1
|
Al Khzem AH, Shoaib TH, Mukhtar RM, Alturki MS, Gomaa MS, Hussein D, Tawfeeq N, Bano M, Sarafroz M, Alzahrani R, Alghamdi H, Rants’o TA. Repurposing FDA-Approved Agents to Develop a Prototype Helicobacter pylori Shikimate Kinase (HPSK) Inhibitor: A Computational Approach Using Virtual Screening, MM-GBSA Calculations, MD Simulations, and DFT Analysis. Pharmaceuticals (Basel) 2025; 18:174. [PMID: 40005988 PMCID: PMC11858459 DOI: 10.3390/ph18020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives:Helicobacter pylori infects approximately half of the global population, causing chronic gastritis, peptic ulcers, and gastric cancer, a leading cause of cancer mortality. While current therapies face challenges from rising antibiotic resistance, particularly to clarithromycin, alongside treatment complexity and costs, the World Health Organization has prioritized the development of new antibiotics to combat this high-risk pathogen. In this study, we employed computer-aided drug design (CADD) methodologies, including molecular docking, Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) analysis, molecular dynamics (MD) simulations, and Density Functional Theory (DFT) calculations, to explore the potential repurposing of FDA-approved agents as inhibitors of Helicobacter pylori shikimate kinase (HpSK). Methods: Using the Glide module, the HTVS method was initially applied to screen 1615 FDA-approved agents followed by extra-precision (XP) docking for the obtained 111 hits. The obtained XP scores were used to confine the results to those hits with a score above the reference ligand, shikimate, score. This yielded 31 final hits with an XP score above -5.867. MM-GBSA calculations were performed on these top candidates and the reference ligand to refine the analysis and compounds' prioritization. Results: The 31 compounds displayed binding free energy (ΔGbind) values ranging from 3.61 to -55.92 kcal/mol, with shikimate exhibiting a ΔGbind of -34.24 kcal/mol and 10 hits having a lower ΔGbind value. Out of these ten, three drugs-Dolutegravir, Cangrelor, and Isavuconazonium-were selected for further analysis based on their drug-like properties. Robust and stable binding profiles for both Isavuconazonium and Cangrelor were verified via molecular dynamics simulation. Additionally, Density Functional Theory (DFT) analysis was conducted, and the Highest Occupied Molecular Orbitals (HOMOs), Lowest Unoccupied Molecular Orbitals (LUMOs), and the energy gap (HLG) between them were calculated. All three drug candidates displayed lower HLG values than shikimate, suggesting higher reactivity and more efficient electronic transitions than the reference ligand. Conclusions: These findings suggest that the identified drugs, although not optimal for direct repurposing, would serve as promising leads against Helicobacter pylori shikimate kinase. These drugs could be valuable leads for experimental assessment and further optimization, particularly with no prototype yet identified. In terms of potential for clinical repurposing, the results point to diflunisal as a promising candidate for further testing.
Collapse
Affiliation(s)
- Abdulaziz H. Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.S.G.); (N.T.); (M.B.); (M.S.)
| | - Tagyedeen H. Shoaib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (R.M.M.)
| | - Rua M. Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (R.M.M.)
| | - Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.S.G.); (N.T.); (M.B.); (M.S.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.S.G.); (N.T.); (M.B.); (M.S.)
| | - Dania Hussein
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Khobar 31441, Saudi Arabia;
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.S.G.); (N.T.); (M.B.); (M.S.)
| | - Mohsina Bano
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.S.G.); (N.T.); (M.B.); (M.S.)
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.S.G.); (N.T.); (M.B.); (M.S.)
| | - Raghad Alzahrani
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.A.); (H.A.)
| | - Hanin Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.A.); (H.A.)
| | - Thankhoe A. Rants’o
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
2
|
Bo T, Wu C, Wang Z, Jiang H, Wang F, Chen N, Li Y. Multiple Metabolic Engineering Strategies to Improve Shikimate Titer in Escherichia coli. Metabolites 2023; 13:747. [PMID: 37367905 DOI: 10.3390/metabo13060747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Shikimate is a valuable chiral precursor for synthesizing oseltamivir (Tamiflu®) and other chemicals. High production of shikimate via microbial fermentation has attracted increasing attention to overcome the unstable and expensive supply of shikimate extracted from plant resources. The current cost of microbial production of shikimate via engineered strains is still unsatisfactory, and thus more metabolic strategies need to be investigated to further increase the production efficiency. In this study, we first constructed a shikimate E. coli producer through the application of the non-phosphoenolpyruvate: carbohydrate phosphotransferase system (non-PTS) glucose uptake pathway, the attenuation of the shikimate degradation metabolism, and the introduction of a mutant of feedback-resistant 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase. Inspired by the natural presence of bifunctional 3-dehydroquinate dehydratase (DHD)-shikimate dehydrogenase (SDH) enzyme in plants, we then designed an artificial fusion protein of DHD-SDH to decrease the accumulation of the byproduct 3-dehydroshikimate (DHS). Subsequently, a repressed shikimate kinase (SK) mutant was selected to promote shikimate accumulation without the supplementation of expensive aromatic substances. Furthermore, EsaR-based quorum sensing (QS) circuits were employed to regulate the metabolic flux distribution between cell growth and product synthesis. The final engineered strain dSA10 produced 60.31 g/L shikimate with a yield of 0.30 g/g glucose in a 5 L bioreactor.
