1
|
Zubrova A, Tadrosova M, Semerad J, Cajthaml T, Pajer P, Strejcek M, Suman J, Uhlik O. Differential effect of monoterpenes and flavonoids on the transcription of aromatic ring-hydroxylating dioxygenase genes in Rhodococcus opacus C1 and Rhodococcus sp. WAY2. Microb Genom 2025; 11:001359. [PMID: 40042991 PMCID: PMC11881993 DOI: 10.1099/mgen.0.001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
Aromatic ring-hydroxylating dioxygenases (ARHDs) play a crucial role in the aerobic biodegradation of both natural and anthropogenic aromatic compounds. Although their ability to process contaminants is not entirely understood, it is thought to have evolved from the transformation of structurally similar secondary plant metabolites (SPMs). Hence, to investigate this connection, we tested a variety of SPMs from the monoterpene and flavonoid classes as carbon sources and transcriptional effectors of several phylogenetically distant ARHD genes involved in the degradation of aromatic pollutants. Specifically, we focused on bphA1, nahA1 and phtA1 in Rhodococcus opacus C1, whose genomic analysis is also presented hereinafter, and bphA1a, nahA1-bphA1b and etbA1ab in Rhodococcus sp. WAY2. Whilst induction was only observed with (R)-carvone for bphA1a and nahA1-bphA1b of strain WAY2, and with p-cymene for nahA1 and nahA1-bphA1b of strains C1 and WAY2, respectively, an extensive inhibition by flavonoids was observed for most of the genes in both strains. To the best of our knowledge, our study is the first to report the effect of flavonoids and monoterpenes on the transcription of nahA1, etbA1 and phtA1 genes. In addition, we show that, in contrast to pseudomonads, many flavonoids inhibit the transcription of the ARHD genes in rhodococci. Thus, our work provides a new perspective on flavonoids as the transcriptional effectors of ARHDs, highlighting the significant variability of these enzymes and the divergent responses that they elicit. Moreover, our results contribute to understanding the complex interactions between microorganisms and SPMs and provide insights into the molecular basis of a number of them.
Collapse
Affiliation(s)
- Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Manuela Tadrosova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Anokhina TO, Esikova TZ, Polivtseva VN, Suzina NE, Solyanikova IP. Biodegradation of Phenol at High Initial Concentration by Rhodococcus opacus 3D Strain: Biochemical and Genetic Aspects. Microorganisms 2025; 13:205. [PMID: 39858973 PMCID: PMC11767800 DOI: 10.3390/microorganisms13010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant. One of the cheapest and most effective ways to combat phenol pollution is biological purification. However, the inability of bacteria to decompose high concentrations of phenol is a significant limitation. Due to the uncoupling of oxidative phosphorylation, phenol concentrations above 1 g/L are toxic and inhibit cell growth. This article presents data on the biodegradative potential of Rhodococcus opacus strain 3D. This strain is capable of decomposing a wide range of toxicants, including phenol. In the present study, cell growth with phenol, growth after rest, growth of immobilized cells before and after rest, phase contrast, and scanning microscopy of immobilized cells on fiber were studied in detail. The free-living and immobilized cells can decompose phenol concentrations up to 1.5 g/L and 2.5 g/L, respectively. The decomposition of the toxicant was catalyzed by the enzymes catechol 1,2-dioxygenase and cis,cis-muconate cycloisomerase. The role of protocatechuate 3,4-dioxygenase in biodegradative processes is discussed. In this work, it is shown that the immobilized cells can be stored for a long time (up to 2 years) without significant loss of their degradation activity. An assessment of the induction of genes potentially involved in this process was taken. Based on our investigation, we can conclude that this strain can be considered an effective destructor that is capable of degrading phenol at high concentrations, increases its biodegradative potential during immobilization, and retains this ability for a long storage time. Therefore, the strain can be used in biotechnology for the purification of aqueous samples at high concentrations from phenolic contamination.
Collapse
Affiliation(s)
- Tatiana O. Anokhina
- Laboratory of Plasmid Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia; (T.O.A.); (T.Z.E.)
| | - Tatiana Z. Esikova
- Laboratory of Plasmid Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia; (T.O.A.); (T.Z.E.)
| | - Valentina N. Polivtseva
- Laboratory of Cytology of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia; (V.N.P.); (N.E.S.)
| | - Nataliya E. Suzina
- Laboratory of Cytology of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia; (V.N.P.); (N.E.S.)
| | - Inna P. Solyanikova
- Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia
- Regional Microbiological Center, Institute of Pharmacy, Chemistry and Biology, Belgorod National Research University, 308015 Belgorod, Russia
| |
Collapse
|
3
|
Hu Y, Tian Y, Zou C, Moon TS. The current progress of tandem chemical and biological plastic upcycling. Biotechnol Adv 2024; 77:108462. [PMID: 39395608 DOI: 10.1016/j.biotechadv.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Each year, millions of tons of plastics are produced for use in such applications as packaging, construction, and textiles. While plastic is undeniably useful and convenient, its environmental fate and transport have raised growing concerns about waste and pollution. However, the ease and low cost of producing virgin plastic have so far made conventional plastic recycling economically unattractive. Common contaminants in plastic waste and shortcomings of the recycling processes themselves typically mean that recycled plastic products are of relatively low quality in some cases. The high cost and high energy requirements of typical recycling operations also reduce their economic benefits. In recent years, the bio-upcycling of chemically treated plastic waste has emerged as a promising alternative to conventional plastic recycling. Unlike recycling, bio-upcycling uses relatively mild process conditions to economically transform pretreated plastic waste into value-added products. In this review, we first provide a précis of the general methodology and limits of conventional plastic recycling. Then, we review recent advances in hybrid chemical/biological upcycling methods for different plastics, including polyethylene terephthalate, polyurethane, polyamide, polycarbonate, polyethylene, polypropylene, polystyrene, and polyvinyl chloride. For each kind of plastic, we summarize both the pretreatment methods for making the plastic bio-available and the microbial chassis for degrading or converting the treated plastic waste to value-added products. We also discuss both the limitations of upcycling processes for major plastics and their potential for bio-upcycling.
Collapse
Affiliation(s)
- Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Yuxin Tian
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Chenghao Zou
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States.
| |
Collapse
|
4
|
Shimizu T, Suzuki K, Inui M. A mycofactocin-associated dehydrogenase is essential for ethylene glycol metabolism by Rhodococcus jostii RHA1. Appl Microbiol Biotechnol 2024; 108:58. [PMID: 38175243 DOI: 10.1007/s00253-023-12966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Ethylene glycol is an industrially important diol in many manufacturing processes and a building block of polymers, such as poly(ethylene terephthalate). In this study, we found that a mycolic acid-containing bacterium Rhodococcus jostii RHA1 can grow with ethylene glycol as a sole source of carbon and energy. Deletion of a putative glycolate dehydrogenase gene (RHA1_ro03227) abolished growth with ethylene glycol, indicating that ethylene glycol is assimilated via glycolate in R. jostii RHA1. Transcriptome sequencing and gene deletion analyses revealed that a gene homologous to mycofactocin (MFT)-associated dehydrogenase (RHA1_ro06057), hereafter referred to as EgaA, is essential for ethylene glycol assimilation. Furthermore, egaA deletion also negatively affected the utilization of ethanol, 1-propanol, propylene glycol, and 1-butanol, suggesting that EgaA is involved in the utilization of various alcohols in R. jostii RHA1. Deletion of MFT biosynthetic genes abolished growth with ethylene glycol, indicating that MFT is the physiological electron acceptor of EgaA. Further genetic studies revealed that a putative aldehyde dehydrogenase (RHA1_ro06081) is a major aldehyde dehydrogenase in ethylene glycol metabolism by R. jostii RHA1. KEY POINTS: • Rhodococcus jostii RHA1 can assimilate ethylene glycol via glycolate • A mycofactocin-associated dehydrogenase is involved in the oxidation of ethylene glycol • An aldehyde dehydrogenase gene is important for the ethylene glycol assimilation.
Collapse
Affiliation(s)
- Tetsu Shimizu
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-Shi, Kyoto, 619-0292, Japan
| | - Kai Suzuki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, 630-0192, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-Shi, Kyoto, 619-0292, Japan.
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, 630-0192, Japan.
| |
Collapse
|
5
|
Maurya AC, Bhattacharya A, Khare SK. Biodegradation of terephthalic acid using Rhodococcus erythropolis MTCC 3951: Insights into the degradation process, applications in wastewater treatment and polyhydroxyalkanoate production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57376-57385. [PMID: 37794223 DOI: 10.1007/s11356-023-30054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Terephthalic acid (TPA) is an endocrine disruptor widely used as a plasticizer and as a monomer in the manufacturing of PET bottles. However, because of various harmful effects on humans and the environment, it is now recognized as a priority pollutant whose environmental level needs to be controlled. In the present work, the TPA biodegradation efficacy of the bacterium Rhodococcus erythropolis (MTCC 3951) was studied in mineral salt media with TPA as the sole carbon and energy source. R. erythropolis was observed to degrade 5 mM and 120 mM TPA within 10 h and 84 h of incubation, respectively. The degradation efficiency was further optimized by varying the culture conditions, and the following optimum conditions were obtained: inoculum size- 5% (v/v), temperature- 30 °C, agitation speed- 200 rpm, and pH- 8.0. The bacterium was found to use an ortho-cleavage pathway for TPA degradation determined based on enzymatic and GC-MS studies. Moreover, during the degradation of TPA, the bacterium was observed to produce polyhydroxyalkanoate (PHA)-a biopolymer. Biodegradation of 120 mM TPA resulted in an accumulation of PHA. The PHA granules were visualized using fluorescence and transmission electron microscopy and were later characterized using FTIR spectroscopy. Furthermore, the robustness of the bacterium was demonstrated by its ability to degrade TPA in real industrial wastewater. Overall, R. erythropolis (MTCC 3951) hold the potential for controlling TPA pollution in the environment and vis-à-vis the production of PHA biopolymer.
