1
|
Ko YJ, Lee ME, Cho BH, Kim M, Hyeon JE, Han JH, Han SO. Bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories: engineering, metabolic regulations, challenges, and perspectives. Crit Rev Biotechnol 2024; 44:373-387. [PMID: 36775664 DOI: 10.1080/07388551.2023.2168512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 02/14/2023]
Abstract
Porphyrins, phycobilins, and their proteins have abundant π-electrons and strongly absorb visible light, some of which bind a metal ion in the center. Because of the structural and optical properties, they not only play critical roles as an essential component in natural systems but also have attracted much attention as a high value specialty chemical in various fields, including renewable energy, cosmetics, medicines, and foods. However, their commercial application seems to be still limited because the market price of porphyrins and phycobilins is generally expensive to apply them easily. Furthermore, their petroleum-based chemical synthesis is energy-intensive and emits a pollutant. Recently, to replace petroleum-based production, many studies on the bioproduction of metalloporphyrins, including Zn-porphyrin, Co-porphyrin, and heme, porphyrin derivatives including chlorophyll, biliverdin, and phycobilins, and their proteins including hemoproteins, phycobiliproteins, and phytochromes from renewable carbon sources using microbial cell factories have been reported. This review outlines recent advances in the bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories developed by various microbial biotechnology techniques, provides well-organized information on metabolic regulations of the porphyrin metabolism, and then critically discusses challenges and future perspectives. Through these, it is expected to be able to achieve possible solutions and insights and to develop an outstanding platform to be applied to the industry in future research.
Collapse
Affiliation(s)
- Young Jin Ko
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Korea
| | - Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Byeong-Hyeon Cho
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Minhye Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul, Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Joo Hee Han
- Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul, Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Leasure CS, Grunenwald CM, Choby JE, Sauer JD, Skaar EP. Maintenance of heme homeostasis in Staphylococcus aureus through post-translational regulation of glutamyl-tRNA reductase. J Bacteriol 2023; 205:e0017123. [PMID: 37655914 PMCID: PMC10521356 DOI: 10.1128/jb.00171-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen responsible for a variety of infections including skin and soft tissue infections, endocarditis, and sepsis. The combination of increasing antibiotic resistance in this pathogen and the lack of an efficacious vaccine underscores the importance of understanding how S. aureus maintains metabolic homeostasis in a variety of environments, particularly during infection. Within the host, S. aureus must regulate cellular levels of the cofactor heme to support enzymatic activities without encountering heme toxicity. Glutamyl tRNA reductase (GtrR), the enzyme catalyzing the first committed step in heme synthesis, is an important regulatory node of heme synthesis in Bacteria, Archaea, and Plantae. In many organisms, heme status negatively regulates the abundance of GtrR, controlling flux through the heme synthesis pathway. We identified two residues within GtrR, H32 and R214, that are important for GtrR-heme binding. However, in strains expressing either GtrRH32A or GtrRR214A, heme homeostasis was not perturbed, suggesting an alternative mechanism of heme synthesis regulation occurs in S. aureus. In this regard, we report that heme synthesis is regulated through phosphorylation and dephosphorylation of GtrR by the serine/threonine kinase Stk1 and the phosphatase Stp1, respectively. Taken together, these results suggest that the mechanisms governing staphylococcal heme synthesis integrate both the availability of heme and the growth status of the cell. IMPORTANCE Staphylococcus aureus represents a significant threat to human health. Heme is an iron-containing enzymatic cofactor that can be toxic at elevated levels. During infection, S. aureus must control heme levels to replicate and survive within the hostile host environment. We identified residues within a heme biosynthetic enzyme that are critical for heme binding in vitro; however, abrogation of heme binding is not sufficient to perturb heme homeostasis within S. aureus. This marks a divergence from previously reported mechanisms of heme-dependent regulation of the highly conserved enzyme glutamyl tRNA reductase (GtrR). Additionally, we link cell growth arrest to the modulation of heme levels through the post-translational regulation of GtrR by the kinase Stk1 and the phosphatase Stp1.