Collapse
Affiliation(s)
- Taidong Bo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Jiang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Chagaleti BK, Reddy MBR, Saravanan V, B S, D P, Senthil Kumar P, Kathiravan MK. An overview of mechanism and chemical inhibitors of shikimate kinase. J Biomol Struct Dyn 2023; 41:14582-14598. [PMID: 36974959 DOI: 10.1080/07391102.2023.2193985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/04/2023] [Indexed: 03/29/2023]
Abstract
Tuberculosis is a highly infectious disease other than HIV/AIDS and it is one of the top ten causes of death worldwide. Resistance development in the bacteria occurs because of genetic alterations, and the molecular insights suggest that the accumulation of mutation in the individual drug target genes is the primary mechanism of multi-drug resistant tuberculosis. Chorismate is an essential structural fragment for the synthesis of aromatic amino acids and synthesized biochemically by a number of bacteria, including Mycobacterium tuberculosis, utilizing the shikimate pathway. This shikimate kinase is the newer possible target for the generation of novel antitubercular drug because this pathway is expressed only in mycobacterium and not in Mammals. The discovery and development of shikimate kinase inhibitors provide an opportunity for the development of novel selective medications. Multiple shikimate kinase inhibitors have been identified via insilico virtual screening and related protein-ligand interactions along with their in-vitro studies. These inhibitors bind to the active site in a similar fashion to shikimate. In the current review, we present an overview of the biology and chemistry of the shikimate kinase protein and its inhibitors, with special emphasis on the various active scaffold against the enzyme. A variety of chemically diversified synthetic scaffolds including Benzothiazoles, Oxadiazoles, Thiobarbiturates, Naphthoquinones, Thiazoleacetonitriles, Hybridized Pyrazolone derivatives, Orthologous biological macromolecule derivatives, Manzamine Alkaloids derivatives, Dipeptide inhibitor, and Chalcones are discussed in detail. These derivatives bind to the specific target appropriately proving their potential ability through different binding interactions and effectively explored as an effective and selective Sk inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - M B Rahul Reddy
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Shanthakumar B
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Priya D
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - P Senthil Kumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - M K Kathiravan
- 209, Dr. APJ Abdul Kalam Research Lab, Dept of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| |
Collapse
|
4
|
Hu S, Kamimura N, Sakamoto S, Nagano S, Takata N, Liu S, Goeminne G, Vanholme R, Uesugi M, Yamamoto M, Hishiyama S, Kim H, Boerjan W, Ralph J, Masai E, Mitsuda N, Kajita S. Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:358-376. [PMID: 35044002 DOI: 10.1111/tpj.15674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Lignin is a phenolic polymer deposited in the plant cell wall, and is mainly polymerized from three canonical monomers (monolignols), i.e. p-coumaryl, coniferyl and sinapyl alcohols. After polymerization, these alcohols form different lignin substructures. In dicotyledons, monolignols are biosynthesized from phenylalanine, an aromatic amino acid. Shikimate acts at two positions in the route to the lignin building blocks. It is part of the shikimate pathway that provides the precursor for the biosynthesis of phenylalanine, and is involved in the transesterification of p-coumaroyl-CoA to p-coumaroyl shikimate, one of the key steps in the biosynthesis of coniferyl and sinapyl alcohols. The shikimate residue in p-coumaroyl shikimate is released in later steps, and the resulting shikimate becomes available again for the biosynthesis of new p-coumaroyl shikimate molecules. In this study, we inhibited cytosolic shikimate recycling in transgenic hybrid aspen by accelerated phosphorylation of shikimate in the cytosol through expression of a bacterial shikimate kinase (SK). This expression elicited an increase in p-hydroxyphenyl units of lignin and, by contrast, a decrease in guaiacyl and syringyl units. Transgenic plants with high SK activity produced a lignin content comparable to that in wild-type plants, and had an increased processability via enzymatic saccharification. Although expression of many genes was altered in the transgenic plants, elevated SK activity did not exert a significant effect on the expression of the majority of genes responsible for lignin biosynthesis. The present results indicate that cytosolic shikimate recycling is crucial to the monomeric composition of lignin rather than for lignin content.
