1
|
Conway C, Beckett MC, Dorman CJ. The DNA relaxation-dependent OFF-to-ON biasing of the type 1 fimbrial genetic switch requires the Fis nucleoid-associated protein. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001283. [PMID: 36748578 PMCID: PMC9993118 DOI: 10.1099/mic.0.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structural genes expressing type 1 fimbriae in Escherichia coli alternate between expressed (phase ON) and non-expressed (phase OFF) states due to inversion of the 314 bp fimS genetic switch. The FimB tyrosine integrase inverts fimS by site-specific recombination, alternately connecting and disconnecting the fim operon, encoding the fimbrial subunit protein and its associated secretion and adhesin factors, to and from its transcriptional promoter within fimS. Site-specific recombination by the FimB recombinase becomes biased towards phase ON as DNA supercoiling is relaxed, a condition that occurs when bacteria approach the stationary phase of the growth cycle. This effect can be mimicked in exponential phase cultures by inhibiting the negative DNA supercoiling activity of DNA gyrase. We report that this bias towards phase ON depends on the presence of the Fis nucleoid-associated protein. We mapped the Fis binding to a site within the invertible fimS switch by DNase I footprinting. Disruption of this binding site by base substitution mutagenesis abolishes both Fis binding and the ability of the mutated switch to sustain its phase ON bias when DNA is relaxed, even in bacteria that produce the Fis protein. In addition, the Fis binding site overlaps one of the sites used by the Lrp protein, a known directionality determinant of fimS inversion that also contributes to phase ON bias. The Fis–Lrp relationship at fimS is reminiscent of that between Fis and Xis when promoting DNA relaxation-dependent excision of bacteriophage λ from the E. coli chromosome. However, unlike the co-binding mechanism used by Fis and Xis at λ attR, the Fis–Lrp relationship at fimS involves competitive binding. We discuss these findings in the context of the link between fimS inversion biasing and the physiological state of the bacterium.
Collapse
Affiliation(s)
- Colin Conway
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland.,Present address: Technical University of the Atlantic, Galway, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Villa TG, Abril AG, Sánchez-Pérez A. Mastering the control of the Rho transcription factor for biotechnological applications. Appl Microbiol Biotechnol 2021; 105:4053-4071. [PMID: 33963893 DOI: 10.1007/s00253-021-11326-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
The present review represents an update on the fundamental role played by the Rho factor, which facilitates the process of Rho-dependent transcription termination in the prokaryotic world; it also provides a summary of relevant mutations in the Rho factor and the insights they provide into the functions carried out by this protein. Furthermore, a section is dedicated to the putative future use of Rho (the 'taming' of Rho) to facilitate biotechnological processes and adapt them to different technological contexts. Novel bacterial strains can be designed, containing mutations in the rho gene, that are better suited for different biotechnological applications. This process can obtain novel microbial strains that are adapted to lower temperatures of fermentation, shorter production times, exhibit better nutrient utilization, or display other traits that are beneficial in productive Biotechnology. Additional important issues reviewed here include epistasis, the design of TATA boxes, the role of small RNAs, and the manipulation of clathrin-mediated endocytosis, by some pathogenic bacteria, to invade eukaryotic cells. KEY POINTS: • It is postulated that controlling the action of the prokaryotic Rho factor could generate major biotechnological improvements, such as an increase in bacterial productivity or a reduction of the microbial-specific growth rate. • The review also evaluates the putative impact of epistatic mechanisms on Biotechnology, both as possible responsible for unexpected failures in gene cloning and more important for the genesis of new strains for biotechnological applications • The use of clathrin-coated vesicles by intracellular bacterial microorganisms is included too and proposed as a putative delivery mechanism, for drugs and vaccines.
Collapse
Affiliation(s)
- Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, La Coruña, 15706, Santiago de Compostela, Spain.
| | - Ana G Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, La Coruña, 15706, Santiago de Compostela, Spain.