Collapse
Affiliation(s)
- Catherine S. Leasure
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caroline M. Grunenwald
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jacob E. Choby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Jiang M, Dai S, Zheng YC, Li RQ, Tan YY, Pan G, Møller IM, Song SY, Huang JZ, Shu QY. An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2817-2831. [PMID: 35779128 DOI: 10.1007/s00122-022-04151-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
An alanine to valine mutation of glutamyl-tRNA reductase's 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate, catalyzed by glutamyl-tRNA synthetase (GluRS), glutamyl-tRNA reductase (GluTR), and glutamate-1-semialdehyde aminotransferase (GSAT). In Arabidopsis, ALA synthesis is the rate-limiting step in tetrapyrrole production via GluTR post-translational regulations. In rice, mutations of GluTR and GSAT homologs are known to confer chlorophyll deficiency phenotypes; however, the enzymatic activity of rice GluRS, GluTR, and GSAT and the post-translational regulation of rice GluTR have not been investigated experimentally. We have demonstrated that a suppressor mutation in rice partially reverts the xantha trait. In the present study, we first determine that the suppressor mutation results from a G → A nucleotide substitution of OsGluTR (and an A → V change of its 510th amino acid). Protein homology modeling and molecular docking show that the OsGluTRA510V mutation increases its substrate binding. We then demonstrate that the OsGluTRA510V mutation increases ALA synthesis in Escherichia coli without affecting its interaction with OsFLU. We further explore homologous genes encoding GluTR across 193 plant species and find that the amino acid (A) is 100% conserved at the position, suggesting its critical role in GluTR. Thus, we demonstrate that the gain-of-function OsGluTRA510V mutation underlies suppression of the xantha trait, experimentally proves the enzymatic activity of rice GluRS, GluTR, and GSAT in ALA synthesis, and uncovers conservation of the alanine corresponding to the 510th amino acid of OsGluTR across plant species.
Collapse
Affiliation(s)
- Meng Jiang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, Hainan, China
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shang Dai
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Chao Zheng
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui-Qing Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yuan-Yuan Tan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gang Pan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, 4200, Slagelse, Denmark
| | - Shi-Yong Song
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Zhong Huang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, Hainan, China.
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qing-Yao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, Hainan, China.
| |
Collapse
|
4
|
Zhao A, Han F. Crystal structure of Arabidopsis thaliana glutamyl-tRNA Glu reductase in complex with NADPH and glutamyl-tRNA Glu reductase binding protein. PHOTOSYNTHESIS RESEARCH 2018; 137:443-452. [PMID: 29785497 DOI: 10.1007/s11120-018-0518-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
In higher plants, the tetrapyrrole biosynthesis pathway starts from the reaction catalyzed by the rate-limiting enzyme, glutamyl-tRNAGlu reductase (GTR). In Arabidopsis thaliana, GTR is controlled by post-transcriptional regulators such as GTR binding protein (GBP), which stimulates AtGTR activity. The NADPH-binding domain of AtGTR undergoes a substantial movement upon GBP binding. Here, we report the crystal structure of AtGTR-NADPH-GBP ternary complex. NADPH binding causes slight structural changes compared with the AtGTR-GBP binary complex, and possibly take a part of the space needed by the substrate glutamyl-tRNAGlu. The highly reactive sulfhydryl group of the active-site residue Cys144 shows an obvious rotation, which may facilitate the hydride transfer from NADPH to the thioester intermediate to form glutamate-1-semialdehyde. Furthermore, Lys271, Lys274, Ser275, Asn278, and Gln282 of GBP participate in the interaction between AtGTR and GBP, and the stimulating effect of GBP decreased when all of these residues were mutated to Ala. When the Cys144 of AtGTR was mutated to Ser, AtGTR activity could not be detected even in the presence of GBP.
Collapse
Affiliation(s)
- Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feng Han
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
6
|
Arivaradarajan P, Warburton PJ, Paramasamy G, Nair SP, Allan E, Mullany P. Identification of an antibacterial protein by functional screening of a human oral metagenomic library. FEMS Microbiol Lett 2015; 362:fnv142. [PMID: 26347298 DOI: 10.1093/femsle/fnv142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2015] [Indexed: 11/13/2022] Open
Abstract
Screening of a bacterial artificial chromosome (BAC) library containing metagenomic DNA from human plaque and saliva allowed the isolation of four clones producing antimicrobial activity. Three of these were pigmented and encoded homologues of glutamyl-tRNA reductase (GluTR), an enzyme involved in the C5 pathway leading to tetrapyrole synthesis, and one clone had antibacterial activity with no pigmentation. The latter contained a BAC with an insert of 15.6 kb. Initial attempts to localize the gene(s) responsible for antimicrobial activity by subcloning into pUC-based vectors failed. A new plasmid for toxic gene expression (pTGEX) was designed enabling localization of the antibacterial activity to a 4.7-kb HindIII fragment. Transposon mutagenesis localized the gene to an open reading frame of 483 bp designated antibacterial protein1 (abp1). Abp1 was 94% identical to a hypothetical protein of Neisseria subflava (accession number WP_004519448.1). An Escherichia coli clone expressing Abp1 exhibited antibacterial activity against Bacillus subtilis BS78H, Staphylococcus epidermidis NCTC 11964 and B4268, and S. aureus NCTC 12493,ATCC 35696 and NCTC 11561. However, no antibacterial activity was observed against Pseudomonas aeruginosa ATCC 9027, N. subflava ATCC A1078, E. coli K12 JM109 and BL21(DE3) Fusobacterium nucleatum ATCC 25586 and NCTC 11326, Prevotella intermedia ATCC 25611, Veillonella parvula ATCC 10790 or Lactobacillus casei NCTC 6375.