Collapse
Affiliation(s)
- Shi Hu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Sarah Liu
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core Ghent, VIB, Ghent, Belgium
| | - Mikiko Uesugi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shojiro Hishiyama
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Japan
| | - Hoon Kim
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - John Ralph
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
5
|
Rios-Soto L, Téllez-Valencia A, Sierra-Campos E, Valdez-Solana M, Cisneros-Martínez J, Gómez Palacio-Gastélum M, Castillo-Villanueva A, Avitia-Domínguez C. Finding the First Potential Inhibitors of Shikimate Kinase from Methicillin Resistant Staphylococcus aureus through Computer-Assisted Drug Design. Molecules 2021; 26:molecules26216736. [PMID: 34771148 PMCID: PMC8587801 DOI: 10.3390/molecules26216736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important threat as it causes serious hospital and community acquired infections with deathly outcomes oftentimes, therefore, development of new treatments against this bacterium is a priority. Shikimate kinase, an enzyme in the shikimate pathway, is considered a good target for developing antimicrobial drugs; this is given because of its pathway, which is essential in bacteria whereas it is absent in mammals. In this work, a computer-assisted drug design strategy was used to report the first potentials inhibitors for Shikimate kinase from methicillin-resistant Staphylococcus aureus (SaSK), employing approximately 5 million compounds from ZINC15 database. Diverse filtering criteria, related to druglike characteristics and virtual docking screening in the shikimate binding site, were performed to select structurally diverse potential inhibitors from SaSK. Molecular dynamics simulations were performed to elucidate the dynamic behavior of each SaSK–ligand complex. The potential inhibitors formed important interactions with residues that are crucial for enzyme catalysis, such as Asp37, Arg61, Gly82, and Arg138. Therefore, the compounds reported provide valuable information and can be seen as the first step toward developing SaSK inhibitors in the search of new drugs against MRSA.
Collapse
Affiliation(s)
- Lluvia Rios-Soto
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, Durango 34000, Mexico; (L.R.-S.); (J.C.-M.)
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, Durango 34000, Mexico; (L.R.-S.); (J.C.-M.)
- Correspondence: (A.T.-V.); (C.A.-D.); Tel./Fax: +52(618)8271382 (A.T.-V. & C.A.-D.)
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Jorge Cisneros-Martínez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, Durango 34000, Mexico; (L.R.-S.); (J.C.-M.)
| | - Marcelo Gómez Palacio-Gastélum
- Facultad de Odontología, Universidad Juárez del Estado de Durango, Predio Canoas S/N, Los Angeles, Durango 34070, Mexico;
| | - Adriana Castillo-Villanueva
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico;
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, Durango 34000, Mexico; (L.R.-S.); (J.C.-M.)
- Correspondence: (A.T.-V.); (C.A.-D.); Tel./Fax: +52(618)8271382 (A.T.-V. & C.A.-D.)
| |
Collapse
|
6
|
Favela-Candia A, Téllez-Valencia A, Campos-Almazán M, Sierra-Campos E, Valdez-Solana M, Oria-Hernández J, Castillo-Villanueva A, Nájera H, Avitia-Domínguez C. Biochemical, Kinetic, and Computational Structural Characterization of Shikimate Kinase from Methicillin-Resistant Staphylococcus aureus. Mol Biotechnol 2019; 61:274-285. [PMID: 30747382 DOI: 10.1007/s12033-019-00159-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most widespread pathogens worldwide is methicillin-resistant Staphylococcus aureus, a bacterium that provokes severe life-threatening illnesses both in hospitals and in the community. The principal challenge lies in the resistance of MRSA to current treatments, which encourages the study of different molecular targets that could be used to develop new drugs against this infectious agent. With this goal, a detailed characterization of shikimate kinase from this microorganism (SaSK) is described. The results showed that SaSK has a Km of 0.153 and 224 µM for shikimate and ATP, respectively, and a global reaction rate of 13.4 µmol/min/mg; it is suggested that SaSK utilizes the Bi-Bi Ping Pong reaction mechanism. Furthermore, the physicochemical data indicated that SaSK is an unstable, hydrophilic, and acidic protein. Finally, structural information showed that SaSK presented folding that is typical of its homologous counterparts and contains the typical domains of this family of proteins. Amino acids that have been shown to be important for SaSK protein function are conserved. Therefore, this study provides fundamental information that may aid in the design of inhibitors that could be used to develop new antibacterial agents.