Collapse
Affiliation(s)
- Ankita C Maurya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, Delhi, New Delhi, 110016, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, Delhi, New Delhi, 110016, India
- Amity Institute of Environmental Sciences, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, Delhi, New Delhi, 110016, India.
| |
Collapse
|
6
|
Feng NX, Li DW, Zhang F, Bin H, Huang YT, Xiang L, Liu BL, Cai QY, Li YW, Xu DL, Xie Y, Mo CH. Biodegradation of phthalate acid esters and whole-genome analysis of a novel Streptomyces sp. FZ201 isolated from natural habitats. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133972. [PMID: 38461665 DOI: 10.1016/j.jhazmat.2024.133972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, β-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.
Collapse
Affiliation(s)
- Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fei Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Bin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - De-Lin Xu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Wolf ME, Lalande AT, Newman BL, Bleem AC, Palumbo CT, Beckham GT, Eltis LD. The catabolism of lignin-derived p-methoxylated aromatic compounds by Rhodococcus jostii RHA1. Appl Environ Microbiol 2024; 90:e0215523. [PMID: 38380926 PMCID: PMC10952524 DOI: 10.1128/aem.02155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Emergent strategies to valorize lignin, an abundant but underutilized aromatic biopolymer, include tandem processes that integrate chemical depolymerization and biological catalysis. To date, aromatic monomers from C-O bond cleavage of lignin have been converted to bioproducts, but the presence of recalcitrant C-C bonds in lignin limits the product yield. A promising chemocatalytic strategy that overcomes this limitation involves phenol methyl protection and autoxidation. Incorporating this into a tandem process requires microbial cell factories able to transform the p-methoxylated products in the resulting methylated lignin stream. In this study, we assessed the ability of Rhodococcus jostii RHA1 to catabolize the major aromatic products in a methylated lignin stream and elucidated the pathways responsible for this catabolism. RHA1 grew on a methylated pine lignin stream, catabolizing the major aromatic monomers: p-methoxybenzoate (p-MBA), veratrate, and veratraldehyde. Bioinformatic analyses suggested that a cytochrome P450, PbdA, and its cognate reductase, PbdB, are involved in p-MBA catabolism. Gene deletion studies established that both pbdA and pbdB are essential for growth on p-MBA and several derivatives. Furthermore, a deletion mutant of a candidate p-hydroxybenzoate (p-HBA) hydroxylase, ΔpobA, did not grow on p-HBA. Veratraldehyde and veratrate catabolism required both vanillin dehydrogenase (Vdh) and vanillate O-demethylase (VanAB), revealing previously unknown roles of these enzymes. Finally, a ΔpcaL strain grew on neither p-MBA nor veratrate, indicating they are catabolized through the β-ketoadipate pathway. This study expands our understanding of the bacterial catabolism of aromatic compounds and facilitates the development of biocatalysts for lignin valorization.IMPORTANCELignin, an abundant aromatic polymer found in plant biomass, is a promising renewable replacement for fossil fuels as a feedstock for the chemical industry. Strategies for upgrading lignin include processes that couple the catalytic fractionation of biomass and biocatalytic transformation of the resulting aromatic compounds with a microbial cell factory. Engineering microbial cell factories for this biocatalysis requires characterization of bacterial pathways involved in catabolizing lignin-derived aromatic compounds. This study identifies new pathways for lignin-derived aromatic degradation in Rhodococcus, a genus of bacteria well suited for biocatalysis. Additionally, we describe previously unknown activities of characterized enzymes on lignin-derived compounds, expanding their utility. This work advances the development of strategies to replace fossil fuel-based feedstocks with sustainable alternatives.
Collapse
Affiliation(s)
- Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anne T. Lalande
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Brianne L. Newman
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Alissa C. Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Chad T. Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Zhao ZM, Liu ZH, Zhang T, Meng R, Gong Z, Li Y, Hu J, Ragauskas AJ, Li BZ, Yuan YJ. Unleashing the capacity of Rhodococcus for converting lignin into lipids. Biotechnol Adv 2024; 70:108274. [PMID: 37913947 DOI: 10.1016/j.biotechadv.2023.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Bioconversion of bioresources/wastes (e.g., lignin, chemical pulping byproducts) represents a promising approach for developing a bioeconomy to help address growing energy and materials demands. Rhodococcus, a promising microbial strain, utilizes numerous carbon sources to produce lipids, which are precursors for synthesizing biodiesel and aviation fuels. However, compared to chemical conversion, bioconversion involves living cells, which is a more complex system that needs further understanding and upgrading. Various wastes amenable to bioconversion are reviewed herein to highlight the potential of Rhodococci for producing lipid-derived bioproducts. In light of the abundant availability of these substrates, Rhodococcus' metabolic pathways converting them to lipids are analyzed from a "beginning-to-end" view. Based on an in-depth understanding of microbial metabolic routes, genetic modifications of Rhodococcus by employing emerging tools (e.g., multiplex genome editing, biosensors, and genome-scale metabolic models) are presented for promoting the bioconversion. Co-solvent enhanced lignocellulose fractionation (CELF) strategy facilitates the generation of a lignin-derived aromatic stream suitable for the Rhodococcus' utilization. Novel alkali sterilization (AS) and elimination of thermal sterilization (ETS) approaches can significantly enhance the bioaccessibility of lignin and its derived aromatics in aqueous fermentation media, which promotes lipid titer significantly. In order to achieve value-added utilization of lignin, biodiesel and aviation fuel synthesis from lignin and lipids are further discussed. The possible directions for unleashing the capacity of Rhodococcus through synergistically modifying microbial strains, substrates, and fermentation processes are proposed toward a sustainable biological lignin valorization.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tongtong Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongqian Meng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiqun Gong
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibing Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jing Hu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, United States; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Jiang W, Sun J, Dong W, Zhou J, Jiang Y, Zhang W, Xin F, Jiang M. Characterization of a novel esterase and construction of a Rhodococcus-Burkholderia consortium capable of catabolism bis (2-hydroxyethyl) terephthalate. ENVIRONMENTAL RESEARCH 2023; 238:117240. [PMID: 37783328 DOI: 10.1016/j.envres.2023.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Bis (2-hydroxyethyl) terephthalate (BHET) is one of the main compounds produced by enzymatic hydrolysis or chemical depolymerization of polyethylene terephthalate (PET). However, the lack of understanding on BHET microbial metabolism is a main factor limiting the bio-upcycling of PET. In this study, BHET-degrading strains of Rhodococcus biphenylivorans GA1 and Burkholderia sp. EG1 were isolated and identified, which can grow with BHET as the sole carbon source. Furthermore, a novel esterase gene betH was cloned from strain GA1, which encodes a BHET hydrolyzing esterase with the highest activity at 30 °C and pH 7.0. In addition, the co-culture containing strain GA1 and strain EG1 could completely degrade high concentration of BHET, eliminating the inhibition on strain GA1 caused by the accumulation of intermediate metabolite ethylene glycol (EG). This work will provide potential strains and a feasible strategy for PET bio-upcycling.
Collapse
Affiliation(s)
- Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, PR China
| |
Collapse
|
10
|
Schaerer L, Putman L, Bigcraft I, Byrne E, Kulas D, Zolghadr A, Aloba S, Ong R, Shonnard D, Techtmann S. Coexistence of specialist and generalist species within mixed plastic derivative-utilizing microbial communities. MICROBIOME 2023; 11:224. [PMID: 37838714 PMCID: PMC10576394 DOI: 10.1186/s40168-023-01645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Plastic-degrading microbial isolates offer great potential to degrade, transform, and upcycle plastic waste. Tandem chemical and biological processing of plastic wastes has been shown to substantially increase the rates of plastic degradation; however, the focus of this work has been almost entirely on microbial isolates (either bioengineered or naturally occurring). We propose that a microbial community has even greater potential for plastic upcycling. A microbial community has greater metabolic diversity to process mixed plastic waste streams and has built-in functional redundancy for optimal resilience. RESULTS Here, we used two plastic-derivative degrading communities as a model system to investigate the roles of specialist and generalist species within the microbial communities. These communities were grown on five plastic-derived substrates: pyrolysis treated high-density polyethylene, chemically deconstructed polyethylene terephthalate, disodium terephthalate, terephthalamide, and ethylene glycol. Short-read metagenomic and metatranscriptomic sequencing were performed to evaluate activity of microorganisms in each treatment. Long-read metagenomic sequencing was performed to obtain high-quality metagenome assembled genomes and evaluate division of labor. CONCLUSIONS Data presented here show that the communities are primarily dominated by Rhodococcus generalists and lower abundance specialists for each of the plastic-derived substrates investigated here, supporting previous research that generalist species dominate batch culture. Additionally, division of labor may be present between Hydrogenophaga terephthalate degrading specialists and lower abundance protocatechuate degrading specialists. Video Abstract.