Collapse
Affiliation(s)
- Preeti Arivaradarajan
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
| | | | - Gunasekaran Paramasamy
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute, London WC1X 8LD, UK
| | - Elaine Allan
- Department of Microbial Diseases, UCL Eastman Dental Institute, London WC1X 8LD, UK
| | - Peter Mullany
- Department of Microbial Diseases, UCL Eastman Dental Institute, London WC1X 8LD, UK
| |
Collapse
|
7
|
Ramzi AB, Hyeon JE, Kim SW, Park C, Han SO. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microb Technol 2015; 81:1-7. [PMID: 26453466 DOI: 10.1016/j.enzmictec.2015.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/03/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
ALA (5-aminolevulinic acid) is an important intermediate in the synthesis of tetrapyrroles and the use of ALA has been gradually increasing in many fields, including medicine and agriculture. In this study, improved biological production of ALA in Corynebacterium glutamicum was achieved by overexpressing glutamate-initiated C5 pathway. For this purpose, copies of the glutamyl t-RNA reductase HemA from several bacteria were mutated by site-directed mutagenesis of which a HemA version from Salmonella typhimurium exhibited the highest ALA production. Cultivation of the HemA-expressing strain produced approximately 204 mg/L of ALA, while co-expression with HemL (glutamate-1-semialdehyde aminotransferase) increased ALA concentration to 457 mg/L, representing 11.6- and 25.9-fold increases over the control strain (17 mg/L of ALA). Further effects of metabolic perturbation were investigated, leading to penicillin addition that further improves ALA production to 584 mg/L. In an optimized flask fermentation, engineered C. glutamicum strains expressing the HemA and hemAL operon produced up to 1.1 and 2.2g/L ALA, respectively, under glutamate-producing conditions. The final yields represent 10.7- and 22.0-fold increases over the control strain (0.1g/L of ALA). From these findings, ALA biosynthesis from glucose was successfully demonstrated and this study is the first to report ALA overproduction in C. glutamicum via metabolic engineering.
Collapse
Affiliation(s)
- Ahmad Bazli Ramzi
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
8
|
Regulation and function of tetrapyrrole biosynthesis in plants and algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:968-85. [PMID: 25979235 DOI: 10.1016/j.bbabio.2015.05.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/21/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Tetrapyrroles are macrocyclic molecules with various structural variants and multiple functions in Prokaryotes and Eukaryotes. Present knowledge about the metabolism of tetrapyrroles reflects the complex evolution of the pathway in different kingdoms of organisms, the complexity of structural and enzymatic variations of enzymatic steps, as well as a wide range of regulatory mechanisms, which ensure adequate synthesis of tetrapyrrole end-products at any time of development and environmental condition. This review intends to highlight new findings of research on tetrapyrrole biosynthesis in plants and algae. In the course of the heme and chlorophyll synthesis in these photosynthetic organisms, glutamate, one of the central and abundant metabolites, is converted into highly photoreactive tetrapyrrole intermediates. Thereby, several mechanisms of posttranslational control are thought to be essential for a tight regulation of each enzymatic step. Finally, we wish to discuss the potential role of tetrapyrroles in retrograde signaling and point out perspectives of the formation of macromolecular protein complexes in tetrapyrrole biosynthesis as an efficient mechanism to ensure a fine-tuned metabolic flow in the pathway. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
9
|
Scharfenberg M, Mittermayr L, VON Roepenack-Lahaye E, Schlicke H, Grimm B, Leister D, Kleine T. Functional characterization of the two ferrochelatases in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:280-98. [PMID: 24329537 DOI: 10.1111/pce.12248] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 05/03/2023]
Abstract
The enzyme ferrochelatase catalyses the formation of protoheme by inserting Fe(2+) into protoporphyrin IX. Although most organisms express only one ferrochelatase, all land plants analysed so far possess at least two ferrochelatase proteins. Analysis of publicly available expression data suggests that the two Arabidopsis thaliana ferrochelatases, FC1 and FC2, serve different functions, corroborating previous assumptions. Co-expression analysis of FC1 and FC2, together with microarray analyses, implies that fc1 and fc2 trigger different modes of plastid signalling in roots and leaves, respectively, and indicates that FC2 might be involved in stress responses. Thus, loss of FC2 increases resistance to salt and flagellin treatment. Whereas fc1 plants showed no obvious mutant phenotype, fc2 mutants formed abnormally small, pale green rosette leaves; were low in chlorophylls, carotenoids and several photosynthetic proteins; and their photosynthetic performance was impaired. These phenotypes are attenuated by growth in continuous light, in agreement with the finding that fc2 plants accumulate protochlorophyllide and display a fluorescent (flu) phenotype in the dark. In consequence we show that, contrary to earlier suggestions, FC2 produces heme not only for photosynthetic cytochromes, but also for proteins involved in stress responses, whereas the impairment of FC1 apparently interferes only marginally with stress responses.