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Kinnersley M, Schwartz K, Yang DD, Sherlock G, Rosenzweig F. Evolutionary dynamics and structural consequences of de novo beneficial mutations and mutant lineages arising in a constant environment. BMC Biol 2021; 19:20. [PMID: 33541358 PMCID: PMC7863352 DOI: 10.1186/s12915-021-00954-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Microbial evolution experiments can be used to study the tempo and dynamics of evolutionary change in asexual populations, founded from single clones and growing into large populations with multiple clonal lineages. High-throughput sequencing can be used to catalog de novo mutations as potential targets of selection, determine in which lineages they arise, and track the fates of those lineages. Here, we describe a long-term experimental evolution study to identify targets of selection and to determine when, where, and how often those targets are hit. RESULTS We experimentally evolved replicate Escherichia coli populations that originated from a mutator/nonsense suppressor ancestor under glucose limitation for between 300 and 500 generations. Whole-genome, whole-population sequencing enabled us to catalog 3346 de novo mutations that reached > 1% frequency. We sequenced the genomes of 96 clones from each population when allelic diversity was greatest in order to establish whether mutations were in the same or different lineages and to depict lineage dynamics. Operon-specific mutations that enhance glucose uptake were the first to rise to high frequency, followed by global regulatory mutations. Mutations related to energy conservation, membrane biogenesis, and mitigating the impact of nonsense mutations, both ancestral and derived, arose later. New alleles were confined to relatively few loci, with many instances of identical mutations arising independently in multiple lineages, among and within replicate populations. However, most never exceeded 10% in frequency and were at a lower frequency at the end of the experiment than at their maxima, indicating clonal interference. Many alleles mapped to key structures within the proteins that they mutated, providing insight into their functional consequences. CONCLUSIONS Overall, we find that when mutational input is increased by an ancestral defect in DNA repair, the spectrum of high-frequency beneficial mutations in a simple, constant resource-limited environment is narrow, resulting in extreme parallelism where many adaptive mutations arise but few ever go to fixation.
Collapse
Affiliation(s)
- Margie Kinnersley
- Division of Biological Sciences, The University of Montana, Missoula, MT, 59812, USA
| | - Katja Schwartz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA
| | - Dong-Dong Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA.
| | - Frank Rosenzweig
- Division of Biological Sciences, The University of Montana, Missoula, MT, 59812, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
4
|
Trzilova D, Tamayo R. Site-Specific Recombination - How Simple DNA Inversions Produce Complex Phenotypic Heterogeneity in Bacterial Populations. Trends Genet 2020; 37:59-72. [PMID: 33008627 DOI: 10.1016/j.tig.2020.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Many bacterial species generate phenotypically heterogeneous subpopulations as a strategy for ensuring the survival of the population as a whole - an environmental stress that eradicates one subpopulation may leave other phenotypic groups unharmed, allowing the lineage to continue. Phase variation, a process that functions as an ON/OFF switch for gene expression, is one way that bacteria achieve phenotypic heterogeneity. Phase variation occurs stochastically and reversibly, and in the presence of a selective pressure the advantageous phenotype(s) predominates in the population. Phase variation can occur through multiple genetic and epigenetic mechanisms. This review focuses on conservative site-specific recombination that generates reversible DNA inversions as a genetic mechanism mediating phase variation. Recent studies have sparked a renewed interest in phase variation mediated through DNA inversion, revealing a high level of complexity beyond simple ON/OFF switching, including unusual modes of gene regulation, and highlighting an underappreciation of the use of these mechanisms by bacteria.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Jiang X, Hall AB, Arthur TD, Plichta DR, Covington CT, Poyet M, Crothers J, Moses PL, Tolonen AC, Vlamakis H, Alm EJ, Xavier RJ. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science 2019; 363:181-187. [PMID: 30630933 DOI: 10.1126/science.aau5238] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
Abstract
Phase variation, the reversible alternation between genetic states, enables infection by pathogens and colonization by commensals. However, the diversity of phase variation remains underexplored. We developed the PhaseFinder algorithm to quantify DNA inversion-mediated phase variation. A systematic search of 54,875 bacterial genomes identified 4686 intergenic invertible DNA regions (invertons), revealing an enrichment in host-associated bacteria. Invertons containing promoters often regulate extracellular products, underscoring the importance of surface diversity for gut colonization. We found invertons containing promoters regulating antibiotic resistance genes that shift to the ON orientation after antibiotic treatment in human metagenomic data and in vitro, thereby mitigating the cost of antibiotic resistance. We observed that the orientations of some invertons diverge after fecal microbiota transplant, potentially as a result of individual-specific selective forces.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - A Brantley Hall