Collapse
Affiliation(s)
- Alejandro Favela-Candia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, C.P. 34000, Durango, Dgo, Mexico
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, C.P. 34000, Durango, Dgo, Mexico
| | - Mara Campos-Almazán
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, C.P. 34000, Durango, Dgo, Mexico
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, C.P. 35010, Durango, Mexico
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, C.P. 35010, Durango, Mexico
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica Genética, Secretaría de Salud, Instituto Nacional de Pediatría, C.P. 04534, Ciudad de México, Mexico
| | - Adriana Castillo-Villanueva
- Laboratorio de Bioquímica Genética, Secretaría de Salud, Instituto Nacional de Pediatría, C.P. 04534, Ciudad de México, Mexico
| | - Hugo Nájera
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Delegación Cuajimalpa de Morelos, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, C.P. 05300, Ciudad de México, Mexico
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitua S/N, C.P. 34000, Durango, Dgo, Mexico.
| |
Collapse
|
7
|
Schoenenberger B, Wszolek A, Meier R, Brundiek H, Obkircher M, Wohlgemuth R. Recombinant AroL-Catalyzed Phosphorylation for the Efficient Synthesis of Shikimic Acid 3-Phosphate. Biotechnol J 2018; 13:e1700529. [PMID: 29697210 DOI: 10.1002/biot.201700529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Shikimic acid 3-phosphate, as a central metabolite of the shikimate pathway, is of high interest as enzyme substrate for 5-enolpyruvoyl-shikimate 3-phosphate synthase, a drug target in infectious diseases and a prime enzyme target for the herbicide glyphosate. As the important substrate shikimic acid 3-phosphate is only accessible via a chemical multi-step route, a new straightforward preparative one-step enzymatic phosphorylation of shikimate using a stable recombinant shikimate kinase has been developed for the selective phosphorylation of shikimate in the 3-position. Highly active shikimate kinase is produced by straightforward expression of a synthetic aroL gene in Escherichia coli. The time course of the shikimate kinase-catalyzed phosphorylation is investigated by 1 H- and 31 P-NMR, using the phosphoenolpyruvate/pyruvate kinase system for the regeneration of the ATP cofactor. This enables the development of a quantitative biocatalytic 3-phosphorylation of shikimic acid. After a standard workup procedure, a good yield of shikimic acid 3-phosphate, with high HPLC- and NMR purity, is obtained. This efficient biocatalytic synthesis of shikimic acid 3-phosphate is superior to any other method and has been successfully scaled up to multi-gram scale.
Collapse
Affiliation(s)
| | - Agata Wszolek
- Enzymicals, Walther-Rathenau-Strasse 49a, 17489, Greifswald, Germany
| | - Roland Meier
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| | - Henrike Brundiek
- Enzymicals, Walther-Rathenau-Strasse 49a, 17489, Greifswald, Germany
| | - Markus Obkircher
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| | - Roland Wohlgemuth
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| |
Collapse
|
8
|
Prado V, Lence E, Thompson P, Hawkins AR, González-Bello C. Freezing the Dynamic Gap for Selectivity: Motion-Based Design of Inhibitors of the Shikimate Kinase Enzyme. Chemistry 2016; 22:17988-18000. [DOI: 10.1002/chem.201602923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Verónica Prado
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne, Catherine Cookson Building; Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne, Catherine Cookson Building; Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
9
|
Ghosh S, Mohan U, Banerjee UC. Studies on the production of shikimic acid using the aroK knockout strain of Bacillus megaterium. World J Microbiol Biotechnol 2016; 32:127. [DOI: 10.1007/s11274-016-2092-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
|
10
|
Prado V, Lence E, Maneiro M, Vázquez-Ucha JC, Beceiro A, Thompson P, Hawkins AR, González-Bello C. Targeting the Motion of Shikimate Kinase: Development of Competitive Inhibitors that Stabilize an Inactive Open Conformation of the Enzyme. J Med Chem 2016; 59:5471-87. [DOI: 10.1021/acs.jmedchem.6b00483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Verónica Prado
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Emilio Lence
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - María Maneiro
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Juan C. Vázquez-Ucha
- Servicio de Microbioloxía-INIBIC, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbioloxía-INIBIC, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences,
Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences,
Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Concepción González-Bello
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Hsu KC, Cheng WC, Chen YF, Wang WC, Yang JM. Pathway-based screening strategy for multitarget inhibitors of diverse proteins in metabolic pathways. PLoS Comput Biol 2013; 9:e1003127. [PMID: 23861662 PMCID: PMC3701698 DOI: 10.1371/journal.pcbi.1003127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 05/17/2013] [Indexed: 02/04/2023] Open
Abstract