Collapse
Affiliation(s)
- Michael Scharfenberg
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Kim JG, Back K, Lee HY, Lee HJ, Phung TH, Grimm B, Jung S. Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress. PLANT MOLECULAR BIOLOGY 2014; 86:271-87. [PMID: 25037078 DOI: 10.1007/s11103-014-0228-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/12/2014] [Indexed: 05/08/2023]
Abstract
Fe-chelatase (FeCh, EC 4.99.1.1) inserts Fe(2+) into protoporphyrin IX (Proto IX) to form heme, which influences the flux through the tetrapyrrole biosynthetic pathway as well as fundamental cellular processes. In transgenic rice (Oryza sativa), the ectopic expression of Bradyrhizobium japonicum FeCh protein in cytosol results in a substantial increase of FeCh activity compared to wild-type (WT) rice and an increasing level of heme. Interestingly, the transgenic rice plants showed resistance to oxidative stress caused not only by the peroxidizing herbicide acifluorfen (AF) as indicated by a reduced formation of leaf necrosis, a lower conductivity, lower malondialdehyde and H2O2 contents as well as sustained Fv/Fm compared to WT plants, but also by norflurazon, paraquat, salt, and polyethylene glycol. Moreover, the transgenic plants responded to AF treatment with markedly increasing FeCh activity. The accompanying increases in heme content and heme oxygenase activity demonstrate that increased heme metabolism attenuates effects of oxidative stress caused by accumulating porphyrins. These findings suggest that increases in heme levels and porphyrin scavenging capacity support a detoxification mechanism serving against porphyrin-induced oxidative stress. This study also implicates heme as possibly being a positive signal in plant stress responses.
Collapse
Affiliation(s)
- Jin-Gil Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. PLoS Genet 2014; 10:e1004519. [PMID: 25101599 PMCID: PMC4125095 DOI: 10.1371/journal.pgen.1004519] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/02/2014] [Indexed: 11/29/2022] Open
Abstract
An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light. Chlorophyll biosynthesis is essential for plant growth and development. To date, the regulatory mechanisms of chlorophyll biosynthesis have been well understood only in dark conditions. Previous reports showed that miR171-targeted SCL6/22/27 proteins were involved in chlorophyll biosynthesis. However, the molecular mechanism of SCL action remains unclear. In this study, we found that SCLs negatively regulated chlorophyll biosynthesis though suppressing the expression of the key gene PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR). SCL27 is highly expressed at the basal cell proliferation region of young leaves, suggesting an important role of SCLs in inhibiting chloroplast development before cell expansion. In addition, GT-cis elements were required for SCL27 directly binding to the PORC promoter. Furthermore, we showed that SCLs mediated GA-regulated chlorophyll biosynthesis through direct interaction with DELLA proteins. The interaction between SCLs and DELLAs reduced the DNA binding activity of SCL27. Our uncovered GA-DELLA-SCL module and its DNA binding targets provide new insights into molecular mechanisms by which chlorophyll biosynthesis and cell proliferation are coordinately regulated during leaf development in response to developmental and environmental cues.