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Damian R Plichta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Christian T Covington
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mathilde Poyet
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jessica Crothers
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, USA
| | - Peter L Moses
- Division of Gastroenterology and Hepatology, University of Vermont, Burlington, VT 05401, USA
| | - Andrew C Tolonen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
Dorman CJ, Bogue MM. The interplay between DNA topology and accessory factors in site-specific recombination in bacteria and their bacteriophages. Sci Prog 2016; 99:420-437. [PMID: 28742481 PMCID: PMC10365484 DOI: 10.3184/003685016x14811202974921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-specific recombination is employed widely in bacteria and bacteriophage as a basis for genetic switching events that control phenotypic variation. It plays a vital role in the life cycles of phages and in the replication cycles of chromosomes and plasmids in bacteria. Site-specific recombinases drive these processes using very short segments of identical (or nearly identical) DNA sequences. In some cases, the efficiencies of the recombination reactions are modulated by the topological state of the participating DNA sequences and by the availability of accessory proteins that shape the DNA. These dependencies link the molecular machines that conduct the recombination reactions to the physiological state of the cell. This is because the topological state of bacterial DNA varies constantly during the growth cycle and so does the availability of the accessory factors. In addition, some accessory factors are under allosteric control by metabolic products or second messengers that report the physiological status of the cell. The interplay between DNA topology, accessory factors and site-specific recombination provides a powerful illustration of the connectedness and integration of molecular events in bacterial cells and in viruses that parasitise bacterial cells.
Collapse
Affiliation(s)
| | - Marina M. Bogue
- Natural Science (Microbiology) from Trinity College Dublin, Ireland
| |
Collapse
|
7
|
Zhang H, Susanto TT, Wan Y, Chen SL. Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:4182-7. [PMID: 27035967 PMCID: PMC4839427 DOI: 10.1073/pnas.1522958113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5' UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.
Collapse
Affiliation(s)
- Huibin Zhang
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672
| | - Teodorus T Susanto
- Stem Cell and Development, Genome Institute of Singapore, Singapore 138672
| | - Yue Wan
- Stem Cell and Development, Genome Institute of Singapore, Singapore 138672
| | - Swaine L Chen
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| |
Collapse
|
8
|
Modulating the frequency and bias of stochastic switching to control phenotypic variation. Nat Commun 2014; 5:4574. [PMID: 25087841 DOI: 10.1038/ncomms5574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/02/2014] [Indexed: 12/29/2022] Open
Abstract
Mechanisms that control cell-to-cell variation in gene expression ('phenotypic variation') can determine a population's growth rate, robustness, adaptability and capacity for complex behaviours. Here we describe a general strategy (termed FABMOS) for tuning the phenotypic variation and mean expression of cell populations by modulating the frequency and bias of stochastic transitions between 'OFF' and 'ON' expression states of a genetic switch. We validated the strategy experimentally using a synthetic fim switch in Escherichia coli. Modulating the frequency of switching can generate a bimodal (low frequency) or a unimodal (high frequency) population distribution with the same mean expression. Modulating the bias as well as the frequency of switching can generate a spectrum of bimodal and unimodal distributions with the same mean expression. This remarkable control over phenotypic variation, which cannot be easily achieved with standard gene regulatory mechanisms, has many potential applications for synthetic biology, engineered microbial ecosystems and experimental evolution.
Collapse
|
9
|
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections in women, causing significant morbidity and mortality in this population. Adherence to host epithelial cells is a pivotal step in the pathogenesis of UPEC. One of the most important virulence factors involved in mediating this attachment is the type 1 pilus (type 1 fimbria) encoded by a set of fim genes arranged in an operon. The expression of type 1 pili is controlled by a phenomenon known as phase variation, which reversibly switches between the expression of type 1 pili (Phase-ON) and loss of expression (Phase-OFF). Phase-ON cells have the promoter for the fimA structural gene on an invertible DNA element called fimS, which lines up to allow transcription, whereas transcription of the structural gene is silenced in Phase-OFF cells. The orientation of the fimS invertible element is controlled by two site-specific recombinases, FimB and FimE. Environmental conditions cause transcriptional and post-transcriptional changes in UPEC cells that affect the level of regulatory proteins, which in turn play vital roles in modulating this phase switching ability. The role of fim gene regulation in UPEC pathogenesis will be discussed.
