J, Cohn MT, Frisk B, Frees D. A Functional ClpXP Protease is Required for Induction of the Accessory Toxin Genes, tst, sed, and sec. Toxins (Basel) 2020; 12:E553. [PMID: 32872362 PMCID: PMC7551677 DOI: 10.3390/toxins12090553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023] Open
Abstract
Staphylococcal toxic shock syndrome is a potentially lethal illness attributed to superantigens produced by Staphylococcus aureus, in particular toxic shock syndrome toxin 1 (TSST-1), but staphylococcal enterotoxins (SEs) are also implicated. The genes encoding these important toxins are carried on mobile genetic elements, and the regulatory networks controlling expression of these toxins remain relatively unexplored. We show here that the highly conserved ClpXP protease stimulates transcription of tst (TSST-1), sec (SEC), and sed (SED) genes in the prototypical strains, SA564 and RN4282. In the wild-type cells, the post-exponential upregulation of toxin gene transcription was proposed to occur via RNAIII-mediated downregulation of the Rot repressor. Contradictive to this model, we showed that the post-exponential induction of tst, sed, and sec transcription did not occur in cells devoid of ClpXP activity, despite the Rot level being diminished. To identify transcriptional regulators with a changed expression in cells devoid of ClpXP activity, RNA sequencing was performed. The RNAseq analysis revealed a number of global virulence regulators that might act downstream of ClpXP, to control expression of tst and other virulence genes. Collectively, the results extend our understanding of the complex transcriptional regulation of the tst, sed, and sec genes.
Collapse
Affiliation(s)
- Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden; (J.S.); (B.F.)
| | - Marianne Thorup Cohn
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederikberg C, Denmark;
| | - Barbro Frisk
- Division of Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden; (J.S.); (B.F.)
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederikberg C, Denmark;
| |
Collapse
|
3
|
Staphylococcus aureus Toxins: From Their Pathogenic Roles to Anti-virulence Therapy Using Natural Products. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0059-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Zeaki N, Johler S, Skandamis PN, Schelin J. The Role of Regulatory Mechanisms and Environmental Parameters in Staphylococcal Food Poisoning and Resulting Challenges to Risk Assessment. Front Microbiol 2019; 10:1307. [PMID: 31244814 PMCID: PMC6581702 DOI: 10.3389/fmicb.2019.01307] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/27/2019] [Indexed: 11/29/2022] Open
Abstract
Prevention, prediction, control, and handling of bacterial foodborne diseases - an ongoing, serious, and costly concern worldwide - are continually facing a wide array of difficulties. Not the least due to that food matrices, highly variable and complex, can impact virulence expression in diverse and unpredictable ways. This review aims to present a comprehensive overview of challenges related to the presence of enterotoxigenic Staphylococcus aureus in the food production chain. It focuses on characteristics, expression, and regulation of the highly stable staphylococcal enterotoxins and in particular staphylococcal enterotoxin A (SEA). Together with the robustness of the pathogen under diverse environmental conditions and the range of possible entry routes into the food chain, this poses some of the biggest challenges in the control of SFP. Furthermore, the emergence of new enterotoxins, found to be connected with SFP, brings new questions around their regulatory mechanisms and expression in different food environments. The appearance of increasing amounts of antibiotic resistant strains found in food is also highlighted. Finally, potentials and limitations of implementing existing risk assessment models are discussed. Various quantitative microbial risk assessment approaches have attempted to quantify the growth of the bacterium and production of disease causing levels of toxin under various food chain and domestic food handling scenarios. This requires employment of predictive modeling tools, quantifying the spatiotemporal population dynamics of S. aureus in response to intrinsic and extrinsic food properties. In this context, the armory of predictive modeling employs both kinetic and probabilistic models to estimate the levels that potentiate toxin production, the time needed to reach that levels, and overall, the likelihood of toxin production. Following risk assessment, the main challenge to mitigate the risk of S. aureus intoxication is first to prevent growth of the organism and then to hamper the production of enterotoxins, or at least prevent the accumulation of high levels (e.g., >10-20 ng) in food. The necessity for continued studies indeed becomes apparent based on the challenges to understand, control, and predict enterotoxin production in relation to the food environment. Different types of food, preservatives, processing, and packaging conditions; regulatory networks; and different staphylococcal enterotoxin-producing S. aureus strains need to be further explored to obtain more complete knowledge about the virulence of this intriguing pathogen.