Collapse
|
12
|
Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein. Proc Natl Acad Sci U S A 2014; 111:6630-5. [PMID: 24753615 DOI: 10.1073/pnas.1400166111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetrapyrrole biosynthesis in plants, algae, and most bacteria starts from the NADPH-dependent reduction of glutamyl-tRNA by glutamyl-tRNA reductase (GluTR). The GluTR-catalyzed reaction is the rate-limiting step, and GluTR is the target of multiple posttranslational regulations, such as heme feedback inhibition, for the tetrapyrrole biosynthetic pathway. A recently identified GluTR regulator, GluTR binding protein (GluBP), has been shown to spatially organize tetrapyrrole synthesis by distributing GluTR into different suborganellar locations. Here we report the complex structure of GluTR-GluBP from Arabidopsis thaliana. The dimeric GluBP binds symmetrically to the catalytic domains of the V-shaped GluTR dimer via its C-terminal domain. A substantial conformational change of the GluTR NADPH-binding domain is observed, confirming the postulated rotation of the NADPH-binding domain for hydride transfer from NADPH to the substrate. Arg146, "guarding the door" for metabolic channeling, adopts alternative conformations, which may represent steps involved in substrate recognition and product release. A coupled enzyme assay shows that GluBP stimulates GluTR catalytic efficiency with an approximate threefold increase of the 5-aminolevulinic acid formation rate. In addition, the GluTR activity can be inhibited by heme in a concentration-dependent way regardless of the presence of GluBP. A structural alignment indicates that GluBP belongs to a heme-binding family involved in heme metabolism. We propose a catalytic mechanism model for GluTR, through which photosynthetic organisms can achieve precise regulation of tetrapyrrole biosynthesis.
Collapse
|
13
|
The alternative route to heme in the methanogenic archaeon Methanosarcina barkeri. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:327637. [PMID: 24669201 PMCID: PMC3942049 DOI: 10.1155/2014/327637] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/25/2013] [Indexed: 11/25/2022]
Abstract
In living organisms heme is formed from the common precursor uroporphyrinogen III by either one of two substantially different pathways. In contrast to eukaryotes and most bacteria which employ the so-called “classical” heme biosynthesis pathway, the archaea use an alternative route. In this pathway, heme is formed from uroporphyrinogen III via the intermediates precorrin-2, sirohydrochlorin, siroheme, 12,18-didecarboxysiroheme, and iron-coproporphyrin III. In this study the heme biosynthesis proteins AhbAB, AhbC, and AhbD from Methanosarcina barkeri were functionally characterized. Using an in vivo enzyme activity assay it was shown that AhbA and AhbB (Mbar_A1459 and Mbar_A1460) together catalyze the conversion of siroheme into 12,18-didecarboxysiroheme. The two proteins form a heterodimeric complex which might be subject to feedback regulation by the pathway end-product heme. Further, AhbC (Mbar_A1793) was shown to catalyze the formation of iron-coproporphyrin III in vivo. Finally, recombinant AhbD (Mbar_A1458) was produced in E. coli and purified indicating that this protein most likely contains two [4Fe-4S] clusters. Using an in vitro enzyme activity assay it was demonstrated that AhbD catalyzes the conversion of iron-coproporphyrin III into heme.
Collapse
|
14
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
de Armas-Ricard M, Levicán G, Katz A, Moser J, Jahn D, Orellana O. Cellular levels of heme affect the activity of dimeric glutamyl-tRNA reductase. Biochem Biophys Res Commun 2011; 405:134-9. [PMID: 21219871 DOI: 10.1016/j.bbrc.2011.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/04/2011] [Indexed: 01/25/2023]
Abstract
Glutamyl-tRNA reductase (GluTR) is the first enzyme committed to tetrapyrrole biosynthesis by the C(5)-pathway. This enzyme transforms glutamyl-tRNA into glutamate-1-semi-aldehyde, which is then transformed into 5-amino levulinic acid by the glutamate-1-semi-aldehyde 2,1-aminomutase. Binding of heme to GluTR seems to be relevant to regulate the enzyme function. Recombinant GluTR from Acidithiobacillus ferrooxidans an acidophilic bacterium that participates in bioleaching of minerals was expressed in Escherichia coli and purified as a soluble protein containing type b heme. Upon control of the cellular content of heme in E. coli, GluTR with different levels of bound heme was obtained. An inverse correlation between the activity of the enzyme and the level of bound heme to GluTR suggested a control of the enzyme activity by heme. Heme bound preferentially to dimeric GluTR. An intact dimerization domain was essential for the enzyme to be fully active. We propose that the cellular levels of heme might regulate the activity of GluTR and ultimately its own biosynthesis.