Many virtual screening methods have been developed for identifying single-target inhibitors based on the strategy of “one–disease, one–target, one–drug”. The hit rates of these methods are often low because they cannot capture the features that play key roles in the biological functions of the target protein. Furthermore, single-target inhibitors are often susceptible to drug resistance and are ineffective for complex diseases such as cancers. Therefore, a new strategy is required for enriching the hit rate and identifying multitarget inhibitors. To address these issues, we propose the pathway-based screening strategy (called PathSiMMap) to derive binding mechanisms for increasing the hit rate and discovering multitarget inhibitors using site-moiety maps. This strategy simultaneously screens multiple target proteins in the same pathway; these proteins bind intermediates with common substructures. These proteins possess similar conserved binding environments (pathway anchors) when the product of one protein is the substrate of the next protein in the pathway despite their low sequence identity and structure similarity. We successfully discovered two multitarget inhibitors with IC50 of <10 µM for shikimate dehydrogenase and shikimate kinase in the shikimate pathway of Helicobacter pylori. Furthermore, we found two selective inhibitors (IC50 of <10 µM) for shikimate dehydrogenase using the specific anchors derived by our method. Our experimental results reveal that this strategy can enhance the hit rates and the pathway anchors are highly conserved and important for biological functions. We believe that our strategy provides a great value for elucidating protein binding mechanisms and discovering multitarget inhibitors. Many drug development strategies focus on designing inhibitors for single targets. These inhibitors often lose potency owing to mutations in the protein binding sites and are ineffective for complex diseases. Multitarget inhibitors can decrease probability of drug resistance and enhance the therapeutic efficiency; however, identifying them is still a challenge because targets often have low sequence and structure similarities in their binding sites. Here we propose a pathway-based screening strategy that simultaneously screens proteins in a metabolic pathway for discovering multitarget inhibitors. Because these proteins interact with similar metabolites and modify them step-by-step, the proteins share similarities in binding sites. We developed pathway site-moiety maps that present the conserved binding environments of the proteins without relying on the sequence or structure alignment. Compounds that bind these conserved binding environments are often multitarget inhibitors. We applied this strategy to the shikimate pathway of Helicobacter pylori, and discovered two multitarget inhibitors (IC50<10 µM) for shikimate dehydrogenase and shikimate kinase. In addition, we found two selective inhibitors based on specific binding environments for shikimate dehydrogenase. Thus the pathway-based screening strategy is useful for identifying multitarget inhibitors and elucidating protein-ligand binding mechanisms and has the potential to be applied to human diseases.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Chi Cheng
- Institute of Molecular and Cellular Biology & Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yen-Fu Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology & Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (WCW); (JMY)
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail: (WCW); (JMY)
| |
Collapse
|
12
|
Cheng WC, Chen YF, Wang HJ, Hsu KC, Lin SC, Chen TJ, Yang JM, Wang WC. Structures of Helicobacter pylori shikimate kinase reveal a selective inhibitor-induced-fit mechanism. PLoS One 2012; 7:e33481. [PMID: 22438938 PMCID: PMC3306394 DOI: 10.1371/journal.pone.0033481] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/14/2012] [Indexed: 12/13/2022] Open
Abstract
Shikimate kinase (SK), which catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid in the presence of ATP, is the enzyme in the fifth step of the shikimate pathway for biosynthesis of aromatic amino acids. This pathway is present in bacteria, fungi, and plants but absent in mammals and therefore represents an attractive target pathway for the development of new antimicrobial agents, herbicides, and antiparasitic agents. Here we investigated the detailed structure–activity relationship of SK from Helicobacter pylori (HpSK). Site-directed mutagenesis and isothermal titration calorimetry studies revealed critical conserved residues (D33, F48, R57, R116, and R132) that interact with shikimate and are therefore involved in catalysis. Crystal structures of HpSK·SO4, R57A, and HpSK•shikimate-3-phosphate•ADP show a characteristic three-layer architecture and a conformationally elastic region consisting of F48, R57, R116, and R132, occupied by shikimate. The structure of the inhibitor complex, E114A•162535, was also determined, which revealed a dramatic shift in the elastic LID region and resulted in conformational locking into a distinctive form. These results reveal considerable insight into the active-site chemistry of SKs and a selective inhibitor-induced-fit mechanism.
