1
|
Shome A, Sarkhel R, Apoorva S, Nair SS, Chauhan TKS, Bhure SK, Mahawar M. Role of protein repair enzymes in oxidative stress survival and virulence of Salmonella. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01597-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Purpose
Proteins are the principal biomolecules in bacteria that are affected by the oxidants produced by the phagocytic cells. Most of the protein damage is irreparable though few unfolded proteins and covalently modified amino acids can be repaired by chaperones and repair enzymes respectively. This study reviews the three protein repair enzymes, protein l-isoaspartyl O-methyl transferase (PIMT), peptidyl proline cis-trans isomerase (PPIase), and methionine sulfoxide reductase (MSR).
Methods
Published articles regarding protein repair enzymes were collected from Google Scholar and PubMed. The information obtained from the research articles was analyzed and categorized into general information about the enzyme, mechanism of action, and role played by the enzymes in bacteria. Special emphasis was given to the importance of these enzymes in Salmonella Typhimurium.
Results
Protein repair is the direct and energetically preferred way of replenishing the cellular protein pool without translational synthesis. Under the oxidative stress mounted by the host during the infection, protein repair becomes very crucial for the survival of the bacterial pathogens. Only a few covalent modifications of amino acids are reversible by the protein repair enzymes, and they are highly specific in activity. Deletion mutants of these enzymes in different bacteria revealed their importance in the virulence and oxidative stress survival.
Conclusion
PIMT repairs isoaspartate residues, PPiase catalyzes the conversion of cis-trans forms of proline residues, while MSR repairs oxidized methionine (Met) residues in the proteins. These repair enzymes maintain the activities of the target protein(s), thus aid in bacterial survival and virulence. The interventions which can interfere with this mechanism could be used for the development of novel therapeutics.
Collapse
|
2
|
Pesingi PK, Kumawat M, Behera P, Dixit SK, Agarwal RK, Goswami TK, Mahawar M. Protein-L-Isoaspartyl Methyltransferase (PIMT) Is Required for Survival of Salmonella Typhimurium at 42°C and Contributes to the Virulence in Poultry. Front Microbiol 2017; 8:361. [PMID: 28326072 PMCID: PMC5339242 DOI: 10.3389/fmicb.2017.00361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/21/2017] [Indexed: 01/07/2023] Open
Abstract
Poultry birds are asymptomatic reservoir of Salmonella Typhimurium (S. Typhimurium) but act as source of human infection for this bacterium. Inside the poultry, S. Typhimurium experiences several stresses, 42°C body temperature of birds is one of them. Proteins are highly susceptible to temperature mediated damage. Conversion of protein bound aspartate (Asp) residues to iso-aspartate (iso-Asp) is one of such modifications that occur at elevated temperature. Iso-Asp formation has been linked to protein inactivation and compromised cellular survival. Protein-L-isoaspartyl methyltransferase (PIMT) can repair iso-Asp back to Asp, thus enhances the cellular survival at elevated temperature. Here, we show that the pimt gene deletion strain of S. Typhimurium (Δpimt mutant strain) is hypersensitive to 42°C in vitro. The hypersusceptibility of Δpimt strain is partially reversed by plasmid based complementation (trans-complementation) of Δpimt strain. Following oral inoculation, Δpimt strain showed defective colonization in poultry caecum, and compromised dissemination to spleen and liver. Interestingly, we have observed three and half folds induction of the PIMT protein following exposure of S. Typhimurium to 42°C. Our data suggest a novel role of pimt gene in the survival of S. Typhimurium at elevated temperature and virulence.