Collapse
Affiliation(s)
- Merly de Armas-Ricard
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
16
|
Jones AM, Elliott T. A purified mutant HemA protein from Salmonella enterica serovar Typhimurium lacks bound heme and is defective for heme-mediated regulation in vivo. FEMS Microbiol Lett 2010; 307:41-7. [PMID: 20412302 DOI: 10.1111/j.1574-6968.2010.01967.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Archaea, plants, and most bacteria synthesize heme using the C5 pathway, in which the first committed step is catalyzed by the enzyme glutamyl-tRNA reductase (GluTR or HemA). In some cases, an overproduced and purified HemA enzyme contains noncovalently bound heme. The enteric bacteria Salmonella enterica and Escherichia coli also synthesize heme by the C5 pathway, and the HemA protein in these bacteria is regulated by proteolysis. The enzyme is unstable during normal growth due to the action of Lon and ClpAP, but becomes stable when heme is limiting for growth. We describe a method for the overproduction of S. enterica HemA that yields a purified enzyme containing bound heme, identified as a b-type heme by spectroscopy. A mutant of HemA (C170A) does not contain heme when similarly purified. The mutant was used to test whether heme is directly involved in HemA regulation. When expressed from the S. enterica chromosome in a wild-type background, the C170A mutant allele of hemA is shown to confer an unregulated phenotype, with high levels of HemA regardless of the heme status. These results strongly suggest that the presence of bound heme targets the HemA enzyme for degradation and is required for normal regulation.
Collapse
Affiliation(s)
- Amy M Jones
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | | |
Collapse
|
17
|
Paravisi S, Fumagalli G, Riva M, Morandi P, Morosi R, Konarev PV, Petoukhov MV, Bernier S, Chênevert R, Svergun DI, Curti B, Vanoni MA. Kinetic and mechanistic characterization of Mycobacterium tuberculosis glutamyl-tRNA synthetase and determination of its oligomeric structure in solution. FEBS J 2009; 276:1398-417. [PMID: 19187240 DOI: 10.1111/j.1742-4658.2009.06880.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mycobacterium tuberculosis glutamyl-tRNA synthetase (Mt-GluRS), encoded by Rv2992c, was overproduced in Escherichia coli cells, and purified to homogeneity. It was found to be similar to the other well-characterized GluRS, especially the E. coli enzyme, with respect to the requirement for bound tRNA(Glu) to produce the glutamyl-AMP intermediate, and the steady-state kinetic parameters k(cat) (130 min(-1)) and K(M) for tRNA (0.7 microm) and ATP (78 microm), but to differ by a one order of magnitude higher K(M) value for L-Glu (2.7 mm). At variance with the E. coli enzyme, among the several compounds tested as inhibitors, only pyrophosphate and the glutamyl-AMP analog glutamol-AMP were effective, with K(i) values in the mum range. The observed inhibition patterns are consistent with a random binding of ATP and L-Glu to the enzyme-tRNA complex. Mt-GluRS, which is predicted by genome analysis to be of the non-discriminating type, was not toxic when overproduced in E. coli cells indicating that it does not catalyse the mischarging of E. coli tRNA(Gln) with L-Glu and that GluRS/tRNA(Gln) recognition is species specific. Mt-GluRS was significantly more sensitive than the E. coli form to tryptic and chymotryptic limited proteolysis. For both enzymes chymotrypsin-sensitive sites were found in the predicted tRNA stem contact domain next to the ATP binding site. Mt-GluRS, but not Ec-GluRS, was fully protected from proteolysis by ATP and glutamol-AMP. Small-angle X-ray scattering showed that, at variance with the E. coli enzyme that is strictly monomeric, the Mt-GluRS monomer is present in solution in equilibrium with the homodimer. The monomer prevails at low protein concentrations and is stabilized by ATP but not by glutamol-AMP. Inspection of small-angle X-ray scattering-based models of Mt-GluRS reveals that both the monomer and the dimer are catalytically active. By using affinity chromatography and His(6)-tagged forms of either GluRS or glutamyl-tRNA reductase as the bait it was shown that the M. tuberculosis proteins can form a complex, which may control the flux of Glu-tRNA(Glu) toward protein or tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Stefano Paravisi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The C-terminal extension of ferrochelatase is critical for enzyme activity and for functioning of the tetrapyrrole pathway in Synechocystis strain PCC 6803. J Bacteriol 2008; 190:2086-95. [PMID: 18192382 DOI: 10.1128/jb.01678-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heme and chlorophyll (Chl) share a common biosynthetic pathway up to the branch point where magnesium chelatase and ferrochelatase (FeCH) insert either magnesium for Chl biosynthesis or ferrous iron for heme biosynthesis. A distinctive feature of FeCHs in cyanobacteria is their C-terminal extension, which forms a putative transmembrane segment containing a Chl-binding motif. We analyzed the deltaH324 strain of Synechocystis sp. strain PCC 6803, which contains a truncated FeCH enzyme lacking this C-terminal domain. Truncated FeCH was localized to the membrane fraction, suggesting that the C-terminal domain is not necessary for membrane association of the enzyme. Measurements of enzyme activity and complementation experiments revealed that the deltaH324 mutation dramatically reduced activity of the FeCH, which resulted in highly upregulated 5-aminolevulinic acid synthesis in the deltaH324 mutant, implying a direct role for heme in the regulation of flux through the pathway. Moreover, the deltaH324 mutant accumulated a large amount of protoporphyrin IX, and levels of Chl precursors were also significantly increased, suggesting that some, but not all, of the "extra" flux can be diverted down the Chl branch. Analysis of the recombinant full-length and truncated FeCHs demonstrated that the C-terminal extension is critical for activity of the FeCH and that it is strictly required for oligomerization of this enzyme. The observed changes in tetrapyrrole trafficking and the role of the C terminus in the functioning of FeCH are discussed.