Collapse
Affiliation(s)
- Nikoleta Zeaki
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Sophia Johler
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Liu J, Cai M, Yan H, Fu J, Wu G, Zhao Z, Zhao Y, Wang Y, Sun Y, You Y, Lin L, Huang J, Huang R, Zeng J. Yunnan Baiyao reduces hospital-acquired pressure ulcers via suppressing virulence gene expression and biofilm formation of Staphylococcus aureus. Int J Med Sci 2019; 16:1078-1088. [PMID: 31523169 PMCID: PMC6743274 DOI: 10.7150/ijms.33723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/17/2019] [Indexed: 01/28/2023] Open
Abstract
Yunnan Baiyao (YB) as a kind of famous Chinese herbal medicine, possessed hemostatic, invigorating the circulation of blood, and anti-inflammatory effects. Identifying strategies to protect patients at risk for hospital-acquired pressure ulcers (HAPU) is essential. Herein, our results showed that YB treatment can effectively reduce the acne wound area and improve efficacy in a comparative study of 60 cases HAPU patients with S. aureus positive of acne wound pathogens. Furthermore, YB inhibited HIa expression and suppressed accessory gene regulator (agr) system controlled by regulatory RNA II and RNA III molecule using pALC1740, pALC1742 and pALC1743 S. aureus strain linked to gfpuvr reporter gene. Moreover, YB downregulated cao mRNA expression and inhibited coagulase activity by RT-PCR, slide and tube coagulase test. Additionally, YB downregulated seb, sec, sed, and tsst-1 mRNA expression to suppress enterotoxin and tsst-1 secretion and adhesion function related genes sarA, icaA, and cidA mRNA expression. Taken together, the data suggest that YB may reduce HAPU via suppressing virulence gene expression and biofilm formation of S. aureus.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Mufa Cai
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Huimin Yan
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Guocai Wu
- Department of Blood Internal Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zuguo Zhao
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Zhao
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yan Wang
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongke You
- School of Chinese Medicine, The University of Hongkong, Pokfulam, Hongkong
| | - Liyao Lin
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Juan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
6
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Schelin J, Susilo YB, Johler S. Expression of Staphylococcal Enterotoxins under Stress Encountered during Food Production and Preservation. Toxins (Basel) 2017; 9:E401. [PMID: 29244757 PMCID: PMC5744121 DOI: 10.3390/toxins9120401] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/24/2022] Open
Abstract
Staphylococcal food poisoning (SFP) is the most prevalent cause of food-borne intoxications worldwide. Consumption of enterotoxins preformed in food causes violent vomiting and can be fatal in children and the elderly. While being repressed by competing bacteria in most matrices, Staphylococcus aureus benefits from crucial competitive advantages in foods with high osmolarity or low pH. During recent years, the long-standing belief in the feasibility of assessing SFP risk based on colony-forming units of S. aureus present in food products has been disproven. Instead, researchers and food business operators are acutely aware of the imminent threat arising from unforeseeable enterotoxin production under stress conditions. This paradigm shift led to a variety of new publications enabling an improved understanding of enterotoxin expression under stress conditions encountered in food. The wealth of data provided by these studies is extremely diverse, as it is based on different methodological approaches, staphylococcal strains, stressors, and enterotoxins. Therefore, in this review, we aggregated and critically evaluated the complex findings of these studies, to provide readers with a current overview of the state of research in the field.
Collapse
Affiliation(s)
- Jenny Schelin
- Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
| | - Yusak Budi Susilo
- Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland.
| |
Collapse
|
8
|
Balachandran M, Giannone RJ, Bemis DA, Kania SA. Molecular basis of surface anchored protein A deficiency in the Staphylococcus aureus strain Wood 46. PLoS One 2017; 12:e0183913. [PMID: 28859130 PMCID: PMC5578664 DOI: 10.1371/journal.pone.0183913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Protein A in Staphylococcus aureus is encoded by the spa (staphylococcal protein A) gene and binds to immunoglobulin (Ig). The S. aureus strain Wood 46 has been variously reported as protein A-deficient and/or spa negative and used as a control in animal models of staphylococcal infections. The results of this study indicate that Wood 46 has normal spa expression but transcribes very low levels of the srtA gene which encodes the sortase A (SrtA) enzyme. This is consistent with unique mutations in the srtA promoter. In this study, a low level of sortase A explains deficient anchoring of proteins with an LPXTG motif, such as protein A, fibrinogen-binding protein and fibronectin-binding proteins A and B on to the peptidoglycan cell wall. The activity of secreted protein A is an important consideration for use of Wood 46 in functional experiments and animal models.