Collapse
Affiliation(s)
- Laura Schaerer
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Lindsay Putman
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Isaac Bigcraft
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Emma Byrne
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Daniel Kulas
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Ali Zolghadr
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Sulihat Aloba
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Rebecca Ong
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - David Shonnard
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Stephen Techtmann
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| |
Collapse
|
11
|
Basu S, Dhar R, Bhattacharyya M, Dutta TK. Biochemical and Multi-Omics Approaches To Obtain Molecular Insights into the Catabolism of the Plasticizer Benzyl Butyl Phthalate in Rhodococcus sp. Strain PAE-6. Microbiol Spectr 2023; 11:e0480122. [PMID: 37318352 PMCID: PMC10434107 DOI: 10.1128/spectrum.04801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/16/2023] [Indexed: 06/16/2023] Open
Abstract
Phthalate diesters are extensively used as plasticizers in manufacturing plastic materials; however, because of their estrogenic properties, these chemicals have emerged as a global threat to human health. The present study investigated the course of degradation of a widely used plasticizer, benzyl butyl phthalate (BBP), by the bacterium PAE-6, belonging to the genus Rhodococcus. The metabolism of BBP, possessing structurally dissimilar side chains, was evaluated biochemically using a combination of respirometric, chromatographic, enzymatic, and mass-spectrometric analyses, depicting pathways of degradation. Consequently, the biochemical observations were corroborated by identifying possible catabolic genes from whole-genome analysis, and the involvement of inducible specific esterases and other degradative enzymes was validated by transcriptomic, reverse transcription-quantitative PCR (RT-qPCR) and proteomic analyses. Nonetheless, phthalic acid (PA), an intermediate of BBP, could not be efficiently metabolized by strain PAE-6, although the genome contains a PA-degrading gene cluster. This deficiency of complete degradation of BBP by strain PAE-6 was effectively managed by using a coculture of strains PAE-6 and PAE-2. The latter was identified as a Paenarthrobacter strain which can efficiently utilize PA. Based on sequence analysis of the PA-degrading gene cluster in strain PAE-6, it appeared that the alpha subunit of the multicomponent phthalate 3,4-dioxygenase harbors a number of altered residues in the multiple sequence alignment of homologous subunits, which may play a role(s) in poor turnover of PA. IMPORTANCE Benzyl butyl phthalate (BBP), an estrogenic, high-molecular-weight phthalic acid diester, is an extensively used plasticizer throughout the world. Due to its structural rigidity and hydrophobic nature, BBP gets adsorbed on sediments and largely escapes the biotic and abiotic degradative processes of the ecosystem. In the present study, a potent BBP-degrading bacterial strain belonging to the genus Rhodococcus was isolated that can also assimilate a number of other phthalate diesters of environmental concern. Various biochemical and multi-omics analyses revealed that the strain harbors all the required catabolic machinery for the degradation of the plasticizer and elucidated the inducible regulation of the associated catabolic genes and gene clusters.
Collapse
Affiliation(s)
- Suman Basu
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Rinita Dhar
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | | | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Thompson J, Barr C, Babcock-Adams L, Bird L, La Cava E, Garber A, Hongoh Y, Liu M, Nealson KH, Okamoto A, Repeta D, Suzuki S, Tacto C, Tashjian M, Merino N. Insights into the physiological and genomic characterization of three bacterial isolates from a highly alkaline, terrestrial serpentinizing system. Front Microbiol 2023; 14:1179857. [PMID: 37520355 PMCID: PMC10373932 DOI: 10.3389/fmicb.2023.1179857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 08/01/2023] Open
Abstract
The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.
Collapse
Affiliation(s)
- Jaclyn Thompson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Casey Barr
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Lydia Babcock-Adams
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Lina Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Eugenio La Cava
- National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Arkadiy Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Mark Liu
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Daniel Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Shino Suzuki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Sagamihara, Kanagawa, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Clarissa Tacto
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michelle Tashjian
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
13
|
Bhattacharyya M, Dhar R, Basu S, Das A, Reynolds DM, Dutta TK. Molecular evaluation of the metabolism of estrogenic di(2-ethylhexyl) phthalate in Mycolicibacterium sp. Microb Cell Fact 2023; 22:82. [PMID: 37101185 PMCID: PMC10134610 DOI: 10.1186/s12934-023-02096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Di(2-ethylhexyl) phthalate (DEHP) is a widely detected plasticizer and a priority pollutant of utmost concern for its adverse impact on humans, wildlife and the environment. To eliminate such toxic burden, biological processes are the most promising ways to combat rampant environmental insults under eco-friendly conditions. The present study investigated the biochemical and molecular assessment of the catabolic potential of Mycolicibacterium sp. strain MBM in the assimilation of estrogenic DEHP. RESULTS A detailed biochemical study revealed an initial hydrolytic pathway of degradation for DEHP followed by the assimilation of hydrolyzed phthalic acid and 2-ethylhexanol to TCA cycle intermediates. Besides the inducible nature of DEHP-catabolic enzymes, strain MBM can efficiently utilize various low- and high-molecular-weight phthalate diesters and can grow under moderately halotolerant conditions. Whole genome sequence analysis exhibited a genome size of 6.2 Mb with a GC content of 66.51% containing 6,878 coding sequences, including multiple genes, annotated as relevant to the catabolism of phthalic acid esters (PAEs). Substantiating the annotated genes through transcriptome assessment followed by RT-qPCR analysis, the possible roles of upregulated genes/gene clusters in the metabolism of DEHP were revealed, reinforcing the biochemical pathway of degradation at the molecular level. CONCLUSIONS A detailed co-relation of biochemical, genomic, transcriptomic and RT-qPCR analyses highlights the PAE-degrading catabolic machineries in strain MBM. Further, due to functional attributes in the salinity range of both freshwater and seawater, strain MBM may find use as a suitable candidate in the bioremediation of PAEs.
Collapse
Affiliation(s)
- Mousumi Bhattacharyya
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Rinita Dhar
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Suman Basu
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Avijit Das
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Darren M Reynolds
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
14
|
Zhu X, Zhou Z, Guo G, Li J, Yan H, Li F. Proteomics and metabolomics analysis of the lignin degradation mechanism of lignin-degrading fungus Aspergillus fumigatus G-13. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1062-1076. [PMID: 36723181 DOI: 10.1039/d2ay01446g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aspergillus fumigatus has the potential to degrade lignocellulosic biomass, but the degradation mechanism is not clear. The purpose of this study is to analyze the differential proteins and metabolites produced by Aspergillus fumigatus G-13 in the degradation of different lignin model compounds. Ferulic acid, sinapic acid, and p-coumaric acid were used as carbon sources. By controlling the culture conditions, and adding a cellulose co-substrate and an auxiliary carbon source, the enzymatic production law of three lignin model compounds degraded by Aspergillus fumigatus G-13 was investigated. Proteomics and metabolomics analysis were conducted for the two groups with the largest difference in enzyme activity expression. The results showed that a total of 1447 peptides were identified by proteomics analysis. Among them, 134 proteins were significantly changed, 73 proteins were up-regulated, and 61 proteins were down-regulated. The key proteins that degrade lignin model compounds are catechol dioxygenase, glutathione reductase, dextranase, isoamyl alcohol oxidase, glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase. Enrichment analysis of differential metabolite functions revealed that Aspergillus fumigatus G-13 is associated with several pathways related to the degradation of lignin. Among them, starch and sucrose metabolism, pentose phosphate pathway, glutathione metabolism, and the ortho-cleavage pathway of dihydroxylated aromatic rings are closely related to lignin degradation. The information presented in this paper will be helpful for future research on the degradation or depolymerization of natural lignocellulosic substrates.
Collapse
Affiliation(s)
- Xudong Zhu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, China
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, P. R. China
| | - Zijing Zhou
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, China
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, P. R. China
| | - Gaijuan Guo
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, China
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, P. R. China
| | - Jinda Li
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, China
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, P. R. China
| | - Hong Yan
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, China
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, P. R. China
| | - Fen Li
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, China
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, P. R. China
| |
Collapse
|
15
|
Han Z, Lin Q, Zhang S, Zhou X, Li S, Sun F, Shen C, Su X. High PCBs mineralization capability of a resuscitated strain Bacillus sp. LS1 and its survival in PCB-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159224. [PMID: 36206912 DOI: 10.1016/j.scitotenv.2022.159224] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Polychlorinated biphenyl (PCB)-degrading strains resuscitated by resuscitation promoting factor (Rpf) enlarged pure degraders to screen effective bio-inoculants for soil bioaugmentation. In this study, whole-genome analysis and PCB-degrading performance of a resuscitated strain LS1 were investigated. Importantly, the persistence and the physiological response of soil-inoculated LS1 were checked. The results indicate that the Bacillus sp. strain LS1 possessed the potential to degrade polycyclic aromatic compounds. LS1 exhibited better performance in degrading PCBs 18 and 52, but lower PCB 77 degradation capability. At PCBs concentration of 10 mg/L, the degradation efficiencies of PCBs 18, 52 and 77 within 96 h were 62.8 %, 59.6 % and 39.8 %, respectively. Combined the bph genes and metabolites detected, as well as the genes found in the genome, the abilities of LS1 for oxidative dehalogenation and mineralization of PCBs via HOPDA-benzoate-protocatechuate-β-ketoadipate pathway were determined. Notably, LS1 can still maintain survival and culturable state after inoculation into PCB-contaminated soil for 70 days. This is the first report to demonstrate the fate of resuscitated strain when used as soil bio-inoculant, which revealed the necessity and feasibility of using resuscitated strains to enhance bioremediation of PCB-contaminated soils.
Collapse
Affiliation(s)
- Zhen Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Qihua Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Xinru Zhou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Si Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
16
|
Metabolic Pathway of Phenol Degradation of a Cold-Adapted Antarctic Bacteria, Arthrobacter sp. Catalysts 2022. [DOI: 10.3390/catal12111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phenol is an important pollutant widely discharged as a component of hydrocarbon fuels, but its degradation in cold regions is challenging due to the harsh environmental conditions. To date, there is little information available concerning the capability for phenol biodegradation by indigenous Antarctic bacteria. In this study, enzyme activities and genes encoding phenol degradative enzymes identified using whole genome sequencing (WGS) were investigated to determine the pathway(s) of phenol degradation of Arthrobacter sp. strains AQ5-05 and AQ5-06, originally isolated from Antarctica. Complete phenol degradative genes involved only in the ortho-cleavage were detected in both strains. This was validated using assays of the enzymes catechol 1,2-dioxygenase and catechol 2,3-dioxygenase, which indicated the activity of only catechol 1,2-dioxygenase in both strains, in agreement with the results from the WGS. Both strains were psychrotolerant with the optimum temperature for phenol degradation, being between 10 and 15 °C. This study suggests the potential use of cold-adapted bacteria in the bioremediation of phenol pollution in cold environments.