Collapse
|
19
|
Lüer C, Schauer S, Virus S, Schubert WD, Heinz DW, Moser J, Jahn D. Glutamate recognition and hydride transfer by Escherichia coli glutamyl-tRNA reductase. FEBS J 2007; 274:4609-14. [PMID: 17697121 DOI: 10.1111/j.1742-4658.2007.05989.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The initial step of tetrapyrrole biosynthesis in Escherichia coli involves the NADPH-dependent reduction by glutamyl-tRNA reductase (GluTR) of tRNA-bound glutamate to glutamate-1-semialdehyde. We evaluated the contribution of the glutamate moiety of glutamyl-tRNA to substrate specificity in vitro using a range of substrates and enzyme variants. Unexpectedly, we found that tRNA(Glu) mischarged with glutamine was a substrate for purified recombinant GluTR. Similarly unexpectedly, the substitution of amino acid residues involved in glutamate side chain binding (S109A, T49V, R52K) or in stabilizing the arginine 52 glutamate interaction (glutamate 54 and histidine 99) did not abrogate enzyme activity. Replacing glutamine 116 and glutamate 114, involved in glutamate-enzyme interaction near the aminoacyl bond to tRNA(Glu), by leucine and lysine, respectively, however, did abolish reductase activity. We thus propose that the ester bond between glutamate and tRNA(Glu) represents the crucial determinant for substrate recognition by GluTR, whereas the necessity for product release by a 'back door' exit allows for a degree of structural variability in the recognition of the amino acid moiety. Analyzing the esterase activity, which occured in the absence of NADPH, of GluTR variants using the substrate 4-nitrophenyl acetate confirmed the crucial role of cysteine 50 for thioester formation. Finally, the GluTR variant Q116L was observed to lack reductase activity whereas esterase activity was retained. Structure-based molecular modeling indicated that glutamine 116 may be crucial in positioning the nicotinamide group of NADPH to allow for productive hydride transfer to the substrate. Our data thus provide new information about the distinct function of active site residues of GluTR from E. coli.
Collapse
Affiliation(s)
- Corinna Lüer
- Institute of Microbiology, Technical University Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
21
|
Niles JC, Marletta MA. Utilizing RNA aptamers to probe a physiologically important heme-regulated cellular network. ACS Chem Biol 2006; 1:515-24. [PMID: 17168539 DOI: 10.1021/cb6002527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Broadly applicable strategies facilitating direct and selective modulation of the intracellular levels of physiologically important small molecules are essential for dissecting their integral and multiple roles in cellular processes. Therefore, we have been exploring the suitability of RNA aptamers for this purpose. Using the Escherichia coli heme biosynthetic pathway as a simple model of a negative feedback regulated process, we show that heme-binding RNA aptamers, developed in vitro and expressed intracellularly, induce a heme-dependent growth defect in an E. coli heme auxotroph defective in converting delta-aminolevulinic (delta-ALA) acid into downstream products. Relative to a control oligonucleotide, the aptamers also induce delta-ALA accumulation in cells grown under heme-limiting conditions. Increasing the concentration of heme in the media completely reverses both the growth defect and delta-ALA accumulation, except for two aptamers for which reversal is partial. Thus, these aptamers specifically target their cognate ligand in vivo and functionally modulate its intracellular concentration, demonstrating that RNA aptamers are useful tools for elucidating the role of heme and possibly other small molecules in regulating cellular networks.