Collapse
Affiliation(s)
- Manasi Balachandran
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Richard J. Giannone
- Chemical Sciences Division, Mass Spectrometry and Laser Spectrometry, Oakridge National Laboratories, Oakridge, Tennessee, United States of America
| | - David A. Bemis
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
9
|
Susilo YB, Sihto HM, Rådström P, Stephan R, Johler S, Schelin J. Reduced Enterotoxin D Formation on Boiled Ham in Staphylococcus Aureus Δagr Mutant. Toxins (Basel) 2017; 9:E263. [PMID: 28841182 PMCID: PMC5618196 DOI: 10.3390/toxins9090263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022] Open
Abstract
Staphylococcal food poisoning (SFP) is a common cause of foodborne illness worldwide, and enterotoxin D (SED) is one of the most frequent Staphylococcus aureus enterotoxins associated with it. It has been reported that the expression and formation of SED in S. aureus is regulated by the quorum sensing Agr system. In this study, the effect of agr deletion on sed expression in S. aureus grown on boiled ham was investigated. Growth, sed mRNA and SED protein levels in an S. aureus wild type strain and its isogenic Δagr mutant were monitored for 14 days at 22 °C. The results showed that although deletion of the agr gene did not affect the growth rate or maximum cell density of S. aureus on boiled ham, it had a pronounced effect on SED formation during the first 5 days of incubation. The SED concentration was not reflected in the amount of preceding sed transcripts, suggesting that sed transcription levels may not always reflect SED formation. The expression of RNAIII transcript, the regulatory signal of the Agr system, was also monitored. Similar transcription patterns were observed for RNAIII and sed. Surprisingly, in the Δagr mutant, sed expression was comparable to that in the wild type strain, and was thus unaffected by deletion of the Agr system. These results demonstrate that the Agr system appears to only partially affect SED formation, even in a real food environment.
Collapse
Affiliation(s)
- Yusak Budi Susilo
- Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
| | - Henna-Maria Sihto
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Peter Rådström
- Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Sophia Johler
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Jenny Schelin
- Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
| |
Collapse
|
10
|
Schubert J, Podkowik M, Bystroń J, Bania J. Production of Staphylococcal Enterotoxins D and R in Milk and Meat Juice byStaphylococcus aureusStrains. Foodborne Pathog Dis 2017; 14:223-230. [DOI: 10.1089/fpd.2016.2210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Magdalena Podkowik
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jarosław Bystroń
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
11
|
Effect of sodium nitrite and regulatory mutations Δagr, ΔsarA, and ΔsigB on the mRNA and protein levels of staphylococcal enterotoxin D. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Positive Regulation of Staphylococcal Enterotoxin H by Rot (Repressor of Toxin) Protein and Its Importance in Clonal Complex 81 Subtype 1 Lineage-Related Food Poisoning. Appl Environ Microbiol 2015; 81:7782-90. [PMID: 26341202 DOI: 10.1128/aem.01936-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated the clonal complex 81 (CC81) subtype 1 lineage is the major staphylococcal food poisoning (SFP)-associated lineage in Japan (Y. Sato'o et al., J Clin Microbiol 52:2637-2640, 2014, http://dx.doi.org/10.1128/JCM.00661-14). Strains of this lineage produce staphylococcal enterotoxin H (SEH) in addition to SEA. However, an evaluation of the risk for the recently reported SEH has not been sufficiently conducted. We first searched for staphylococcal enterotoxin (SE) genes and SE proteins in milk samples that caused a large SFP outbreak in Japan. Only SEA and SEH were detected, while there were several SE genes detected in the samples. We next designed an experimental model using a meat product to assess the productivity of SEs and found that only SEA and SEH were detectably produced in situ. Therefore, we investigated the regulation of SEH production using a CC81 subtype 1 isolate. Through mutant analysis of global regulators, we found the repressor of toxin (Rot) functioned oppositely as a stimulator of SEH production. SEA production was not affected by Rot. seh mRNA expression correlated with rot both in media and on the meat product, and the Rot protein was shown to directly bind to the seh promoter. The seh promoter sequence was predicted to form a loop structure and to hide the RNA polymerase binding sequences. We propose Rot binds to the promoter sequence of seh and unfolds the secondary structure that may lead the RNA polymerase to bind the promoter, and then seh mRNA transcription begins. This alternative Rot regulation for SEH may contribute to sufficient toxin production by the CC81 subtype 1 lineage in foods to induce SFP.