Collapse
|
17
|
Abstract
Streptomycetes are highly metabolically gifted bacteria with the abilities to produce bioproducts that have profound economic and societal importance. These bioproducts are produced by metabolic pathways including those for the biosynthesis of secondary metabolites and catabolism of plant biomass constituents. Advancements in genome sequencing technologies have revealed a wealth of untapped metabolic potential from Streptomyces genomes. Here, we report the largest Streptomyces pangenome generated by using 205 complete genomes. Metabolic potentials of the pangenome and individual genomes were analyzed, revealing degrees of conservation of individual metabolic pathways and strains potentially suitable for metabolic engineering. Of them, Streptomyces bingchenggensis was identified as a potent degrader of plant biomass. Polyketide, non-ribosomal peptide, and gamma-butyrolactone biosynthetic enzymes are primarily strain specific while ectoine and some terpene biosynthetic pathways are highly conserved. A large number of transcription factors associated with secondary metabolism are strain-specific while those controlling basic biological processes are highly conserved. Although the majority of genes involved in morphological development are highly conserved, there are strain-specific varieties which may contribute to fine tuning the timing of cellular differentiation. Overall, these results provide insights into the metabolic potential, regulation and physiology of streptomycetes, which will facilitate further exploitation of these important bacteria.
Collapse
|
18
|
Abstract
Upgrading lignin, an underutilized component of biomass, is essential for sustainable biorefining. Biocatalysis has considerable potential for upgrading lignin, but our lack of knowledge of relevant enzymes and pathways has limited its application. Herein, we describe a microbial pathway that catabolizes acetovanillone, a major component of several industrial lignin streams. This pathway is unusual in that it involves phosphorylation and carboxylation before conversion to the intermediate, vanillate, which is degraded via the β-ketoadipate pathway. Importantly, the hydroxyphenylethanone catabolic pathway enables bacterial growth on softwood lignin pretreated by oxidative catalytic fractionation. Overall, these insights greatly facilitate the engineering of bacteria to biocatalytically upgrade lignin. Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. Rhodococcus rhodochrous GD02 was previously isolated for growth on acetovanillone. A high-quality genome sequence of GD02 was generated. Transcriptomic analyses revealed a cluster of eight genes up-regulated during growth on acetovanillone and 4-hydroxyacetophenone, as well as a two-gene cluster up-regulated during growth on acetophenone. Bioinformatic analyses predicted that the hydroxyphenylethanone (Hpe) pathway proceeds via phosphorylation and carboxylation, before β-elimination yields vanillate from acetovanillone or 4-hydroxybenzoate from 4-hydroxyacetophenone. Consistent with this prediction, the kinase, HpeHI, phosphorylated acetovanillone and 4-hydroxyacetophenone. Furthermore, HpeCBA, a biotin-dependent enzyme, catalyzed the ATP-dependent carboxylation of 4-phospho-acetovanillone but not acetovanillone. The carboxylase’s specificity for 4-phospho-acetophenone (kcat/KM = 34 ± 2 mM−1 s−1) was approximately an order of magnitude higher than for 4-phospho-acetovanillone. HpeD catalyzed the efficient dephosphorylation of the carboxylated products. GD02 grew on a preparation of pine lignin produced by oxidative catalytic fractionation, depleting all of the acetovanillone, vanillin, and vanillate. Genomic and metagenomic searches indicated that the Hpe pathway occurs in a relatively small number of bacteria. This study facilitates the design of bacterial strains for biocatalytic applications by identifying a pathway for the degradation of acetovanillone.
Collapse
|
19
|
Mahto JK, Sharma M, Neetu N, Kayastha A, Aggarwal S, Kumar P. Conformational flexibility enables catalysis of phthalate cis-4,5-dihydrodiol dehydrogenase. Arch Biochem Biophys 2022; 727:109314. [DOI: 10.1016/j.abb.2022.109314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
|
20
|
Navas LE, Zahn M, Bajwa H, Grigg JC, Wolf ME, Chan ACK, Murphy MEP, McGeehan JE, Eltis LD. Characterization of a phylogenetically distinct extradiol dioxygenase involved in the bacterial catabolism of lignin-derived aromatic compounds. J Biol Chem 2022; 298:101871. [PMID: 35346686 PMCID: PMC9062432 DOI: 10.1016/j.jbc.2022.101871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 10/28/2022] Open
Abstract
The actinobacterium Rhodococcus jostii RHA1 grows on a remarkable variety of aromatic compounds and has been studied for applications ranging from the degradation of polychlorinated biphenyls to the valorization of lignin, an underutilized component of biomass. In RHA1, the catabolism of two classes of lignin-derived compounds, alkylphenols and alkylguaiacols, involves a phylogenetically distinct extradiol dioxygenase, AphC, previously misannotated as BphC, an enzyme involved in biphenyl catabolism. To better understand the role of AphC in RHA1 catabolism, we first showed that purified AphC had highest apparent specificity for 4-propylcatechol (kcat/KM ∼106 M-1 s-1), and its apparent specificity for 4-alkylated substrates followed the trend for alkylguaiacols: propyl > ethyl > methyl > phenyl > unsubstituted. We also show AphC only poorly cleaved 3-phenylcatechol, the preferred substrate of BphC. Moreover, AphC and BphC cleaved 3-phenylcatechol and 4-phenylcatechol with different regiospecificities, likely due to the substrates' binding mode. A crystallographic structure of the AphC·4-ethylcatechol binary complex to 1.59 Å resolution revealed that the catechol is bound to the active site iron in a bidentate manner and that the substrate's alkyl side chain is accommodated by a hydrophobic pocket. Finally, we show RHA1 grows on a mixture of 4-ethylguaiacol and guaiacol, simultaneously catabolizing these substrates through meta-cleavage and ortho-cleavage pathways, respectively, suggesting that the specificity of AphC helps to prevent the routing of catechol through the Aph pathway. Overall, this study contributes to our understanding of the bacterial catabolism of aromatic compounds derived from lignin, and the determinants of specificity in extradiol dioxygenases.
Collapse
Affiliation(s)
- Laura E Navas
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Michael Zahn
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Harbir Bajwa
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
21
|
Weiland F, Kohlstedt M, Wittmann C. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metab Eng 2021; 71:13-41. [PMID: 34864214 DOI: 10.1016/j.ymben.2021.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Lignin is an important structural component of terrestrial plants and is readily generated during biomass fractionation in lignocellulose processing facilities. Due to lacking alternatives the majority of technical lignins is industrially simply burned into heat and energy. However, regarding its vast abundance and a chemically interesting richness in aromatics, lignin is presently regarded as the most under-utilized and promising feedstock for value-added applications. Notably, microbes have evolved powerful enzymes and pathways that break down lignin and metabolize its various aromatic components. This natural pathway atlas meanwhile serves as a guiding star for metabolic engineers to breed designed cell factories and efficiently upgrade this global waste stream. The metabolism of aromatic compounds, in combination with success stories from systems metabolic engineering, as reviewed here, promises a sustainable product portfolio from lignin, comprising bulk and specialty chemicals, biomaterials, and fuels.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
22
|
Mahto JK, Neetu N, Waghmode B, Kuatsjah E, Sharma M, Sircar D, Sharma AK, Tomar S, Eltis LD, Kumar P. Molecular insights into substrate recognition and catalysis by phthalate dioxygenase from Comamonas testosteroni. J Biol Chem 2021; 297:101416. [PMID: 34800435 PMCID: PMC8649396 DOI: 10.1016/j.jbc.2021.101416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 μM-1s-1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.
Collapse
Affiliation(s)
- Jai Krishna Mahto
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Neetu Neetu
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | | | - Eugene Kuatsjah
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Monica Sharma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | | | - Shailly Tomar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Lindsay D Eltis
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India.
| |
Collapse
|
23
|
Ren L, Wang G, Huang Y, Guo J, Li C, Jia Y, Chen S, Zhou JL, Hu H. Phthalic acid esters degradation by a novel marine bacterial strain Mycolicibacterium phocaicum RL-HY01: Characterization, metabolic pathway and bioaugmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148303. [PMID: 34118676 DOI: 10.1016/j.scitotenv.2021.148303] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 05/12/2023]
Abstract
Phthalic acid esters (PAEs) are one of the most widely used plasticizers and the well-studied environmental pollutants with endocrine disrupting properties. Investigation about PAEs in terrestrial ecosystem has been extensively conducted while the fate of PAEs in marine environment remains underexplored. In this study, a novel di-(2-ethylhexyl) phthalate (DEHP) degrading marine bacterial strain, Mycolicibacterium phocaicum RL-HY01, was isolated and characterized from intertidal sediments. Strain RL-HY01 could utilize a range of PAE plasticizers as sole carbon source for growth. The effects of different environmental factors on the degradation of PAEs were evaluated and the results indicated that strain RL-HY01 could efficiently degrade PAEs under a wide range of pH (5.0 to 9.0), temperature (20 °C to 40 °C) and salinity (below 10%). Specifically, when Tween-80 was added as solubilizing agent, strain RL-HY01 could rapidly degrade DEHP and achieve complete degradation of DEHP (50 mg/L) in 48 h. The kinetics of DEHP degradation by RL-HY01 were well fitted with the modified Gompertz model. The metabolic intermediates of DEHP by strain RL-HY01 were identified by ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis and then the metabolic pathway of DEHP was deduced. DEHP was transformed into di-ethyl phthalate (DEP) via β-oxidation and then DEP was hydrolyzed into phthalic acid (PA) by de-esterification. PA was further transformed into gentisate via salicylic acid and further utilized for cell growth. Bioaugmentation of strain RL-HY01 with marine samples was performed to evaluate its application potential and the results suggested that strain RL-HY01 could accelerate the elimination of DEHP in marine samples. The results have advanced our understanding of the fate of PAEs in marine ecosystem and identified an efficient bioremediation strategy for PAEs-polluted marine sites.