Collapse
|
10
|
Rabhi M, Rahmouni AR, Boudvillain M. Transcription Termination Factor Rho: A Ring-Shaped RNA Helicase from Bacteria. RNA HELICASES 2010. [DOI: 10.1039/9781849732215-00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Makhlouf Rabhi
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
- Ecole doctorale Sciences et Technologies, Université d’Orléans France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
| |
Collapse
|
11
|
The influence of nitrogen limitation on mcl-PHA synthesis by two newly isolated strains of Pseudomonas sp. J Ind Microbiol Biotechnol 2010; 37:511-20. [DOI: 10.1007/s10295-010-0698-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 02/10/2010] [Indexed: 11/30/2022]
|
12
|
Emerson JE, Reynolds CB, Fagan RP, Shaw HA, Goulding D, Fairweather NF. A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein. Mol Microbiol 2009; 74:541-56. [PMID: 19656296 PMCID: PMC2784873 DOI: 10.1111/j.1365-2958.2009.06812.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clostridium difficile is a nosocomial pathogen that can cause severe gastrointestinal infections. C. difficile encodes a family of cell wall proteins, some of which are implicated in pathogenesis. Here we have characterized CwpV, the largest member of this family. CwpV is surface expressed and post-translationally processed in a manner analogous to the major S-layer protein SlpA. Expression of cwpV is phase variable, with approximately 5% of cells in a population expressing the protein under standard laboratory growth conditions. Upstream of cwpV, inverted repeats flank a 195 bp sequence which undergoes DNA inversion. Use of a gusA transcriptional reporter demonstrated that phase variation is mediated by DNA inversion; in one orientation cwpV is expressed while in the opposite orientation the gene is silent. The inversion region contains neither the promoter nor any of the open reading frame, therefore this system differs from previously described phase variation mechanisms. The cwpV promoter is located upstream of the inversion region and we propose a model of phase variation based on intrinsic terminator formation in the OFF transcript. A C. difficile site-specific recombinase able to catalyse the inversion has been identified.
Collapse
Affiliation(s)
- Jenny E Emerson
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
13
|
Visco P, Allen RJ, Evans MR. Statistical physics of a model binary genetic switch with linear feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:031923. [PMID: 19391987 DOI: 10.1103/physreve.79.031923] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Indexed: 05/27/2023]
Abstract
We study the statistical properties of a simple genetic regulatory network that provides heterogeneity within a population of cells. This network consists of a binary genetic switch in which stochastic flipping between the two switch states is mediated by a "flipping" enzyme. Feedback between the switch state and the flipping rate is provided by a linear feedback mechanism: the flipping enzyme is only produced in the on switch state and the switching rate depends linearly on the copy number of the enzyme. This work generalizes the model of Visco [Phys. Rev. Lett. 101, 118104 (2008)] to a broader class of linear feedback systems. We present a complete analytical solution for the steady-state statistics of the number of enzyme molecules in the on and off states, for the general case where the enzyme can mediate flipping in either direction. For this general case we also solve for the flip time distribution, making a connection to first passage and persistence problems in statistical physics. We show that the statistics are non-Poissonian, leading to a peak in the flip time distribution. The occurrence of such a peak is analyzed as a function of the parameter space. We present a relation between the flip time distributions measured for two relevant choices of initial condition. We also introduce a correlation measure and use this to show that this model can exhibit long-lived temporal correlations, thus providing a primitive form of cellular memory. Motivated by DNA replication as well as by evolutionary mechanisms involving gene duplication, we study the case of two switches in the same cell. This results in correlations between the two switches; these can be either positive or negative depending on the parameter regime.