Collapse
Affiliation(s)
- Pavan K Pesingi
- Division of Veterinary Public Health, Indian Veterinary Research Institute Izatnagar, India
| | - Manoj Kumawat
- Division of Biochemistry, Indian Veterinary Research Institute Izatnagar, India
| | - Pranatee Behera
- Division of Biochemistry, Indian Veterinary Research Institute Izatnagar, India
| | - Sunil K Dixit
- Division of Immunology, Indian Veterinary Research Institute Izatnagar, India
| | - Rajesh K Agarwal
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute Izatnagar, India
| | - Tapas K Goswami
- Division of Immunology, Indian Veterinary Research Institute Izatnagar, India
| | - Manish Mahawar
- Division of Biochemistry, Indian Veterinary Research Institute Izatnagar, India
| |
Collapse
|
3
|
Data on isoaspartylation of neuronal ELAVL proteins. Data Brief 2016; 9:1052-1055. [PMID: 27924291 PMCID: PMC5128017 DOI: 10.1016/j.dib.2016.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/01/2022] Open
Abstract
This article contains experimental data examining the propensity of neuronal ELAVL proteins to become isoaspartylated. The data are related to the article “Isoaspartylation appears to trigger small cell lung cancer-associated autoimmunity against neuronal protein ELAVL4” (M.A. Pulido, M.K. DerHartunian, Z. Qin, E.M. Chung, D.S. Kang, A.W. Woodham, J.A. Tsou, R. Klooster, O. Akbari, L. Wang, W.M. Kast, S.V. Liu, J.J.G.M. Verschuuren, D.W. Aswad, I.A. Laird-Offringa, 2016) [1], in which it was reported that the N-terminal region of recombinant human ELAVL4 protein, incubated under physiological conditions, acquires a type of highly immunogenic protein damage. Here, we present Western blot analysis data generated by using an affinity-purified polyclonal rabbit antibody (raised against an N-terminal ELAVL4 isoaspartyl-converted peptide) to probe recombinant protein fragments of the other three members of the ELAVL family: the highly homologous neuronal ELAVL2 (HuB) and ELAVL3 (HuC), and the much less homologous ubiquitously expressed ELAVL1 (HuR).
Collapse
|
4
|
Pulido MA, DerHartunian MK, Qin Z, Chung EM, Kang DS, Woodham AW, Tsou JA, Klooster R, Akbari O, Wang L, Kast WM, Liu SV, Verschuuren JJ, Aswad DW, Laird-Offringa IA. Isoaspartylation appears to trigger small cell lung cancer-associated autoimmunity against neuronal protein ELAVL4. J Neuroimmunol 2016; 299:70-78. [PMID: 27725125 PMCID: PMC5152694 DOI: 10.1016/j.jneuroim.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Autoantibodies against SCLC-associated neuronal antigen ELAVL4 (HuD) have been linked to smaller tumors and improved survival, but the antigenic epitope and mechanism of autoimmunity have never been solved. We report that recombinant human ELAVL4 protein incubated under physiological conditions acquires isoaspartylation, a type of immunogenic protein damage. Specifically, the N-terminal region of ELAVL4, previously implicated in SCLC-associated autoimmunity, undergoes isoaspartylation in vitro, is recognized by sera from anti-ELAVL4 positive SCLC patients and is highly immunogenic in subcutaneously injected mice and in vitro stimulated human lymphocytes. Our data suggest that isoaspartylated ELAVL4 is the trigger for the SCLC-associated anti-ELAVL4 autoimmune response.
Collapse
Affiliation(s)
- Mario A. Pulido
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Meleeneh Kazarian DerHartunian
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Zhenxia Qin
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA
| | - Eric M. Chung
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Diane S. Kang
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Andrew W. Woodham
- Department of Molecular Microbiology and Immunology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jeffrey A. Tsou
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lina Wang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stephen V. Liu
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Dana W. Aswad
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA
| | - Ite A. Laird-Offringa
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
5
|
Kumawat M, Pesingi PK, Agarwal RK, Goswami TK, Mahawar M. Contribution of protein isoaspartate methyl transferase (PIMT) in the survival of Salmonella Typhimurium under oxidative stress and virulence. Int J Med Microbiol 2016; 306:222-30. [DOI: 10.1016/j.ijmm.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 04/07/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
|
6
|
Biotechnological advances on penicillin G acylase: pharmaceutical implications, unique expression mechanism and production strategies. Biotechnol Adv 2013; 31:1319-32. [PMID: 23721991 DOI: 10.1016/j.biotechadv.2013.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/06/2013] [Accepted: 05/19/2013] [Indexed: 01/20/2023]
Abstract
In light of unrestricted use of first-generation penicillins, these antibiotics are now superseded by their semisynthetic counterparts for augmented antibiosis. Traditional penicillin chemistry involves the use of hazardous chemicals and harsh reaction conditions for the production of semisynthetic derivatives and, therefore, is being displaced by the biosynthetic platform using enzymatic transformations. Penicillin G acylase (PGA) is one of the most relevant and widely used biocatalysts for the industrial production of β-lactam semisynthetic antibiotics. Accordingly, considerable genetic and biochemical engineering strategies have been devoted towards PGA applications. This article provides a state-of-the-art review in recent biotechnological advances associated with PGA, particularly in the production technologies with an emphasis on using the Escherichia coli expression platform.