Collapse
|
13
|
Impacts of enterotoxin gene cluster-encoded superantigens on local and systemic experimental Staphylococcus aureus infections. Eur J Clin Microbiol Infect Dis 2015; 34:1443-9. [PMID: 25864191 DOI: 10.1007/s10096-015-2371-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus is both a component of the normal skin flora and an important pathogen. It expresses a range of recognized and putative virulence factors, such as enterotoxins with superantigenic properties. Several superantigen genes, i.e., seg, sei, selm, seln, and selo, are encoded by the enterotoxin gene cluster (egc), which is found in the majority of S. aureus isolates. Carriage of egc is associated with fitness of S. aureus in the gut microbiota, but it is not known if it contributes to pathogenicity. We constructed egc+ (functional for the seg, selm, and selo genes) and isogenic egc- S. aureus mutants, and investigated their virulence profiles in murine infection models. No effect of egc was seen in a local skin and soft tissue infection model, but in an invasive infection model, increased weight loss was observed after infection with the egc+ as compared to the egc- mutant. Mortality and arthritis were not affected by egc status. Our data suggest that egc has limited effects on the virulence of S. aureus. It may primarily function as a colonization factor increasing commensal fitness, although it might have some aggravating effects on the infection when the bacteria reach the blood.
Collapse
|
14
|
Sihto HM, Tasara T, Stephan R, Johler S. Temporal expression of the staphylococcal enterotoxin D gene under NaCl stress conditions. FEMS Microbiol Lett 2015; 362:fnv024. [PMID: 25687922 DOI: 10.1093/femsle/fnv024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most osmotolerant food-borne pathogens. While its growth is repressed by competing bacteria, the organism exhibits a growth advantage at increased salt concentrations. Staphylococcal enterotoxin D leads to vomiting and diarrhea upon ingestion. To date, the effect of NaCl on both sed expression and its regulatory control are unclear. We determined the impact of NaCl stress on sed expression and the influence of agr, sarA and sigB on sed expression under NaCl stress. The temporal expression of sed in LB and LB with 4.5% NaCl was compared, as well as sed expression of wild-type (wt) strains and isogenic Δagr, ΔsarA and ΔsigB mutants. In general, NaCl stress led to decreased sed expression. However, one strain exhibited a trend towards increased sed expression under NaCl stress. No significant effect of agr on sed expression was detected and only one ΔsigB mutant showed a significant decrease in sed expression in the early stationary phase under NaCl stress. One ΔsarA mutant showed decreased sed expression in the early stationary and another increased sed expression in the stationary growth phase under NaCl stress. These findings suggest high strain-specific variation in sed expression and its regulation under NaCl stress.
Collapse
Affiliation(s)
- Henna-Maria Sihto
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland
| | - Sophia Johler
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
Gram-positive bacteria are leading causes of many types of human infection, including pneumonia, skin and nasopharyngeal infections, as well as urinary tract and surgical wound infections among hospitalized patients. These infections have become particularly problematic because many of the species causing them have become highly resistant to antibiotics. The role of mobile genetic elements, such as plasmids, in the dissemination of antibiotic resistance among Gram-positive bacteria has been well studied; less well understood is the role of mobile elements in the evolution and spread of virulence traits among these pathogens. While these organisms are leading agents of infection, they are also prominent members of the human commensal ecology. It appears that these bacteria are able to take advantage of the intimate association between host and commensal, via virulence traits that exacerbate infection and cause disease. However, evolution into an obligate pathogen has not occurred, presumably because it would lead to rejection of pathogenic organisms from the host ecology. Instead, in organisms that exist as both commensal and pathogen, selection has favored the development of mechanisms for variability. As a result, many virulence traits are localized on mobile genetic elements, such as virulence plasmids and pathogenicity islands. Virulence traits may occur within a minority of isolates of a given species, but these minority populations have nonetheless emerged as a leading problem in infectious disease. This chapter reviews virulence plasmids in nonsporulating Gram-positive bacteria, and examines their contribution to disease pathogenesis.
Collapse
|
16
|
Gustafson JE, Muthaiyan A, Dupre JM, Ricke SC. WITHDRAWN: Staphylococcus aureus and understanding the factors that impact enterotoxin production in foods: A review. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Arya R, Princy SA. An insight into pleiotropic regulators Agr and Sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol 2013; 8:1339-53. [DOI: 10.2217/fmb.13.92] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus pathogenesis is an intricate process involving a diverse array of extracellular proteins, biofilm and cell wall components that are coordinately expressed in different stages of infection. The expression of two divergent loci, agr and sar, is increasingly recognized as a key regulator of virulence in S. aureus, and there is mounting evidence for the role of these loci in staphylococcal infections. The functional agr regulon is critical for the production of virulence factors, including α, β and δ hemolysins. The sar locus encodes SarA protein, which regulates the expression of cell wall-associated and certain extracellular proteins in agr-dependent and agr-independent pathways. Multidrug-resistant S. aureus is a leading cause of morbidity and mortality in the world and its management, especially in community-acquired methicillin-resistant S. aureus infections, has evolved comparatively little. In particular, no novel targets have been incorporated into its treatment to date. Hence, these loci appear to be the most significant and are currently at the attention of intense investigation regarding their therapeutic prospects.