Collapse
Affiliation(s)
- Wen-Chi Cheng
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Yen-Fu Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hung-Jung Wang
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Cheng Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shuang-Chih Lin
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Jung Chen
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail: (J-MY); (W-CW)
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (J-MY); (W-CW)
| |
Collapse
|
13
|
Hsu KC, Cheng WC, Chen YF, Wang HJ, Li LT, Wang WC, Yang JM. Core site-moiety maps reveal inhibitors and binding mechanisms of orthologous proteins by screening compound libraries. PLoS One 2012; 7:e32142. [PMID: 22393385 PMCID: PMC3290551 DOI: 10.1371/journal.pone.0032142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/24/2012] [Indexed: 01/08/2023] Open
Abstract
Members of protein families often share conserved structural subsites for interaction with chemically similar moieties despite low sequence identity. We propose a core site-moiety map of multiple proteins (called CoreSiMMap) to discover inhibitors and mechanisms by profiling subsite-moiety interactions of immense screening compounds. The consensus anchor, the subsite-moiety interactions with statistical significance, of a CoreSiMMap can be regarded as a "hot spot" that represents the conserved binding environments involved in biological functions. Here, we derive the CoreSiMMap with six consensus anchors and identify six inhibitors (IC(50)<8.0 µM) of shikimate kinases (SKs) of Mycobacterium tuberculosis and Helicobacter pylori from the NCI database (236,962 compounds). Studies of site-directed mutagenesis and analogues reveal that these conserved interacting residues and moieties contribute to pocket-moiety interaction spots and biological functions. These results reveal that our multi-target screening strategy and the CoreSiMMap can increase the accuracy of screening in the identification of novel inhibitors and subsite-moiety environments for elucidating the binding mechanisms of targets.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Surade S, Blundell T. Structural Biology and Drug Discovery of Difficult Targets: The Limits of Ligandability. ACTA ACUST UNITED AC 2012; 19:42-50. [DOI: 10.1016/j.chembiol.2011.12.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 11/08/2011] [Accepted: 12/09/2011] [Indexed: 02/05/2023]
|
15
|
Fucile G, Garcia C, Carlsson J, Sunnerhagen M, Christendat D. Structural and biochemical investigation of two Arabidopsis shikimate kinases: the heat-inducible isoform is thermostable. Protein Sci 2011; 20:1125-36. [PMID: 21520319 PMCID: PMC3149186 DOI: 10.1002/pro.640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 11/12/2022]
Abstract
The expression of plant shikimate kinase (SK; EC 2.7.1.71), an intermediate step in the shikimate pathway to aromatic amino acid biosynthesis, is induced under specific conditions of environmental stress and developmental requirements in an isoform-specific manner. Despite their important physiological role, experimental structures of plant SKs have not been determined and the biochemical nature of plant SK regulation is unknown. The Arabidopsis thaliana genome encodes two SKs, AtSK1 and AtSK2. We demonstrate that AtSK2 is highly unstable and becomes inactivated at 37 °C whereas the heat-induced isoform, AtSK1, is thermostable and fully active under identical conditions at this temperature. We determined the crystal structure of AtSK2, the first SK structure from the plant kingdom, and conducted biophysical characterizations of both AtSK1 and AtSK2 towards understanding this mechanism of thermal regulation. The crystal structure of AtSK2 is generally conserved with bacterial SKs with the addition of a putative regulatory phosphorylation motif forming part of the adenosine triphosphate binding site. The heat-induced isoform, AtSK1, forms a homodimer in solution, the formation of which facilitates its relative thermostability compared to AtSK2. In silico analyses identified AtSK1 site variants that may contribute to AtSK1 stability. Our findings suggest that AtSK1 performs a unique function under heat stress conditions where AtSK2 could become inactivated. We discuss these findings in the context of regulating metabolic flux to competing downstream pathways through SK-mediated control of steady state concentrations of shikimate.
Collapse
Affiliation(s)
- Geoffrey Fucile
- Department of Cell and Systems Biology, University of TorontoOntario, Canada
| | - Christel Garcia
- Department of Cell and Systems Biology, University of TorontoOntario, Canada
| | - Jonas Carlsson
- Department of Physics, Chemistry and Biology, Linköping UniversityLinköping, Sweden
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping UniversityLinköping, Sweden
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of TorontoOntario, Canada
- Center for the Analysis of Genome Evolution and Function, University of TorontoOntario, Canada
| |
Collapse
|
16
|
Liu XY, Ruan LF, Hu ZF, Peng DH, Cao SY, Yu ZN, Liu Y, Zheng JS, Sun M. Genome-wide screening reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis. J Biol Chem 2010; 285:39191-200. [PMID: 20864531 DOI: 10.1074/jbc.m110.148387] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thuringiensin is a thermostable secondary metabolite in Bacillus thuringiensis and has insecticidal activity against a wide range of insects. Until now, the regulatory mechanisms and genetic determinants involved in thuringiensin production have remained unclear. Here, we successfully used heterologous expression-guided screening in an Escherichia coli-Bacillus thuringiensis shuttle bacterial artificial chromosome library, to clone the intact thuringiensin synthesis (thu) cluster. Then the thu cluster was located on a 110-kb endogenous plasmid bearing insecticide crystal protein gene cry1Ba in strain CT-43. Furthermore, the plasmid, named pBMB0558, was indirectly cloned and sequenced. The gene functions on pBMB0558 were annotated by BLAST based on the GenBank(TM) and KEGG databases. The genes on pBMB0558 could be classified into three functional modules: a thuringiensin synthesis cluster, a type IV secretion system-like module, and mobile genetic elements. By HPLC coupling mass spectrometer, atmospheric pressure ionization with ion trap, and TOF technologies, biosynthetic intermediates of thuringiensin were detected. The thuE gene is proved to be responsible for the phosphorylation of thuringiensin at the last step by vivo and vitro activity assays. The thuringiensin biosynthesis pathway was deduced and clarified. We propose that thuringiensin is an adenine nucleoside oligosaccharide rather than an adenine nucleotide analog, as is traditionally believed, based on the predicted functions of the key enzymes, glycosyltransferase (ThuF) and exopolysaccharide polymerization protein (Thu1).