Collapse
Affiliation(s)
- Lei Ren
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guan Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianfu Guo
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sha Chen
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Hanqiao Hu
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
24
|
Navas LE, Dexter G, Liu J, Levy-Booth D, Cho M, Jang SK, Mansfield SD, Renneckar S, Mohn WW, Eltis LD. Bacterial Transformation of Aromatic Monomers in Softwood Black Liquor. Front Microbiol 2021; 12:735000. [PMID: 34566938 PMCID: PMC8461187 DOI: 10.3389/fmicb.2021.735000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
The valorization of lignin, a major component of plant-derived biomass, is essential to sustainable biorefining. We identified the major monoaromatic compounds present in black liquor, a lignin-rich stream generated in the kraft pulping process, and investigated their bacterial transformation. Among tested solvents, acetone extracted the greatest amount of monoaromatic compounds from softwood black liquor, with guaiacol, vanillin, and acetovanillone, in an approximately 4:3:2 ratio, constituting ~90% of the total extracted monoaromatic content. 4-Ethanol guaiacol, vanillate, and 4-propanol guaiacol were also present. Bacterial strains that grew on minimal media supplemented with the BL extracts at 1mM total aromatic compounds included Pseudomonas putida KT2442, Sphingobium sp. SYK-6, and Rhodococcus rhodochrous EP4. By contrast, the extracts inhibited the growth of Rhodococcus jostii RHA1 and Rhodococcus opacus PD630, strains extensively studied for lignin valorization. Of the strains that grew on the extracts, only R. rhodochrous GD01 and GD02, isolated for their ability to grow on acetovanillone, depleted the major extracted monoaromatics. Genomic analyses revealed that EP4, GD01, and GD02 share an average nucleotide identity (ANI) of 98% and that GD01 and GD02 harbor a predicted three-component carboxylase not present in EP4. A representative carboxylase gene was upregulated ~100-fold during growth of GD02 on a mixture of the BL monoaromatics, consistent with the involvement of the enzyme in acetovanillone catabolism. More generally, quantitative RT-PCR indicated that GD02 catabolizes the BL compounds in a convergent manner via the β-ketoadipate pathway. Overall, these studies help define the catabolic capabilities of potential biocatalytic strains, describe new isolates able to catabolize the major monoaromatic components of BL, including acetovanillone, and facilitate the design of biocatalysts to valorize under-utilized components of industrial lignin streams.
Collapse
Affiliation(s)
- Laura E Navas
- Department of Microbiology and Immunology, Life Sciences Institute, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Gara Dexter
- Department of Microbiology and Immunology, Life Sciences Institute, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - David Levy-Booth
- Department of Microbiology and Immunology, Life Sciences Institute, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - MiJung Cho
- Department of Wood Science, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Soo-Kyeong Jang
- Department of Wood Science, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Shawn D Mansfield
- Department of Wood Science, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Scott Renneckar
- Department of Wood Science, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, BioProducts Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Werner AZ, Clare R, Mand TD, Pardo I, Ramirez KJ, Haugen SJ, Bratti F, Dexter GN, Elmore JR, Huenemann JD, Peabody GL, Johnson CW, Rorrer NA, Salvachúa D, Guss AM, Beckham GT. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metab Eng 2021; 67:250-261. [PMID: 34265401 DOI: 10.1016/j.ymben.2021.07.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Poly(ethylene terephthalate) (PET) is the most abundantly consumed synthetic polyester and accordingly a major source of plastic waste. The development of chemocatalytic approaches for PET depolymerization to monomers offers new options for open-loop upcycling of PET, which can leverage biological transformations to higher-value products. To that end, here we perform four sequential metabolic engineering efforts in Pseudomonas putida KT2440 to enable the conversion of PET glycolysis products via: (i) ethylene glycol utilization by constitutive expression of native genes, (ii) terephthalate (TPA) catabolism by expression of tphA2IIA3IIBIIA1II from Comamonas and tpaK from Rhodococcus jostii, (iii) bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis to TPA by expression of PETase and MHETase from Ideonella sakaiensis, and (iv) BHET conversion to a performance-advantaged bioproduct, β-ketoadipic acid (βKA) by deletion of pcaIJ. Using this strain, we demonstrate production of 15.1 g/L βKA from BHET at 76% molar yield in bioreactors and conversion of catalytically depolymerized PET to βKA. Overall, this work highlights the potential of tandem catalytic deconstruction and biological conversion as a means to upcycle waste PET.
Collapse
Affiliation(s)
- Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Rita Clare
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Thomas D Mand
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Isabel Pardo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Stefan J Haugen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Felicia Bratti
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Gara N Dexter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joshua R Elmore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jay D Huenemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - George L Peabody
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Adam M Guss
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA.
| |
Collapse
|
26
|
Wang W, Li Q, Zhang L, Cui J, Yu H, Wang X, Ouyang X, Tao F, Xu P, Tang H. Genetic mapping of highly versatile and solvent-tolerant Pseudomonas putida B6-2 (ATCC BAA-2545) as a 'superstar' for mineralization of PAHs and dioxin-like compounds. Environ Microbiol 2021; 23:4309-4325. [PMID: 34056829 DOI: 10.1111/1462-2920.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and dioxin-like compounds, including sulfur, nitrogen and oxygen heterocycles, are widespread and toxic environmental pollutants. A wide variety of microorganisms capable of growing with aromatic polycyclic compounds are essential for bioremediation of the contaminated sites and the Earth's carbon cycle. Here, cells of Pseudomonas putida B6-2 (ATCC BAA-2545) grown in the presence of biphenyl (BP) are able to simultaneously degrade PAHs and their derivatives, even when they are present as mixtures, and tolerate high concentrations of extremely toxic solvents. Genetic analysis of the 6.37 Mb genome of strain B6-2 reveals coexistence of gene clusters responsible for central catabolic systems of aromatic compounds and for solvent tolerance. We used functional transcriptomics and proteomics to identify the candidate genes associated with catabolism of BP and a mixture of BP, dibenzofuran, dibenzothiophene and carbazole. Moreover, we observed dynamic changes in transcriptional levels with BP, including in metabolic pathways of aromatic compounds, chemotaxis, efflux pumps and transporters potentially involved in adaptation to PAHs. This study on the highly versatile activities of strain B6-2 suggests it to be a potentially useful model for bioremediation of polluted sites and for investigation of biochemical, genetic and evolutionary aspects of Pseudomonas.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinggang Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lige Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Cui
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Yu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
Mapping of the benzoate metabolism by human gut microbiome indicates food-derived metagenome evolution. Sci Rep 2021; 11:5561. [PMID: 33692426 PMCID: PMC7946887 DOI: 10.1038/s41598-021-84964-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Sodium benzoate is one of the widely used food preservatives and its metabolism in the human body has been studied only with the host perspective. Despite the human gut microbiome being considered as a virtual human organ, its role in benzoate metabolism is yet to be elucidated. The current study uses a multi-omic approach to rationalize the role of human gut microbes in benzoate metabolism. Microbial diversity analysis with multiple features synchronously indicates the dominance of Bacteroidetes followed by Firmicutes, Actinobacteria, and Proteobacteria. Metagenomic exploration highlights the presence of benzoate catabolic protein features. These features were mapped on to the aerobic and anaerobic pathways of benzoate catabolism. Benzoate catabolism assays identified statistically significant metabolites (P < 0.05) associated with the protocatechuate branch of the beta-ketoadipate pathway of the benzoate metabolism. Analysis of the 201 human gut metagenomic datasets across diverse populations indicates the omnipresence of these features. Enrichment of the benzoate catabolic protein features in human gut microbes rationalizes their role in benzoate catabolism, as well as indicates food-derived microbiome evolution.
Collapse
|
28
|
Zappaterra F, Costa S, Summa D, Bertolasi V, Semeraro B, Pedrini P, Buzzi R, Vertuani S. Biotransformation of Cortisone with Rhodococcus rhodnii: Synthesis of New Steroids. Molecules 2021; 26:1352. [PMID: 33802594 PMCID: PMC7962003 DOI: 10.3390/molecules26051352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cortisone is a steroid widely used as an anti-inflammatory drug able to suppress the immune system, thus reducing inflammation and attendant pain and swelling at the site of an injury. Due to its numerous side effects, especially in prolonged and high-dose therapies, the development of the pharmaceutical industry is currently aimed at finding new compounds with similar activities but with minor or no side effects. Biotransformations are an important methodology towards more sustainable industrial processes, according to the principles of "green chemistry". In this work, the biotransformation of cortisone with Rhodococcus rhodnii DSM 43960 to give two new steroids, i.e., 1,9β,17,21-tetrahydoxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11,20-dione and 1,9β,17,20β,21-pentahydoxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11-one, is reported. These new steroids have been fully characterized.
Collapse
Affiliation(s)
- Federico Zappaterra
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (P.P.); (R.B.)
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (P.P.); (R.B.)
| | - Daniela Summa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (P.P.); (R.B.)
| | - Valerio Bertolasi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | | | - Paola Pedrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (P.P.); (R.B.)
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (F.Z.); (D.S.); (P.P.); (R.B.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
29
|
Sun S, Wang H, Yan K, Lou J, Ding J, Snyder SA, Wu L, Xu J. Metabolic interactions in a bacterial co-culture accelerate phenanthrene degradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123825. [PMID: 33264917 DOI: 10.1016/j.jhazmat.2020.123825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 05/22/2023]
Abstract
A highly eff ;ective phenanthrene (PHE)-degrading co-culture containing Rhodococcus sp. WB9 and Mycobacterium sp. WY10 was constructed and completely degraded 100 mg L-1 PHE within 36 h, showing improved degradation rate compared to their monocultures. In the co-culture, strain WY10 played a predominant role in PHE degradation. 1-hydroxy-2-naphthoic acid was an end-product of PHE degradation by strain WB9 and accumulated in the culture medium to serve as a substrate for strain WY10 growth, thereby accelerating PHE degradation. In turn, strain WY10 degraded PHE and 1-hydroxy-2-naphthoic acid intracellularly to form phthalate and protocatechuate that were exported to the culture medium through efflux transporters. However, strain WY10 cannot take up extracellular phthalate due to the absence of phthalate transporters, restricting phthalate degradation and PHE mineralization. In the co-culture, phthalate and protocatechuate accumulated in the culture medium were taken up and degraded towards TCA cycle by strain WB9. Therefore, the metabolic cross-feeding of strains WB9 and WY10 accelerated PHE degradation and mineralization. These findings exhibiting the synergistic degradation of PHE in the bacterial co-culture will facilitate its bioremediation application.