Collapse
Affiliation(s)
- Rekha Arya
- Quorum Sensing Laboratory, SASTRA‘s Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Tirumalaisamudrum 613401, Thanjavur, Tamil Nadu, India
| | - S Adline Princy
- Quorum Sensing Laboratory, SASTRA‘s Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Tirumalaisamudrum 613401, Thanjavur, Tamil Nadu, India
| |
Collapse
|
18
|
Grumann D, Nübel U, Bröker BM. Staphylococcus aureus toxins--their functions and genetics. INFECTION GENETICS AND EVOLUTION 2013; 21:583-92. [PMID: 23541411 DOI: 10.1016/j.meegid.2013.03.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 02/07/2023]
Abstract
The outcome of encounters between Staphylococcus (S.) aureus and its human host ranges from life-threatening infection through allergic reactions to symptom-free colonization. The pan-genome of this bacterial species encodes numerous toxins, known or strongly suspected to cause specific diseases or symptoms. Three toxin families are in the focus of this review, namely (i) pore-forming toxins, (ii) exfoliative toxins and (iii) superantigens. The majority of toxin-encoding genes are located on mobile genetic elements (MGEs), resulting in a pronounced heterogeneity in the endowment with toxin genes of individual S. aureus strains. Recent population genomic analysis have provided a framework for an improved understanding of the temporal and spatial scales of the motility of MGEs and their associated toxin genes. The distribution of toxin genes among clonal lineages within the species S. aureus is not random, and phylogenetic (sub-)lineages within clonal complexes feature characteristic toxin signatures. When studying pathogenesis, this lineage association, which is caused by the clonal nature of S. aureus makes it difficult to discriminate effects of specific toxins from contributions of the genetic background and/or other associated genetic factors.
Collapse
Affiliation(s)
- Dorothee Grumann
- Institute of Immunology and Transfusion Medicine, University of Greifswald, 17487 Greifswald, Germany
| | | | - Barbara M Bröker
- Institute of Immunology and Transfusion Medicine, University of Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
19
|
Rot and SaeRS cooperate to activate expression of the staphylococcal superantigen-like exoproteins. J Bacteriol 2012; 194:4355-65. [PMID: 22685286 DOI: 10.1128/jb.00706-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a significant human pathogen that is capable of infecting a wide range of host tissues. This bacterium is able to evade the host immune response by utilizing a repertoire of virulence factors. These factors are tightly regulated by various two-component systems (TCS) and transcription factors. Previous studies have suggested that transcriptional regulation of a subset of immunomodulators, known as the staphylococcal superantigen-like proteins (Ssls), is mediated by the master regulators accessory gene regulator (Agr) TCS, S. aureus exoprotein expression (Sae) TCS, and Rot. Here we demonstrate that Rot and SaeR, the response regulator of the Sae TCS, synergize to coordinate the activation of the ssl promoters. We have determined that both transcription factors are required, but that neither is sufficient, for promoter activation. This regulatory scheme is mediated by direct binding of both transcription factors to the ssl promoters. We also demonstrate that clinically relevant methicillin-resistant S. aureus (MRSA) strains respond to neutrophils via the Sae TCS to upregulate the expression of ssls. Until now, Rot and the Sae TCS have been proposed to work in opposition of one another on their target genes. This is the first example of these two regulators working in concert to activate promoters.