Collapse
Affiliation(s)
- Paolo Visco
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | | | | |
Collapse
|
14
|
Bayliss CD. Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol Rev 2009; 33:504-20. [PMID: 19222587 DOI: 10.1111/j.1574-6976.2009.00162.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phase variation (PV) of surface molecules and other phenotypes is a major adaptive strategy of pathogenic and commensal bacteria. Phase variants are produced at high frequencies and in a reversible manner by hypermutation or hypervariable methylation in specific regions of the genome. The major mechanisms of PV involve site-specific recombination, homologous recombination, simple sequence DNA repeat tracts or epigenetic modification by the dam methylase. PV rates of some of these mechanisms are subject to the influence of genome maintenance pathways such as DNA replication, recombination and repair while others are independent of these pathways. For each of these mechanisms, the rate of generation of phase variants is controlled by intrinsic and dispensable factors. These factors can impart environmental regulation on switching rates while many factors are subject to heterogeneity both within isolates of a species and between species. A major gap in our understanding is whether these environmental and epidemiological variations in PV rate have a major impact on fitness. Experimental approaches to studying the biological relevance of differing PV rates are being developed, and a recent intriguing finding is of a co-ordination of switching rates in the phase variable P-pili of uropathogenic bacteria.
Collapse
|
15
|
Abstract
The Gram-negative bacterium Escherichia coli and its close relative Salmonella enterica have made important contributions historically to our understanding of how bacteria control DNA supercoiling and of how supercoiling influences gene expression and vice versa. Now they are contributing again by providing examples where changes in DNA supercoiling affect the expression of virulence traits that are important for infectious disease. Available examples encompass both the earliest stages of pathogen–host interactions and the more intimate relationships in which the bacteria invade and proliferate within host cells. A key insight concerns the link between the physiological state of the bacterium and the activity of DNA gyrase, with downstream effects on the expression of genes with promoters that sense changes in DNA supercoiling. Thus the expression of virulence traits by a pathogen can be interpreted partly as a response to its own changing physiology. Knowledge of the molecular connections between physiology, DNA topology and gene expression offers new opportunities to fight infection.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
16
|
Cortes MAM, Gibon J, Chanteloup NK, Moulin-Schouleur M, Gilot P, Germon P. Inactivation of ibeA and ibeT results in decreased expression of type 1 fimbriae in extraintestinal pathogenic Escherichia coli strain BEN2908. Infect Immun 2008; 76:4129-36. [PMID: 18591231 PMCID: PMC2519445 DOI: 10.1128/iai.00334-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/25/2008] [Accepted: 06/21/2008] [Indexed: 12/21/2022] Open
Abstract
IbeA in extraintestinal pathogenic Escherichia coli (ExPEC) strains was previously described for its role in invasion. Here we investigated the role of IbeA and IbeT, encoded by a gene located downstream of ibeA, in the adhesion of the avian ExPEC strain BEN2908 to human brain microvascular endothelial cells (HBMEC). The DeltaibeA mutant was less adhesive to HBMEC than the wild-type strain BEN2908 was. Because strain BEN2908 also expresses type 1 fimbriae, we measured the adhesion specifically due to IbeA by comparing the adhesive properties of a Deltafim derivative of strain BEN2908 to those of a double Deltafim DeltaibeA mutant. No differences were observed, indicating that the reduction of adhesion in BEN2908 DeltaibeA could be due to a decrease in type 1 fimbria expression. We indeed showed that the decreased adhesion of BEN2908 DeltaibeA was correlated with a decrease in type 1 fimbria expression. Accordingly, more bacteria had a fim promoter orientated in the off position in a culture of BEN2908 DeltaibeA than in a culture of BEN2908. Expression of fimB and fimE, two genes encoding recombinases participating in controlling the orientation of the fim promoter, was decreased in BEN2908 DeltaibeA. A reduction of type 1 fimbria expression due to a preferential orientation of the fim promoter in the off position was also seen in an ibeT mutant of strain BEN2908. We finally suggest a role for IbeA and IbeT in modulating the expression of type 1 fimbriae through an as yet unknown mechanism.