Collapse
Affiliation(s)
- Shanshan Sun
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Kang Yan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jiahui Ding
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Spence EM, Calvo-Bado L, Mines P, Bugg TDH. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin. Microb Cell Fact 2021; 20:15. [PMID: 33468127 PMCID: PMC7814577 DOI: 10.1186/s12934-020-01504-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic modification of Rhodococcus jostii RHA1 was carried out in order to optimise the production of pyridine-2,4-dicarboxylic acid and pyridine-2,5-dicarboxylic acid bioproducts from lignin or lignocellulose breakdown, via insertion of either the Sphingobium SYK-6 ligAB genes or Paenibacillus praA gene respectively. Insertion of inducible plasmid pTipQC2 expression vector containing either ligAB or praA genes into a ΔpcaHG R. jostii RHA1 gene deletion strain gave 2–threefold higher titres of PDCA production from lignocellulose (200–287 mg/L), compared to plasmid expression in wild-type R. jostii RHA1. The ligAB genes were inserted in place of the chromosomal pcaHG genes encoding protocatechuate 3,4-dioxygenase, under the control of inducible Picl or PnitA promoters, or a constitutive Ptpc5 promoter, producing 2,4-PDCA products using either wheat straw lignocellulose or commercial soda lignin as carbon source. Insertion of Amycolatopsis sp. 75iv2 dyp2 gene on a pTipQC2 expression plasmid led to enhanced titres of 2,4-PDCA products, due to enhanced rate of lignin degradation. Growth in minimal media containing wheat straw lignocellulose led to the production of 2,4-PDCA in 330 mg/L titre in 40 h, with > tenfold enhanced productivity, compared with plasmid-based expression of ligAB genes in wild-type R. jostii RHA1. Production of 2,4-PDCA was also observed using several different polymeric lignins as carbon sources, and a titre of 240 mg/L was observed using a commercially available soda lignin as feedstock.![]()
Collapse
Affiliation(s)
- Edward M Spence
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Paul Mines
- Biome Bioplastics Ltd, North Road, Marchwood, Southampton, SO40 4BL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
31
|
Lee GLY, Zakaria NN, Convey P, Futamata H, Zulkharnain A, Suzuki K, Abdul Khalil K, Shaharuddin NA, Alias SA, González-Rocha G, Ahmad SA. Statistical Optimisation of Phenol Degradation and Pathway Identification through Whole Genome Sequencing of the Cold-Adapted Antarctic Bacterium, Rhodococcus sp. Strain AQ5-07. Int J Mol Sci 2020; 21:ijms21249363. [PMID: 33316871 PMCID: PMC7764105 DOI: 10.3390/ijms21249363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Study of the potential of Antarctic microorganisms for use in bioremediation is of increasing interest due to their adaptations to harsh environmental conditions and their metabolic potential in removing a wide variety of organic pollutants at low temperature. In this study, the psychrotolerant bacterium Rhodococcus sp. strain AQ5-07, originally isolated from soil from King George Island (South Shetland Islands, maritime Antarctic), was found to be capable of utilizing phenol as sole carbon and energy source. The bacterium achieved 92.91% degradation of 0.5 g/L phenol under conditions predicted by response surface methodology (RSM) within 84 h at 14.8 °C, pH 7.05, and 0.41 g/L ammonium sulphate. The assembled draft genome sequence (6.75 Mbp) of strain AQ5-07 was obtained through whole genome sequencing (WGS) using the Illumina Hiseq platform. The genome analysis identified a complete gene cluster containing catA, catB, catC, catR, pheR, pheA2, and pheA1. The genome harbours the complete enzyme systems required for phenol and catechol degradation while suggesting phenol degradation occurs via the β-ketoadipate pathway. Enzymatic assay using cell-free crude extract revealed catechol 1,2-dioxygenase activity while no catechol 2,3-dioxygenase activity was detected, supporting this suggestion. The genomic sequence data provide information on gene candidates responsible for phenol and catechol degradation by indigenous Antarctic bacteria and contribute to knowledge of microbial aromatic metabolism and genetic biodiversity in Antarctica.
Collapse
Affiliation(s)
- Gillian Li Yin Lee
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
| | - Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
| | - Hiroyuki Futamata
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan;
- Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Kenshi Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Khalilah Abdul Khalil
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
| | - Siti Aisyah Alias
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Institute of Ocean and Earth Sciences, B303 Level 3, Block B, Universiti Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Gerardo González-Rocha
- Laboratorio de Investigacion en Agentes Antibacterianos, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion 4070386, Chile;
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Selangor, Malaysia; (G.L.Y.L.); (N.N.Z.); (N.A.S.)
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence:
| |
Collapse
|
32
|
Pardo I, Jha RK, Bermel RE, Bratti F, Gaddis M, McIntyre E, Michener W, Neidle EL, Dale T, Beckham GT, Johnson CW. Gene amplification, laboratory evolution, and biosensor screening reveal MucK as a terephthalic acid transporter in Acinetobacter baylyi ADP1. Metab Eng 2020; 62:260-274. [DOI: 10.1016/j.ymben.2020.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
|
33
|
Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proc Natl Acad Sci U S A 2020; 117:25771-25778. [PMID: 32989155 DOI: 10.1073/pnas.1916349117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 enzymes have tremendous potential as industrial biocatalysts, including in biological lignin valorization. Here, we describe P450s that catalyze the O-demethylation of lignin-derived guaiacols with different ring substitution patterns. Bacterial strains Rhodococcus rhodochrous EP4 and Rhodococcus jostii RHA1 both utilized alkylguaiacols as sole growth substrates. Transcriptomics of EP4 grown on 4-propylguaiacol (4PG) revealed the up-regulation of agcA, encoding a CYP255A1 family P450, and the aph genes, previously shown to encode a meta-cleavage pathway responsible for 4-alkylphenol catabolism. The function of the homologous pathway in RHA1 was confirmed: Deletion mutants of agcA and aphC, encoding the meta-cleavage alkylcatechol dioxygenase, grew on guaiacol but not 4PG. By contrast, deletion mutants of gcoA and pcaL, encoding a CYP255A2 family P450 and an ortho-cleavage pathway enzyme, respectively, grew on 4-propylguaiacol but not guaiacol. CYP255A1 from EP4 catalyzed the O-demethylation of 4-alkylguaiacols to 4-alkylcatechols with the following apparent specificities (k cat/K M): propyl > ethyl > methyl > guaiacol. This order largely reflected AgcA's binding affinities for the different guaiacols and was the inverse of GcoAEP4's specificities. The biocatalytic potential of AgcA was demonstrated by the ability of EP4 to grow on lignin-derived products obtained from the reductive catalytic fractionation of corn stover, depleting alkylguaiacols and alkylphenols. By identifying related P450s with complementary specificities for lignin-relevant guaiacols, this study facilitates the design of these enzymes for biocatalytic applications. We further demonstrated that the metabolic fate of the guaiacol depends on its substitution pattern, a finding that has significant implications for engineering biocatalysts to valorize lignin.
Collapse
|
34
|
Extraction and intensive conversion of lignocellulose from oil palm solid waste into lignin monomer by the combination of hydrothermal pretreatment and biological treatment. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Zampolli J, Di Canito A, Manconi A, Milanesi L, Di Gennaro P, Orro A. Transcriptomic Analysis of Rhodococcus opacus R7 Grown on o-Xylene by RNA-Seq. Front Microbiol 2020; 11:1808. [PMID: 32903390 PMCID: PMC7434839 DOI: 10.3389/fmicb.2020.01808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Xylenes are considered one of the most common hazardous sources of environmental contamination. The biodegradation of these compounds has been often reported, rarer the ability to oxidize the ortho-isomer. Among few o-xylene-degrading bacteria, Rhodococcus opacus R7 is well known for its capability to degrade diverse aromatic hydrocarbons and toxic compounds, including o-xylene as only carbon and energy source. This work shows for the first time the RNA-seq approach to elucidate the genetic determinants involved in the o-xylene degradation pathway in R. opacus R7. Transcriptomic data showed 542 differentially expressed genes that are associated with the oxidation of aromatic hydrocarbons and stress response, osmotic regulation and central metabolism. Gene ontology (GO) enrichment and KEGG pathway analysis confirmed significant changes in aromatic compound catabolic processes, fatty acid metabolism, beta-oxidation, TCA cycle enzymes, and biosynthesis of metabolites when cells are cultured in the presence of o-xylene. Interestingly, the most up-regulated genes belong to the akb gene cluster encoding for the ethylbenzene (Akb) dioxygenase system. Moreover, the transcriptomic approach allowed identifying candidate enzymes involved in R7 o-xylene degradation for their likely participation in the formation of the metabolites that have been previously identified. Overall, this approach supports the identification of several oxidative systems likely involved in o-xylene metabolism confirming that R. opacus R7 possesses a redundancy of sequences that converge in o-xylene degradation through R7 peculiar degradation pathway. This work advances our understanding of o-xylene metabolism in bacteria belonging to Rhodococcus genus and provides a framework of useful enzymes (molecular tools) that can be fruitfully targeted for optimized o-xylene consumption.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Di Canito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrea Manconi
- Institute of Biomedical Technologies, National Research Council, CNR, Milan, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, CNR, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandro Orro
- Institute of Biomedical Technologies, National Research Council, CNR, Milan, Italy
| |
Collapse
|
36
|
Polivtseva VN, Anokhina TO, Iminova LR, Borzova OV, Esikova TZ, Solyanikova IP. Evaluation of the Biotechnological Potential of New Bacterial Strains Capable of Phenol Degradation. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Δ1-Dehydrogenation and C20 Reduction of Cortisone and Hydrocortisone Catalyzed by Rhodococcus Strains. Molecules 2020; 25:molecules25092192. [PMID: 32392887 PMCID: PMC7248985 DOI: 10.3390/molecules25092192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
Prednisone and prednisolone are steroids widely used as anti-inflammatory drugs. Development of the pharmaceutical industry is currently aimed at introducing biotechnological processes and replacing multiple-stage chemical syntheses. In this work we evaluated the ability of bacteria belonging to the Rhodococcus genus to biotransform substrates, such as cortisone and hydrocortisone, to obtain prednisone and prednisolone, respectively. These products are of great interest from a pharmaceutical point of view as they have higher anti-inflammatory activity than the starting substrates. After an initial lab-scale screening of 13 Rhodococcus strains, to select the highest producers of prednisone and prednisolone, we reported the 200 ml-batch scale-up to test the process efficiency and productivity of the most promising Rhodococcus strains. R. ruber, R. globerulus and R. coprophilus gave the Δ1-dehydrogenation products of cortisone and hydrocortisone (prednisone and prednisolone) in variable amounts. In these biotransformations, the formation of products with the reduced carbonyl group in position C20 of the lateral chain of the steroid nucleus was also observed (i.e., 20β-hydroxy-prednisone and 20β-hydroxy-prednisolone). The yields, the absence of collateral products, and in some cases the absence of starting products allow us to say that cortisone and hydrocortisone are partly degraded.