Collapse
|
20
|
Cheung GYC, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin Ther Targets 2012; 16:601-12. [PMID: 22530584 DOI: 10.1517/14728222.2012.682573] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The pandemic human pathogen, Staphylococcus aureus, displays high levels of antibiotic resistance and is a major cause of hospital- and community-associated infections. S. aureus disease manifestation is to a great extent due to the production of a large arsenal of virulence factors, which include a series of secreted toxins. Antibodies to S. aureus toxins are found in people who are infected or asymptomatically colonized with S. aureus. Immunotherapies consisting of neutralizing anti-toxin antibodies could provide immediate aid to patients with impaired immune systems or in advanced stages of disease. AREAS COVERED Important S. aureus toxins, their roles in pathogenesis, rationales for selecting S. aureus toxins for immunization efforts, and caveats associated with monoclonal antibody-based passive immunization are discussed. This review will focus on hyper-virulent community-associated methicillin-resistant S. aureus because of their recent surge and clinical importance. EXPERT OPINION Antibodies against genome-encoded toxins may be more broadly applicable than those directed against toxins found only in a sub-population of S. aureus isolates. Furthermore, there is substantial functional redundancy among S. aureus toxins. Thus, an optimal anti-S. aureus formulation may consist of multiple antibodies directed against a series of key S. aureus genome-encoded toxins.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Laboratory of Human Bacterial Pathogenesis, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Schelin J, Wallin-Carlquist N, Cohn MT, Lindqvist R, Barker GC, Rådström P. The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence 2011; 2:580-92. [PMID: 22030860 PMCID: PMC3260550 DOI: 10.4161/viru.2.6.18122] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/02/2023] Open
Abstract
The recent finding that the formation of staphylococcal enterotoxins in food is very different from that in cultures of pure Staphylococcus aureus sheds new light on, and brings into question, traditional microbial risk assessment methods based on planktonic liquid cultures. In fact, most bacteria in food appear to be associated with surfaces or tissues in various ways, and interaction with other bacteria through molecular signaling is prevalent. Nowadays it is well established that there are significant differences in the behavior of bacteria in the planktonic state and immobilized bacteria found in multicellular communities. Thus, in order to improve the production of high-quality, microbiologically safe food for human consumption, in situ data on enterotoxin formation in food environments are required to complement existing knowledge on the growth and survivability of S. aureus. This review focuses on enterotoxigenic S. aureus and describes recent findings related to enterotoxin formation in food environments, and ways in which risk assessment can take into account virulence behavior. An improved understanding of how environmental factors affect the expression of enterotoxins in foods will enable us to formulate new strategies for improved food safety.
Collapse
Affiliation(s)
- Jenny Schelin
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
22
|
Kusch K, Hanke K, Holtfreter S, Schmudde M, Kohler C, Erck C, Wehland J, Hecker M, Ohlsen K, Bröker B, Engelmann S. The influence of SaeRS and σB on the expression of superantigens in different Staphylococcus aureus isolates. Int J Med Microbiol 2011; 301:488-99. [DOI: 10.1016/j.ijmm.2011.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/06/2011] [Accepted: 01/08/2011] [Indexed: 01/10/2023] Open
|
23
|
Benson MA, Lilo S, Wasserman GA, Thoendel M, Smith A, Horswill AR, Fraser J, Novick RP, Shopsin B, Torres VJ. Staphylococcus aureus regulates the expression and production of the staphylococcal superantigen-like secreted proteins in a Rot-dependent manner. Mol Microbiol 2011; 81:659-75. [PMID: 21651625 PMCID: PMC3217042 DOI: 10.1111/j.1365-2958.2011.07720.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Staphylococcus aureus overproduces a subset of immunomodulatory proteins known as the staphylococcal superantigen-like proteins (Ssls) under conditions of pore-mediated membrane stress. In this study we demonstrate that overproduction of Ssls during membrane stress is due to the impaired activation of the two-component module of the quorum-sensing accessory gene regulator (Agr) system. Agr-dependent repression of ssl expression is indirect and mediated by the transcription factor repressor of toxins (Rot). Surprisingly, we observed that Rot directly interacts with and activates the ssl promoters. The role of Agr and Rot as regulators of ssl expression was observed across several clinically relevant strains, suggesting that overproduction of immunomodulatory proteins benefits agr-defective strains. In support of this notion, we demonstrate that Ssls contribute to the residual virulence of S. aureus lacking agr in a murine model of systemic infection. Altogether, these results suggest that S. aureus compensates for the inactivation of Agr by producing immunomodulatory exoproteins that could protect the bacterium from host-mediated clearance.
Collapse
Affiliation(s)
- Meredith A. Benson
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Sarit Lilo
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Gregory A. Wasserman
- Department of Medicine, Division of Infectious Diseases, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Matthew Thoendel
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Amanda Smith
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Alexander R. Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - John Fraser
- School of Medical Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Richard P. Novick
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
- The Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Bo Shopsin
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
- Department of Medicine, Division of Infectious Diseases, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Victor J. Torres
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
24
|
Cretenet M, Even S, Le Loir Y. Unveiling Staphylococcus aureus enterotoxin production in dairy products: a review of recent advances to face new challenges. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13594-011-0014-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins (Basel) 2010; 2:2117-31. [PMID: 22069676 PMCID: PMC3153285 DOI: 10.3390/toxins2082117] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 08/09/2010] [Indexed: 12/03/2022] Open
Abstract
Heat-stable enterotoxins are the most notable virulence factors associated with Staphylococcus aureus, a common pathogen associated with serious community and hospital acquired diseases. Staphylococcal enterotoxins (SEs) cause toxic shock-like syndromes and have been implicated in food poisoning. But SEs also act as superantigens that stimulate T-cell proliferation, and a high correlation between these activities has been detected. Most of the nosocomial S. aureus infections are caused by methicillin-resistant S. aureus (MRSA) strains, and those resistant to quinolones or multiresistant to other antibiotics are emerging, leaving a limited choice for their control. This review focuses on these diverse roles of SE, their possible correlations and the influence in disease progression and therapy.