Collapse
|
7
|
Kushwaha R, Payne CM, Downie AB. Uses of phage display in agriculture: a review of food-related protein-protein interactions discovered by biopanning over diverse baits. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:653759. [PMID: 23710253 PMCID: PMC3655605 DOI: 10.1155/2013/653759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/02/2013] [Indexed: 12/24/2022]
Abstract
This review highlights discoveries made using phage display that impact the use of agricultural products. The contribution phage display made to our fundamental understanding of how various protective molecules serve to safeguard plants and seeds from herbivores and microbes is discussed. The utility of phage display for directed evolution of enzymes with enhanced capacities to degrade the complex polymers of the cell wall into molecules useful for biofuel production is surveyed. Food allergies are often directed against components of seeds; this review emphasizes how phage display has been employed to determine the seed component(s) contributing most to the allergenic reaction and how it has played a central role in novel approaches to mitigate patient response. Finally, an overview of the use of phage display in identifying the mature seed proteome protection and repair mechanisms is provided. The identification of specific classes of proteins preferentially bound by such protection and repair proteins leads to hypotheses concerning the importance of safeguarding the translational apparatus from damage during seed quiescence and environmental perturbations during germination. These examples, it is hoped, will spur the use of phage display in future plant science examining protein-ligand interactions.
Collapse
Affiliation(s)
- Rekha Kushwaha
- Department of Horticulture, Agricultural Science Center North, University of Kentucky, Room 308J, Lexington, KY 40546, USA
- Seed Biology Group, University of Kentucky, Lexington, KY 40546, USA
| | - Christina M. Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Room 159, F. Paul Anderson Tower, Lexington, KY 40546, USA
- Center for Computational Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - A. Bruce Downie
- Seed Biology Group, University of Kentucky, Lexington, KY 40546, USA
- Department of Horticulture, University of Kentucky, Room 401A, Plant Science Building, Lexington, KY 40546, USA
| |
Collapse
|
8
|
Chen T, Nayak N, Majee SM, Lowenson J, Schäfermeyer KR, Eliopoulos AC, Lloyd TD, Dinkins R, Perry SE, Forsthoefel NR, Clarke SG, Vernon DM, Zhou ZS, Rejtar T, Downie AB. Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferase 1 identified using phage display and biopanning. J Biol Chem 2010; 285:37281-92. [PMID: 20870712 DOI: 10.1074/jbc.m110.157008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance.
Collapse
Affiliation(s)
- Tingsu Chen
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fang P, Li X, Wang J, Xing L, Gao Y, Niu L, Teng M. Crystal Structure of the Protein l-Isoaspartyl Methyltransferase from Escherichia coli. Cell Biochem Biophys 2010; 58:163-7. [DOI: 10.1007/s12013-010-9103-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pengfei Fang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Tagourti J, Malki A, Kern R, d'Alençon E, Richarme G. Membrane docking of an aggregation-prone protein improves its solubilization. Gene 2008; 426:32-8. [PMID: 18809475 DOI: 10.1016/j.gene.2008.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/31/2008] [Accepted: 08/26/2008] [Indexed: 11/29/2022]
Abstract
We used preS2-S'-beta-galactosidase, a three domain fusion protein that aggregates extensively at 43 degrees C in the cytoplasm of Escherichia coli to search for multicopy suppressors of protein aggregation and inclusion bodies formation, and took advantage of the known differential solubility of preS2-S'-beta-galactosidase at 37 and 43 degrees C to develop a selection procedure for the gene products that would prevent its aggregation in vivo at 43 degrees C. First, we demonstrate that the differential solubility of preS2-S'-beta-galactosidase results in a lactose-positive phenotype at 37 degrees C as opposed to a lactose-negative phenotype at 43 degrees C. We searched for multicopy suppressors of preS2-S'-beta-galactosidase aggregation at 43 degrees C by selecting pink lactose-positive colonies on a background of white lactose-negative colonies after transformation of bacteria with an E. coli gene bank. We found only two multicopy suppressors of preS2-S'-beta-galactosidase aggregation at 43 degrees C, protein isoaspartate methyltransferase (PIMT) and the membrane components ChbBC of the N,N'-diacetylchitobiose phosphotransferase transporter. We have previously shown that PIMT overexpression reduces the level of isoaspartate in preS2-S'-beta-galactosidase, increases its thermal stability and consequently helps in its solubilization at 43 degrees C (Kern et al., J. Bacteriol. 187, 1377-1383). In the present work, we show that ChbBC overexpression targets a fraction of preS2-S'-beta-galactosidase to the membrane, and decreases its amount in inclusion bodies, which results in its decreased thermodenaturation and in a lactose-positive phenotype at 43 degrees C. Cross-linking experiments show that the inner membrane protein ChbC interacts with preS2-S'-beta-galactosidase. Our results suggest that membrane docking of aggregation-prone proteins might be a useful method for their solubilization.