Collapse
|
38
|
Phale PS, Malhotra H, Shah BA. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:1-65. [PMID: 32762865 DOI: 10.1016/bs.aambs.2020.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
39
|
Sun S, Wang H, Fu B, Zhang H, Lou J, Wu L, Xu J. Non-bioavailability of extracellular 1-hydroxy-2-naphthoic acid restricts the mineralization of phenanthrene by Rhodococcus sp. WB9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135331. [PMID: 31831232 DOI: 10.1016/j.scitotenv.2019.135331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Rhodococcus sp. WB9, a strain isolated from polycyclic aromatic hydrocarbons contaminated soil, degraded phenanthrene (PHE, 100 mg L-1) completely within 4 days. 18 metabolites were identified during PHE degradation, including 5 different hydroxyphenanthrene compounds resulted from multiple routes of initial monooxygenase attack. Initial dioxygenation dominantly occurred on 3,4-C positions, followed by meta-cleavage to form 1-hydroxy-2-naphthoic acid (1H2N). More than 95.2% of 1H2N was transported to and kept in extracellular solution without further degradation. However, intracellular 1H2N was converted to 1,2-naphthalenediol that was branched to produce salicylate and phthalate. Furthermore, 131 genes in strain WB9 genome were related to aromatic hydrocarbons catabolism, including the gene coding for salicylate 1-monooxygenase that catalyzed the oxidation of 1H2N to 1,2-naphthalenediol, and complete gene sets for the transformation of salicylate and phthalate toward tricarboxylic acid (TCA) cycle. Metabolic and genomic analyses reveal that strain WB9 has the ability to metabolize intracellular 1H2N to TCA cycle intermediates, but the extracellular 1H2N can't enter the cells, restricting 1H2N bioavailability and PHE mineralization.
Collapse
Affiliation(s)
- Shanshan Sun
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Binxin Fu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Bhatia SK, Gurav R, Choi TR, Han YH, Park YL, Park JY, Jung HR, Yang SY, Song HS, Kim SH, Choi KY, Yang YH. Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01. BIORESOURCE TECHNOLOGY 2019; 289:121704. [PMID: 31276990 DOI: 10.1016/j.biortech.2019.121704] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Rhodococcus sp. YHY01 was studied to utilize various lignin derived aromatic compounds. It was able to utilize p-coumaric acid, cresol, and 2,6 dimethoxyphenol and resulted in biomass production i.e. 0.38 g dcw/L, 0.25 g dcw/L and 0.1 g dcw/L, and lipid accumulation i.e. 49%, 40%, 30%, respectively. The half maximal inhibitory concentration (IC50) value for p-coumaric acid (13.4 mM), cresol (7.9 mM), and 2,6 dimethoxyphenol (3.4 mM) was analyzed. Dimethyl sulfoxide (DMSO) solubilized barley straw lignin fraction was used as a carbon source for Rhodococcus sp. YHY01 and resulted in 0.130 g dcw/L with 39% w/w lipid accumulation. Major fatty acids were palmitic acid (C16:0) 51.87%, palmitoleic acid (C16:l) 14.90%, and oleic acid (C18:1) 13.76%, respectively. Properties of biodiesel produced from barley straw lignin were as iodine value (IV) 27.25, cetane number (CN) 65.57, cold filter plugging point (CFPP) 14.36, viscosity (υ) 3.81, and density (ρ) 0.86.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and App1ications (CBRU), Konkuk University, Seoul, South Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yeong Hoon Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ye-Lim Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Jun Young Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hye-Rim Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Soo-Yeon Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and App1ications (CBRU), Konkuk University, Seoul, South Korea.
| |
Collapse
|
41
|
Levy-Booth DJ, Fetherolf MM, Stewart GR, Liu J, Eltis LD, Mohn WW. Catabolism of Alkylphenols in Rhodococcus via a Meta-Cleavage Pathway Associated With Genomic Islands. Front Microbiol 2019; 10:1862. [PMID: 31481940 PMCID: PMC6710988 DOI: 10.3389/fmicb.2019.01862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023] Open
Abstract
The bacterial catabolism of aromatic compounds has considerable promise to convert lignin depolymerization products to commercial chemicals. Alkylphenols are a key class of depolymerization products whose catabolism is not well-elucidated. We isolated Rhodococcus rhodochrous EP4 on 4-ethylphenol and applied genomic and transcriptomic approaches to elucidate alkylphenol catabolism in EP4 and Rhodococcus jostii RHA1. RNA-Seq and RT-qPCR revealed a pathway encoded by the aphABCDEFGHIQRS genes that degrades 4-ethylphenol via the meta-cleavage of 4-ethylcatechol. This process was initiated by a two-component alkylphenol hydroxylase, encoded by the aphAB genes, which were upregulated ~3,000-fold. Purified AphAB from EP4 had highest specific activity for 4-ethylphenol and 4-propylphenol (~2,000 U/mg) but did not detectably transform phenol. Nevertheless, a ΔaphA mutant in RHA1 grew on 4-ethylphenol by compensatory upregulation of phenol hydroxylase genes (pheA1-3). Deletion of aphC, encoding an extradiol dioxygenase, prevented growth on 4-alkylphenols but not phenol. Disruption of pcaL in the β-ketoadipate pathway prevented growth on phenol but not 4-alkylphenols. Thus, 4-alkylphenols are catabolized exclusively via meta-cleavage in rhodococci while phenol is subject to ortho-cleavage. A putative genomic island encoding aph genes was identified in EP4 and several other rhodococci. Overall, this study identifies a 4-alkylphenol pathway in rhodococci, demonstrates key enzymes involved, and presents evidence that the pathway is encoded in a genomic island. These advances are of particular importance for wide-ranging industrial applications of rhodococci, including upgrading of lignocellulose biomass.
Collapse
Affiliation(s)
- David J Levy-Booth
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Morgan M Fetherolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Gordon R Stewart
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Guevara G, Castillo Lopez M, Alonso S, Perera J, Navarro-Llorens JM. New insights into the genome of Rhodococcus ruber strain Chol-4. BMC Genomics 2019; 20:332. [PMID: 31046661 PMCID: PMC6498646 DOI: 10.1186/s12864-019-5677-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
Background Rhodococcus ruber strain Chol-4, a strain isolated from a sewage sludge sample, is able to grow in minimal medium supplemented with several compounds, showing a broad catabolic capacity. We have previously determined its genome sequence but a more comprehensive study of their metabolic capacities was necessary to fully unravel its potential for biotechnological applications. Results In this work, the genome of R. ruber strain Chol-4 has been re-sequenced, revised, annotated and compared to other bacterial genomes in order to investigate the metabolic capabilities of this microorganism. The analysis of the data suggests that R. ruber Chol-4 contains several putative metabolic clusters of biotechnological interest, particularly those involved on steroid and aromatic compounds catabolism. To demonstrate some of its putative metabolic abilities, R. ruber has been cultured in minimal media containing compounds belonging to several of the predicted metabolic pathways. Moreover, mutants were built to test the naphtalen and protocatechuate predicted catabolic gene clusters. Conclusions The genomic analysis and experimental data presented in this work confirm the metabolic potential of R. ruber strain Chol-4. This strain is an interesting model bacterium due to its biodegradation capabilities. The results obtained in this work will facilitate the application of this strain as a biotechnological tool. Electronic supplementary material The online version of this article (10.1186/s12864-019-5677-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Govinda Guevara
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain.
| | - Maria Castillo Lopez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Carretera de Can Ruti S/N 08916 Badalona, Barcelona, Spain
| | - Julián Perera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juana María Navarro-Llorens
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
43
|
Kasai D, Iwasaki T, Nagai K, Araki N, Nishi T, Fukuda M. 2,3-Dihydroxybenzoate meta-Cleavage Pathway is Involved in o-Phthalate Utilization in Pseudomonas sp. strain PTH10. Sci Rep 2019; 9:1253. [PMID: 30718753 PMCID: PMC6362003 DOI: 10.1038/s41598-018-38077-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas sp. strain PTH10 can utilize o-phthalate which is a key intermediate in the bacterial degradation of some polycyclic aromatic hydrocarbons. In this strain, o-phthalate is degraded to 2,3-dihydroxybenzoate and further metabolized via the 2,3-dihydroxybenzoate meta-cleavage pathway. Here, the opa genes which are involved in the o-phthalate catabolism were identified. Based on the enzymatic activity of the opa gene products, opaAaAbAcAd, opaB, opaC, and opaD were found to code for o-phthalate 2,3-dioxygenase, dihydrodiol dehydrogenase, 2,3-dihydroxybenzoate 3,4-dioxygenase, and 3-carboxy-2-hydroxymuconate-6-semialdehyde decarboxylase, respectively. Collectively, these enzymes are thought to catalyze the conversion of o-phthalate to 2-hydroxymuconate-6-semialdehyde. Deletion mutants of the above opa genes indicated that their products were required for the utilization of o-phthalate. Transcriptional analysis showed that the opa genes were organized in the same transcriptional unit. Quantitative analysis of opaAa, opaB, opaC, opaD, opaE, and opaN revealed that, except for opaB and opaC, all other genes were transcriptionally induced during growth on o-phthalate. The constitutive expression of opaB and opaC, and the transcriptional induction of opaD located downstream of opaB, suggest several possible internal promoters are existence in the opa cluster. Together, these results strongly suggest that the opa genes are involved in a novel o-phthalate catabolic pathway in strain PTH10.