Collapse
Affiliation(s)
- Xiao-Yan Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mulabagal V, Calderón AI. Development of an Ultrafiltration-Liquid Chromatography/Mass Spectrometry (UF-LC/MS) Based Ligand-Binding Assay and an LC/MS Based Functional Assay for Mycobacterium tuberculosis Shikimate Kinase. Anal Chem 2010; 82:3616-21. [DOI: 10.1021/ac902849g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanisree Mulabagal
- Department of Pharmacal Sciences, Harrison School of Pharmacy, 4306B Walker Building, Auburn University, Auburn, Alabama 36849
| | - Angela I. Calderón
- Department of Pharmacal Sciences, Harrison School of Pharmacy, 4306B Walker Building, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
18
|
Duckworth MJ, Okoli AS, Mendz GL. Novel Helicobacter pylori therapeutic targets: the unusual suspects. Expert Rev Anti Infect Ther 2009; 7:835-67. [PMID: 19735225 DOI: 10.1586/eri.09.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the current status of the discovery and development of anti-Helicobacter therapies requires an overview of the searches for therapeutic targets performed to date. A summary is given of the very substantial body of work conducted in the quest to find Helicobacter pylori genes that could be suitable candidates for therapeutic intervention. The products of most of these genes perform metabolic functions, and others have roles in growth, cell motility and colonization. The genes identified as potential targets have been organized into three categories according to their degree of characterization. A short description and evaluation is provided of the main candidates in each category. Investigations of potential therapeutic targets have generated a wealth of information about the physiology and genetics of H. pylori, and its interactions with the host, but have yielded little by way of new therapies.
Collapse
Affiliation(s)
- Megan J Duckworth
- School of Medicine, Sydney, The University of Notre Dame Australia, 160 Oxford Street, Darlinghurst, NSW 2010, Australia.
| | | | | |
Collapse
|
19
|
Fucile G, Falconer S, Christendat D. Evolutionary diversification of plant shikimate kinase gene duplicates. PLoS Genet 2008; 4:e1000292. [PMID: 19057671 PMCID: PMC2593004 DOI: 10.1371/journal.pgen.1000292] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 11/03/2008] [Indexed: 01/03/2023] Open
Abstract
Shikimate kinase (SK; EC 2.7.1.71) catalyzes the fifth reaction of the shikimate pathway, which directs carbon from the central metabolism pool to a broad range of secondary metabolites involved in plant development, growth, and stress responses. In this study, we demonstrate the role of plant SK gene duplicate evolution in the diversification of metabolic regulation and the acquisition of novel and physiologically essential function. Phylogenetic analysis of plant SK homologs resolves an orthologous cluster of plant SKs and two functionally distinct orthologous clusters. These previously undescribed genes, shikimate kinase-like 1 (SKL1) and -2 (SKL2), do not encode SK activity, are present in all major plant lineages, and apparently evolved under positive selection following SK gene duplication over 400 MYA. This is supported by functional assays using recombinant SK, SKL1, and SKL2 from Arabidopsis thaliana (At) and evolutionary analyses of the diversification of SK-catalytic and -substrate binding sites based on theoretical structure models. AtSKL1 mutants yield albino and novel variegated phenotypes, which indicate SKL1 is required for chloroplast biogenesis. Extant SKL2 sequences show a strong genetic signature of positive selection, which is enriched in a protein–protein interaction module not found in other SK homologs. We also report the first kinetic characterization of plant SKs and show that gene expression diversification among the AtSK inparalogs is correlated with developmental processes and stress responses. This study examines the functional diversification of ancient and recent plant SK gene duplicates and highlights the utility of SKs as scaffolds for functional innovation. Gene duplicates provide an opportunity for functional innovation by buffering their ancestral function. Mutations or genomic rearrangements altering when and where the duplicates are expressed, or the structure/function of the products encoded by the genes, can provide a selective advantage to the organism and are subsequently retained. In this study, we demonstrate that duplicates of genes encoding the metabolic enzyme shikimate kinase (SK) in plants have evolved to acquire novel gene product functions and novel gene expression patterns. We introduce two ancient genes, SKL1 and SKL2, present in all higher plant groups that were previously overlooked due to their overall similarity to the ancestral SKs from which they originated. SKL1 mutants in the model plant Arabidopsis indicate this gene is required for chloroplast biogenesis. We show that SKL2 acquired a protein–protein interaction domain that is evolving under positive selection. We also show that SK duplicates that retained their ancestral enzyme function have acquired new expression patterns correlated with developmental processes and stress responses. These findings demonstrate that plant SK evolution has played an important role in both the acquisition of novel gene function as well as the diversification of metabolic regulation.