Collapse
|
26
|
Derzelle S, Dilasser F, Duquenne M, Deperrois V. Differential temporal expression of the staphylococcal enterotoxins genes during cell growth. Food Microbiol 2009; 26:896-904. [DOI: 10.1016/j.fm.2009.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 11/30/2022]
|
27
|
Staphylococcus aureus Panton-Valentine leukocidin contributes to inflammation and muscle tissue injury. PLoS One 2009; 4:e6387. [PMID: 19633710 PMCID: PMC2711303 DOI: 10.1371/journal.pone.0006387] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 06/26/2009] [Indexed: 11/20/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) threatens public health worldwide, and epidemiologic data suggest that the Panton-Valentine Leukocidin (PVL) expressed by most CA-MRSA strains could contribute to severe human infections, particularly in young and immunocompetent hosts. PVL is proposed to induce cytolysis or apoptosis of phagocytes. However, recent comparisons of isogenic CA-MRSA strains with or without PVL have revealed no differences in human PMN cytolytic activity. Furthermore, many of the mouse studies performed to date have failed to demonstrate a virulence role for PVL, thereby provoking the question: does PVL have a mechanistic role in human infection? In this report, we evaluated the contribution of PVL to severe skin and soft tissue infection. We generated PVL mutants in CA-MRSA strains isolated from patients with necrotizing fasciitis and used these tools to evaluate the pathogenic role of PVL in vivo. In a model of necrotizing soft tissue infection, we found PVL caused significant damage of muscle but not the skin. Muscle injury was linked to induction of pro-inflammatory chemokines KC, MIP-2, and RANTES, and recruitment of neutrophils. Tissue damage was most prominent in young mice and in those strains of mice that more effectively cleared S. aureus, and was not significant in older mice and mouse strains that had a more limited immune response to the pathogen. PVL mediated injury could be blocked by pretreatment with anti-PVL antibodies. Our data provide new insights into CA-MRSA pathogenesis, epidemiology and therapeutics. PVL could contribute to the increased incidence of myositis in CA-MRSA infection, and the toxin could mediate tissue injury by mechanisms other than direct killing of phagocytes.
Collapse
|
28
|
Abstract
Repressor of toxins (Rot) is known to be a global regulator of virulence gene expression in Staphylococcus aureus. The function of Rot, but not the transcription of rot, is regulated by the staphylococcal accessory gene regulator (Agr) quorum-sensing system. In addition, the alternative sigma factor (sigma(B)) has a repressive effect on rot expression during the postexponential phase of growth. The transcriptional profiles of Rot in sigma(B)-positive and sigma(B)-negative strains in the postexponential and stationary phases of growth were compared. An upregulation of rot expression was observed during the stationary phase of growth, and this upregulation occurred in a sigma(B)-dependent manner. The effects of other staphylococcal transcriptional factors were also investigated. Electrophoretic mobility shift assays revealed that proteins present in staphylococcal lysates retarded the mobility of the rot promoter fragment and that the effect was reduced, but not eliminated, with lysates from strains lacking a functional SarS protein. A modest upregulation of rot expression was also observed in sarS-negative strains. Affinity purification of proteins binding to the rot promoter fragment, followed by N-terminal protein sequencing, identified the SarA and SarR proteins. Primer extension analysis of the rot promoter revealed a number of discreet products. However, these RNA species were not associated with identifiable promoter activity and likely represented RNA breakdown products. Loss of Rot function during the postexponential phase of growth likely involves degradation of the rot mRNA but not the inhibition of rot transcription.