Collapse
Affiliation(s)
- Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| | | | - Kazuki Nagai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Naoto Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | | | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.,Department of Biological Chemistry, Chubu University, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
44
|
Li X, He Y, Zhang L, Xu Z, Ben H, Gaffrey MJ, Yang Y, Yang S, Yuan JS, Qian WJ, Yang B. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:60. [PMID: 30923568 PMCID: PMC6423811 DOI: 10.1186/s13068-019-1395-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/06/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Biological routes for utilizing both carbohydrates and lignin are important to reach the ultimate goal of bioconversion of full carbon in biomass into biofuels and biochemicals. Recent biotechnology advances have shown promises toward facilitating biological transformation of lignin into lipids. Natural and engineered Rhodococcus strains (e.g., R. opacus PD630, R. jostii RHA1, and R. jostii RHA1 VanA-) have been demonstrated to utilize lignin for lipid production, and co-culture of them can promote lipid production from lignin. RESULTS In this study, a co-fermentation module of natural and engineered Rhodococcus strains with significant improved lignin degradation and/or lipid biosynthesis capacities was established, which enabled simultaneous conversion of glucose, lignin, and its derivatives into lipids. Although Rhodococci sp. showed preference to glucose over lignin, nearly half of the lignin was quickly depolymerized to monomers by these strains for cell growth and lipid synthesis after glucose was nearly consumed up. Profiles of metabolites produced by Rhodococcus strains growing on different carbon sources (e.g., glucose, alkali lignin, and dilute acid flowthrough-pretreated poplar wood slurry) confirmed lignin conversion during co-fermentation, and indicated novel metabolic capacities and unexplored metabolic pathways in these organisms. Proteome profiles suggested that lignin depolymerization by Rhodococci sp. involved multiple peroxidases with accessory oxidases. Besides the β-ketoadipate pathway, the phenylacetic acid (PAA) pathway was another potential route for the in vivo ring cleavage activity. In addition, deficiency of reducing power and cellular oxidative stress probably led to lower lipid production using lignin as the sole carbon source than that using glucose. CONCLUSIONS This work demonstrated a potential strategy for efficient bioconversion of both lignin and glucose into lipids by co-culture of multiple natural and engineered Rhodococcus strains. In addition, the involvement of PAA pathway in lignin degradation can help to further improve lignin utilization, and the combinatory proteomics and bioinformatics strategies used in this study can also be applied into other systems to reveal the metabolic and regulatory pathways for balanced cellular metabolism and to select genetic targets for efficient conversion of both lignin and carbohydrates into biofuels.
Collapse
Affiliation(s)
- Xiaolu Li
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Yucai He
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Libing Zhang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Zhangyang Xu
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Haoxi Ben
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Joshua S. Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840 USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| |
Collapse
|
45
|
Zampolli J, Zeaiter Z, Di Canito A, Di Gennaro P. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl Microbiol Biotechnol 2018; 103:1069-1080. [PMID: 30554387 DOI: 10.1007/s00253-018-9539-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023]
Abstract
The past few years observed a breakthrough of genome sequences of bacteria of Rhodococcus genus with significant biodegradation abilities. Invaluable knowledge from genome data and their functional analysis can be applied to develop and design strategies for attenuating damages caused by hydrocarbon contamination. With the advent of high-throughput -omic technologies, it is currently possible to utilize the functional properties of diverse catabolic genes, analyze an entire system at the level of molecule (DNA, RNA, protein, and metabolite), simultaneously predict and construct catabolic degradation pathways. In this review, the genes involved in the biodegradation of hydrocarbons and several emerging plasticizer compounds in Rhodococcus strains are described in detail (aliphatic, aromatics, PAH, phthalate, polyethylene, and polyisoprene). The metabolic biodegradation networks predicted from omics-derived data along with the catabolic enzymes exploited in diverse biotechnological and bioremediation applications are characterized.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Zahraa Zeaiter
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Alessandra Di Canito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
46
|
Fan S, Wang J, Li K, Yang T, Jia Y, Zhao B, Yan Y. Complete genome sequence of Gordonia sp. YC-JH1, a bacterium efficiently degrading a wide range of phthalic acid esters. J Biotechnol 2018; 279:55-60. [DOI: 10.1016/j.jbiotec.2018.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/29/2018] [Accepted: 05/09/2018] [Indexed: 02/05/2023]
|
47
|
DeLorenzo DM, Henson WR, Moon TS. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630. ACS Synth Biol 2017; 6:1973-1978. [PMID: 28745867 DOI: 10.1021/acssynbio.7b00192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rhodococcus opacus PD630 is a nonmodel, Gram-positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: (1) six fluorescent reporters for quantifying promoter output, (2) three chemically inducible promoters for variable gene expression, and (3) two classes of metabolite sensors derived from native R. opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - William R. Henson
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
48
|
Acinetobacter sp. DW-1 immobilized on polyhedron hollow polypropylene balls and analysis of transcriptome and proteome of the bacterium during phenol biodegradation process. Sci Rep 2017; 7:4863. [PMID: 28687728 PMCID: PMC5501837 DOI: 10.1038/s41598-017-04187-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
Phenol is a hazardous chemical known to be widely distributed in aquatic environments. Biodegradation is an attractive option for removal of phenol from water sources. Acinetobacter sp. DW-1 isolated from drinking water biofilters can use phenol as a sole carbon and energy source. In this study, we found that Immobilized Acinetobacter sp. DW-1cells were effective in biodegradation of phenol. In addition, we performed proteome and transcriptome analysis of Acinetobacter sp. DW-1 during phenol biodegradation. The results showed that Acinetobacter sp. DW-1 degrades phenol mainly by the ortho pathway because of the induction of phenol hydroxylase, catechol-1,2-dioxygenase. Furthermore, some novel candidate proteins (OsmC-like family protein, MetA-pathway of phenol degradation family protein, fimbrial protein and coenzyme F390 synthetase) and transcriptional regulators (GntR/LuxR/CRP/FNR/TetR/Fis family transcriptional regulator) were successfully identified to be potentially involved in phenol biodegradation. In particular, MetA-pathway of phenol degradation family protein and fimbrial protein showed a strong positive correlation with phenol biodegradation, and Fis family transcriptional regulator is likely to exert its effect as activators of gene expression. This study provides valuable clues for identifying global proteins and genes involved in phenol biodegradation and provides a fundamental platform for further studies to reveal the phenol degradation mechanism of Acinetobacter sp.
Collapse
|
49
|
Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks. Metab Eng 2017; 42:33-42. [PMID: 28550000 DOI: 10.1016/j.ymben.2017.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022]
Abstract
β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways.
Collapse
|
50
|
Juarez A, Villa JA, Lanza VF, Lázaro B, de la Cruz F, Alvarez HM, Moncalián G. Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1. Microb Cell Fact 2017; 16:35. [PMID: 28241831 PMCID: PMC5327559 DOI: 10.1186/s12934-017-0651-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/22/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Rhodococcus jostii RHA1 and other actinobacteria accumulate triglycerides (TAG) under nutrient starvation. This property has an important biotechnological potential in the production of sustainable oils. RESULTS To gain insight into the metabolic pathways involved in TAG accumulation, we analysed the transcriptome of R jostii RHA1 under nutrient-limiting conditions. We correlate these physiological conditions with significant changes in cell physiology. The main consequence was a global switch from catabolic to anabolic pathways. Interestingly, the Entner-Doudoroff (ED) pathway was upregulated in detriment of the glycolysis or pentose phosphate pathways. ED induction was independent of the carbon source (either gluconate or glucose). Some of the diacylglycerol acyltransferase genes involved in the last step of the Kennedy pathway were also upregulated. A common feature of the promoter region of most upregulated genes was the presence of a consensus binding sequence for the cAMP-dependent CRP regulator. CONCLUSION This is the first experimental observation of an ED shift under nutrient starvation conditions. Knowledge of this switch could help in the design of metabolomic approaches to optimize carbon derivation for single cell oil production.
Collapse
Affiliation(s)
- Antonio Juarez
- Institut de Bioenginyeria de Catalunya, Parc Científic de Barcelona, 08028, Barcelona, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Avda Diagonal, 643., 08028, Barcelona, Spain
| | - Juan A Villa
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (CSIC-UC), C/Albert Einstein 22, 39011, Santander, Spain
| | - Val F Lanza
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (CSIC-UC), C/Albert Einstein 22, 39011, Santander, Spain
| | - Beatriz Lázaro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (CSIC-UC), C/Albert Einstein 22, 39011, Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (CSIC-UC), C/Albert Einstein 22, 39011, Santander, Spain
| | - Héctor M Alvarez
- INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial No 1, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - Gabriel Moncalián
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (CSIC-UC), C/Albert Einstein 22, 39011, Santander, Spain.
| |
Collapse
|