Collapse
Affiliation(s)
- Mélanie A M Cortes
- INRA, UR 1282 Infectiologie Animale et Santé Publique, Laboratoire de Pathogénie Bactérienne, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
17
|
Holden N, Blomfield IC, Uhlin BE, Totsika M, Kulasekara DH, Gally DL. Comparative analysis of FimB and FimE recombinase activity. MICROBIOLOGY-SGM 2008; 153:4138-4149. [PMID: 18048927 DOI: 10.1099/mic.0.2007/010363-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
FimB and FimE are site-specific recombinases, part of the lambda integrase family, and invert a 314 bp DNA switch that controls the expression of type 1 fimbriae in Escherichia coli. FimB and FimE differ in their activity towards the fim switch, with FimB catalysing inversion in both directions in comparison to the higher-frequency but unidirectional on-to-off recombination catalysed by FimE. Previous work has demonstrated that FimB, but not FimE, recombination is completely inhibited in vitro and in vivo by a regulator, PapB, expressed from a distinct fimbrial locus. The aim of this work was to investigate differences between FimB and FimE activity by exploiting the differential inhibition demonstrated by PapB. The research focused on genetic changes to the fim switch that alter recombinase binding and its structural context. FimB and FimE still recombined a switch in which the majority of fimS DNA was replaced with a larger region of non-fim DNA. This demonstrated a minimal requirement for FimB and FimE recombination of the Fim binding sites and associated inverted repeats. With the original leucine-responsive regulatory protein (Lrp) and integration host factor (IHF)-dependent structure removed, PapB was now able to inhibit both recombinases. The relative affinities of FimB and FimE were determined for the four 'half sites'. This analysis, along with the effect of extensive swaps and duplications of the half sites on recombination frequency, demonstrated that FimB recruitment and therefore subsequent activity was dependent on a single half site and its context, whereas FimE recombination was less stringent, being able to interact initially with two half sites with equally high affinity. While increasing FimB recombination frequencies failed to overcome PapB repression, mutations made in recombinase binding sites resulted in inhibition of FimE recombination by PapB. Overall, the data support a model in which the recombinases differ in loading order and co-operative interactions. PapB exploits this difference and FimE becomes susceptible when its normal loading is restricted or changed.
Collapse
Affiliation(s)
- Nicola Holden
- Centre for Infectious Diseases, Royal (Dick) School of Veterinary Medicine, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ian C Blomfield
- Biomedical Research Group, Department of Biosciences, University of Kent, Kent CT2 7NJ, UK
| | - Bernt-Eric Uhlin
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Makrina Totsika
- Centre for Infectious Diseases, Royal (Dick) School of Veterinary Medicine, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Don Hemantha Kulasekara
- Department of Genome Sciences, University of Washington, 1705 NE Pacific, Seattle, WA 98195, USA
| | - David L Gally
- Centre for Infectious Diseases, Royal (Dick) School of Veterinary Medicine, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
18
|
McCusker MP, Turner EC, Dorman CJ. DNA sequence heterogeneity in Fim tyrosine-integrase recombinase-binding elements and functional motif asymmetries determine the directionality of the fim genetic switch in Escherichia coli K-12. Mol Microbiol 2007; 67:171-87. [PMID: 18034794 DOI: 10.1111/j.1365-2958.2007.06037.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phase-variable expression of type 1 fimbriae in Escherichia coli K-12 involves inversion by site-specific recombination of a 314 bp sequence containing the promoter for fim structural gene expression. The invertible sequence is flanked by 9 bp inverted repeats, and each repeat is in turn flanked by non-identical recombinase-binding elements (RBEs) to which the FimB or FimE site-specific recombinases bind. These proteins have distinct DNA inversion preferences: FimB inverts the switch in the ON-to-OFF and OFF-to-ON directions with similar efficiencies, whereas FimE inverts it predominantly in the ON-to-OFF direction. We have found that FimB and FimE invert the switch through a common mechanism. A genetic investigation involving base-by-base substitution combined with a biochemical study shows that the same DNA cleavage and religation sites are used within the 9 bp inverted repeats, and that each recombination involves a common 3 bp spacer region. A comprehensive programme of RBE exchanges and replacements reveals that FimB is much more tolerant of RBE sequence variation than FimE. The asymmetric location of conserved 5'-CA motifs at either side of each spacer region allows the inside and outside of the switch to be differentiated while the RBE sequence heterogeneity permits its ON and OFF forms to be distinguished by the recombinases.