Collapse
Affiliation(s)
- Geoffrey Fucile
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Shannon Falconer
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, Canada
- * E-mail:
| |
Collapse
|
20
|
Han C, Zhang J, Chen L, Chen K, Shen X, Jiang H. Discovery of Helicobacter pylori shikimate kinase inhibitors: Bioassay and molecular modeling. Bioorg Med Chem 2007; 15:656-62. [PMID: 17098431 DOI: 10.1016/j.bmc.2006.10.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 10/26/2006] [Accepted: 10/28/2006] [Indexed: 11/29/2022]
Abstract
Shikimate kinase (SK) is the fifth enzyme in the shikimate pathway and catalyzes the phosphate transfer from ATP to shikimate in generating shikimate 3-phosphate and ADP. SK has been developed as a promising target for the discovery of antibacterial agents. In this report, two small molecular inhibitors (compound 1, 3-methoxy-4-{[2-({2-methoxy-4-[(4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]phenoxy}methyl)benzyl]oxy}benzaldehyde; compound 2, 5-bromo-2-(5-{[1-(3,4-dichlorophenyl)-3,5-dioxo-4-pyrazolidinylidene]methyl}-2-furyl)benzoic acid) against Helicobacter pylori SK (HpSK) were successfully identified with IC(50) values of 5.5+/-1.2 and 6.4+/-0.4 microM, respectively. The inhibition kinetics shows that compound 1 is a noncompetitive inhibitor with respect to both shikimate and MgATP, and compound 2 is a competitive inhibitor toward shikimate and noncompetitive inhibitor with respect to MgATP. The surface plasmon resonance (SPR) technology based analysis reveals that the equilibrium dissociation constants (K(D)s) of compounds 1 and 2 with HpSK enzyme are 4.39 and 3.74 microM, respectively. The molecular modeling and docking of two inhibitors with HpSK reveals that the active site of HpSK is rather roomy and deep, forming an L-shape channel on the surface of the protein, and compound 1 prefers the corner area of L-shape channel, while compound 2 binds the short arm of the channel of SK in the binding interactions. It is expected that our current work might supply useful information for the development of novel SK inhibitors.
Collapse
Affiliation(s)
- Cong Han
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
21
|
Hartmann MD, Bourenkov GP, Oberschall A, Strizhov N, Bartunik HD. Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. J Mol Biol 2006; 364:411-23. [PMID: 17020768 DOI: 10.1016/j.jmb.2006.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
The structural mechanism of the catalytic functioning of shikimate kinase from Mycobacterium tuberculosis was investigated on the basis of a series of high-resolution crystal structures corresponding to individual steps in the enzymatic reaction. The catalytic turnover of shikimate and ATP into the products shikimate-3-phosphate and ADP, followed by release of ADP, was studied in the crystalline environment. Based on a comparison of the structural states before initiation of the reaction and immediately after the catalytic step, we derived a structural model of the transition state that suggests that phosphoryl transfer proceeds with inversion by an in-line associative mechanism. The random sequential binding of shikimate and nucleotides is associated with domain movements. We identified a synergic mechanism by which binding of the first substrate may enhance the affinity for the second substrate.
Collapse
Affiliation(s)
- Marcus D Hartmann
- Max Planck Unit for Structural Molecular Biology, MPG-ASMB c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Gan J, Gu Y, Li Y, Yan H, Ji X. Crystal structure of Mycobacterium tuberculosis shikimate kinase in complex with shikimic acid and an ATP analogue. Biochemistry 2006; 45:8539-45. [PMID: 16834327 DOI: 10.1021/bi0606290] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shikimate kinase (SK) and other enzymes in the shikimate pathway are potential targets for developing nontoxic antimicrobial agents, herbicides, and antiparasite drugs, because the pathway is essential in microorganisms, plants, and parasites but absent from mammals. SK catalyzes the reaction of phosphoryl transfer from ATP to shikimic acid (SA). Since 2002, a total of 11 SK structures have been reported, but none contains either the two substrate (SA and ATP) or the two product (SA-phosphate and ADP) molecules. Here, we present three crystal structures of SK from Mycobacterium tuberculosis (MtSK), including apo-MtSK, a binary complex MtSK x SA, and the ternary complex of MtSK with SA and an ATP analogue, AMPPCP. The structures of apo-MtSK and MtSK x AMPPCP x SA make it possible to elucidate the conformational changes of MtSK upon the binding of both substrates; the structure of MtSK x AMPPCP x SA reveals interactions between the protein and gamma-phosphate which indicate dynamic roles of catalytic residues Lys15 and Arg117.
Collapse
Affiliation(s)
- Jianhua Gan
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|