Collapse
Affiliation(s)
- Jacquin C Niles
- Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
22
|
Tanaka A, Tanaka R. Chlorophyll metabolism. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:248-55. [PMID: 16603411 DOI: 10.1016/j.pbi.2006.03.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 03/22/2006] [Indexed: 05/08/2023]
Abstract
Since the 1970s, researchers have proposed several regulatory pathways governing chlorophyll metabolism, but only recently have the underlying molecular mechanisms been elucidated. The recent data indicate that such regulatory systems are more complex than originally anticipated. For instance, the pathways involve a series of protein-protein interactions, including complex formation, the dual localization of enzymes within chloroplasts, and a novel protein degradation mechanism that is triggered by pigments. Furthermore, several lines of evidence suggest that chlorophyll metabolism might not only significantly impact the assembly of photosynthetic machineries but also influence processes such as programmed cell death, the 'stay-green' phenomenon, and chloroplast-nucleus communication.
Collapse
Affiliation(s)
- Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
| | | |
Collapse
|
23
|
Nogaj LA, Srivastava A, van Lis R, Beale SI. Cellular levels of glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase do not control chlorophyll synthesis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 139:389-96. [PMID: 16126849 PMCID: PMC1203387 DOI: 10.1104/pp.105.067009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
5-Aminolevulinic acid (ALA) is the first committed universal precursor in the tetrapyrrole biosynthesis pathway. In plants, algae, and most bacteria, ALA is generated from glutamate. First, glutamyl-tRNA synthetase activates glutamate by ligating it to tRNA(Glu). Activated glutamate is then converted to glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR). Finally, GSA is rearranged to ALA by GSA aminotransferase (GSAT). In the unicellular green alga Chlamydomonas reinhardtii, GTR and GSAT were found in the chloroplasts and were not detected in the mitochondria by immunoblotting. The levels of both proteins (assayed by immunoblotting) and their mRNAs (assayed by RNA blotting) were approximately equally abundant in cells growing in continuous dark or continuous light (fluorescent tubes, 80 micromol photons s(-1) m(-2)), consistent with the ability of the cells to form chlorophyll under both conditions. In cells synchronized to a 12-h-light/12-h-dark cycle, chlorophyll accumulated only during the light phase. However, GTR and GSAT were present at all phases of the cycle. The GTR mRNA level increased in the light and peaked about 2-fold at 2 h into the light phase, and GTR protein levels also increased and peaked 2-fold at 4 to 6 h into the light phase. In contrast, although the GSAT mRNA level increased severalfold at 2 h into the light phase, the level of GSAT protein remained approximately constant in the light and dark phases. Under all growth conditions, the cells contained significantly more GSAT than GTR on a molar basis. Our results indicate that the rate of chlorophyll synthesis in C. reinhardtii is not directly controlled by the expression levels of the mRNAs for GTR or GSAT, or by the cellular abundance of these enzyme proteins.
Collapse
Affiliation(s)
- Luiza A Nogaj
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
24
|
Srivastava A, Lake V, Nogaj LA, Mayer SM, Willows RD, Beale SI. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-trna reductase: structure of the gene and properties of the expressed enzyme. PLANT MOLECULAR BIOLOGY 2005; 58:643-58. [PMID: 16158240 DOI: 10.1007/s11103-005-6803-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 04/29/2005] [Indexed: 05/04/2023]
Abstract
Plants, algae, cyanobacteria and many other bacteria synthesize the tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate by means of a tRNAGlu-mediated pathway. The enzyme glutamyl-tRNA reductase (GTR) catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. Chlamydomonas reinhardtii mRNA encoding gtr was sequenced from a cDNA and genomic libraries. The 3179-bp gtr cDNA contains a 1566-bp open reading frame that encodes a 522-amino acid polypeptide. After removal of the predicted transit peptide, the mature 480-residue GTR has a calculated molecular weight of 52,502. The deduced C. reinhardtii mature GTR amino acid sequence has more than 55% identity to a GTR sequence of Arabidopsis thaliana, and significant similarity to GTR proteins of other plants and prokaryotes. Southern blot analysis of C. reinhardtii genomic DNA indicates that C. reinhardtii has only one gtr gene. Genomic DNA sequencing revealed the presence of a small intron near the putative transit peptide cleavage site. Expression constructs for the full-length initial gtr translation product, the mature protein after transit peptide removal, and the coding sequence of the second exon were cloned into expression vector that also introduced a C-terminal His6 tag. All of these constructs were expressed in E. coli, and both the mature protein and the exon 2 translation product complemented a hemA mutation. The expressed proteins were purified by Ni-affinity column chromatography to yield active GTR. Purified mature GTR was not inhibited by heme, but heme inhibition was restored upon addition of C. reinhardtii soluble proteins.
Collapse
Affiliation(s)
- Alaka Srivastava
- Division of Biology and Medicine, Brown University, 02912, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|