Collapse
|
19
|
The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar typhimurium via the fimZ regulatory gene. J Bacteriol 2007; 190:602-12. [PMID: 17981960 DOI: 10.1128/jb.01388-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The fim operon of Salmonella enterica serovar Typhimurium encodes type 1 fimbriae. The expression of fim is controlled in response to environmental signals through a complex regulatory cascade involving the proteins FimW, FimY, and FimZ and a genetic locus, fimU, that encodes a rare arginine tRNA. We discovered that a knockout mutation in lrp, the gene that codes for the leucine-responsive regulatory protein (Lrp), inhibited fim transcription. The loss of fim gene expression was accompanied by a corresponding loss of the mannose-sensitive hemagglutination that is a characteristic of type 1 fimbriae. Normal type 1 fimbrial expression was restored following the introduction into the knockout mutant of a plasmid carrying a functional copy of the lrp gene. Electrophoretic mobility shift analysis revealed no interactions between purified Lrp protein and the regulatory region of the fimA, fimU, or fimW gene. Instead, Lrp produced protein-DNA complexes with the regulatory region of the fimZ gene, and the nature of these complexes was leucine sensitive. DNase I footprinting showed that Lrp binds within a region between -65 and -170 with respect to the fimZ transcription start site, consistent with the binding and wrapping of the DNA in this upstream region. Ectopic expression of the fimZ gene from an inducible promoter caused Lrp-independent type 1 fimbriation in serovar Typhimurium. These data show that Lrp makes a positive contribution to fim gene expression through direct interaction with the fimZ promoter region, possibly by antagonizing the binding of the H-NS global repressor protein.
Collapse
|
20
|
Abstract
Fimbria-mediated interaction with the host elicits both innate and adaptive immune responses, and thus their expression may not always be beneficial in vivo. Furthermore, the metabolic drain of producing fimbriae is significant. It is not surprising, therefore, to find that fimbrial production in Escherichia coli and Salmonella enterica is under extensive environmental regulation. In many instances, fimbrial expression is regulated by phase variation, in which individual cells are capable of switching between fimbriate and afimbriate states to produce a mixed population. Mechanisms of phase variation vary considerably between different fimbriae and involve both genetic and epigenetic processes. Notwithstanding this, fimbrial expression is also sometimes controlled at the posttranscriptional level. In this chapter, we review key features of the regulation of fimbrial gene expression in E. coli and Salmonella. The occurrence and distribution of fimbrial operons vary significantly among E. coli pathovars and even among the many Salmonella serovars. Therefore, general principles are presented on the basis of detailed discussion of paradigms that have been extensively studied, including Pap, type 1 fimbriae, and curli. The roles of operon specific regulators like FimB or CsgD and of global regulatory proteins like Lrp, CpxR, and the histone-like proteins H-NS and IHF are reviewed as are the roles of sRNAs and of signalling nucleotide cyclic-di-GMP. Individual examples are discussed in detail to illustrate how the regulatory factors cooperate to allow tight control of expression of single operons. Molecular networks that allow coordinated expression between multiple fimbrial operons and with flagella in a single isolate are also presented. This chapter illustrates how adhesin expression is controlled, and the model systems also illustrate general regulatory principles germane to our overall understanding of bacterial gene regulation.
Collapse
|
21
|
Marchi P, Longhi V, Zangrossi S, Gaetani E, Briani F, Dehò G. Autogenous regulation of Escherichia coli polynucleotide phosphorylase during cold acclimation by transcription termination and antitermination. Mol Genet Genomics 2007; 278:75-84. [PMID: 17384964 DOI: 10.1007/s00438-007-0231-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Adaptation of Escherichia coli at low temperature implicates a drastic reprogramming of gene expression patterns. Mechanisms operating downstream of transcription initiation, such as control of transcription termination, mRNA stability and translatability, play a major role in controlling gene expression in the cold acclimation phase. It was previously shown that Rho-dependent transcription termination within pnp, the gene encoding polynucleotide phosphorylase (PNPase), was suppressed in pnp nonsense mutants, whereas it was restored by complementation with wild type allele. Using a tRNA gene as a reporter and the strong Rho-dependent transcription terminator t ( imm ) of bacteriophage P4 as a tester, here we show that specific sites in the 5'-untranslated region of pnp mRNA are required for PNPase-sensitive cold-induced suppression of Rho-dependent transcription termination. We suggest that suppression of Rho-dependent transcription termination within pnp and its restoration by PNPase is an autogenous regulatory circuit that modulates pnp expression during cold acclimation.
Collapse
Affiliation(s)
- Paolo Marchi
- Dipartimento di Scienze biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | | | | | | | | | | |
Collapse
|