Collapse
|
29
|
Coordinated and differential control of aureolysin (aur) and serine protease (sspA) transcription in Staphylococcus aureus by sarA, rot and agr (RNAIII). Int J Med Microbiol 2006; 296:365-80. [PMID: 16782403 DOI: 10.1016/j.ijmm.2006.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/22/2006] [Accepted: 02/23/2006] [Indexed: 10/24/2022] Open
Abstract
Previous studies have shown that production of extracellular proteases in Staphylococcus aureus is stimulated by agr (RNAIII) and mgrA, and repressed by sarA. Protease expression is also repressed by rot, however this effect is generally observed only in agr mutants. Several other regulators (sarR, sarV, sarS, sae) that may impact protease expression have been described. As the interactions between all regulators that control protease gene expression are not fully understood, the present study was undertaken to elucidate the regulatory network governing aureolysin (aur) and staphylococcal serine protease (sspA) transcription. The regulation of both genes was studied as activation of the serine protease (SspA) zymogen requires aureolysin. For this purpose we have analyzed the effect of different combinations of regulatory mutations. The present study clearly shows that the positive effect of agr (RNAIII) on aur and sspA transcription requires rot, which is in accordance with the hypothesis that RNAIII acts by neutralizing Rot activity through binding [McNamara, P.J., Milligan-Monroe, K.C., Khalili, S., Proctor, R.A., 2000. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 182, 3197-3203]. Concomitantly, overexpression of rot in agr(+) strains or inactivation of rot in strains with low levels of RNAIII clearly affected aur and sspA transcription, indicating that the inhibiting effect of RNAIII on Rot could be titrated. Furthermore, our present data support that the only role of RNAIII in aur and sspA regulation is to counteract the repressive activity of Rot. Apart from an apparent direct positive effect of mgrA on sspA and aur transcription, these genes were mainly controlled through repression by sarA and rot, which seemed to occur via binding of SarA and Rot to the aur and sspA promoters, respectively. Maximum transcription of aur and sspA was obtained when both repressors were absent, either in a sarA mutant where Rot is neutralized by RNAIII during post-exponential phase, or in an agr sarA rot triple mutant. Interestingly, aur was much more sensitive to repression by sarA than by rot, whereas sspA was equally suppressed by sarA and rot. On the other hand, sspA was more sensitive to repression by rot than aur. Thus, SarA and Rot seemed to act independently in an additive way. Inactivation of sarR and sarS had no apparent effect on aur and sspA transcription, although overexpression of these regulators suppressed aur and sspA transcription, respectively, likely in a direct way as indicated by DNA binding experiments. In conclusion, our results indicate that aur and sspA transcription are coordinately regulated but can also be individually modulated by agr, sarA, rot, sarS, sarR, and mgrA. A provisional model for the regulation of aur and sspA transcription is presented.
Collapse
|
30
|
Abstract
The accessory gene regulator (Agr) system is a quorum-sensing system of Staphylococcus aureus responsible for upregulation of certain exoprotein genes and downregulation of certain cell-wall associated proteins during the post-exponential phase of growth. The enterotoxin B (seb) determinant is upregulated by the Agr system. Agr-regulated cis elements within the seb promoter region were examined by deletion analyses of the seb promoter by a hybrid promoter approach utilizing the staphylococcal lac operon promoter. To identify the regulatory pathway for enterotoxin B expression, the seb promoter fused to the chloramphenicol acetyltransferase reporter gene was introduced into mutants of S. aureus lacking agr or different members of the Sar family of transcriptional regulators. Agr control of seb promoter activity was found to be dependent upon the presence of a functional Rot protein, and Rot was shown to be able to bind to the seb promoter. Therefore, the Agr-mediated post-exponential-phase increase in seb transcription results from the Agr system's inactivation of Rot repressor activity.
Collapse
Affiliation(s)
- Ching Wen Tseng
- Life Sciences Center 471E, 1201 Rollins Road, University of Missouri, Columbia, MO 65211-7310, USA
| | | |
Collapse
|
31
|
Abstract
Staphylococcal protein A (Spa) is an important virulence factor of Staphylococcus aureus. Transcription of the spa determinant occurs during the exponential growth phase and is repressed when the cells enter the postexponential growth phase. Regulation of spa expression has been found to be complicated, with regulation involving multiple factors, including Agr, SarA, SarS, SarT, Rot, and MgrA. Our understanding of how these factors work on the spa promoter to regulate spa expression is incomplete. To identify regulatory sites within the spa promoter, analysis of deletion derivatives of the promoter in host strains deficient in one or more of the regulatory factors was undertaken, and several critical features of spa regulation were revealed. The transcriptional start sites of spa were determined by primer extension. The spa promoter sequences were subcloned in front of a promoterless chloramphenicol acetyltransferase reporter gene. Various lengths of spa truncations with the same 3' end were constructed, and the resultant plasmids were transduced into strains with different regulatory genetic backgrounds. Our results identified upstream promoter sequences necessary for Agr system regulation of spa expression. The cis elements for SarS activity, an activator of spa expression, and for SarA activity, a repressor of spa expression, were identified. The well-characterized SarA consensus sequence on the spa promoter was found to be insufficient for SarA repression of the spa promoter. Full repression required the presence of a second consensus site adjacent to the SarS binding site. Sequences directly upstream of the core promoter sequence were found to stimulate transcription.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, USA
| | | |
Collapse
|