Collapse
Affiliation(s)
- Jihen Tagourti
- Molecules de stress, Institut Jacques Monod, Université Paris 7, 2, place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
11
|
Bruneau L, Chapman R, Marsolais F. Co-occurrence of both L-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent L-asparaginase. PLANTA 2006; 224:668-79. [PMID: 16705405 DOI: 10.1007/s00425-006-0245-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/08/2006] [Indexed: 05/09/2023]
Abstract
L-asparaginases (EC 3.5.1.1) are hypothesized to play an important role in nitrogen supply to sink tissues, especially in legume-developing seeds. Two plant L-asparaginase subtypes were previously identified according to their K(+)-dependence for catalytic activity. An L-asparaginase homologous to Lupinus K(+)-independent enzymes with activity towards beta-aspartyl dipeptides, At5g08100, has been previously characterized as a member of the N-terminal nucleophile amidohydrolase superfamily in Arabidopsis. In this study, a K(+)-dependent L-asparaginase from Arabidopsis, At3g16150, is characterized. The recombinants At3g16150 and At5g08100 share a similar subunit structure and conserved autoproteolytic pentapeptide cleavage site, commencing with the catalytic Thr nucleophile, as determined by ESI-MS. The catalytic activity of At3g16150 was enhanced approximately tenfold in the presence of K(+). At3g16150 was strictly specific for L-Asn, and had no activity towards beta-aspartyl dipeptides. At3g16150 also had an approximately 80-fold higher catalytic efficiency with L-Asn relative to At5g08100. Among the beta-aspartyl dipeptides tested, At5g08100 had a preference for beta-aspartyl-His, with catalytic efficiency comparable to that with L-Asn. The phylogenetic analysis revealed that At3g16150 and At5g08100 belong to two distinct subfamilies. The transcript levels of At3g16150 and At5g08100 were highest in sink tissues, especially in flowers and siliques, early in development, as determined by quantitative RT-PCR. The overlapping spatial patterns of expression argue for a partially redundant function of the enzymes. However, the high catalytic efficiency suggests that the K(+)-dependent enzyme may metabolize L-Asn more efficiently under conditions of high metabolic demand for N.
Collapse
Affiliation(s)
- Luanne Bruneau
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 1391 Sandford Street, London, Ontario, Canada N5V 4T3
| | | | | |
Collapse
|
12
|
Zhu H, Pan RJ, Wang TW, Shen YL, Wei DZ. Functional solubilization of aggregation-prone TRAIL protein facilitated by coexpressing with protein isoaspartate methyltranferase. Appl Microbiol Biotechnol 2006; 72:1033-8. [PMID: 16575568 DOI: 10.1007/s00253-006-0383-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
TRAIL was a tumor-specific protein in development as a novel anticancer therapeutic agent. Generally, when expressed in recombinant Escherichia coli, TRAIL protein was prone to form inclusion bodies. In this study, coexpression of human TRAIL protein and protein isoaspartate methyltranferase (PIMT) from E. coli on plasmid pBV-TRAIL-PCM in E. coli C600 was investigated to overcome the difficulties in soluble expression. The results showed that this PIMT coexpression strategy exerted a positive effect on the TRAIL protein expression in recombinant E. coli, which led to a mean increase in the intracellular concentration of soluble and total protein of TRAIL by 1.57-fold and 1.33-fold, respectively. At the same time, results also suggested that PIMT was a prospective partner for soluble expression of TRAIL protein.
Collapse
Affiliation(s)
- Hu Zhu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | | | | | | | | |
Collapse
|
13
|
Wang T, Zhu H, Ma X, Fei Z, Ma Y, Wei D. Enhancing enzymatic activity of penicillin G acylase by coexpressing pcm gene. Appl Microbiol Biotechnol 2006; 72:953-8. [PMID: 16550378 DOI: 10.1007/s00253-006-0349-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 01/17/2006] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Penicillin G acylase (PGA; E.C. 3.5.1.11) is an important enzyme which has broad applications in industries of beta-lactim antibiotics production. In this study, a promising PGA gene from Alcaligenes faecalis (afpga) and another pcm gene encoding protein isoaspartate methyltransferase (PIMT) were constructed into pET43.1a((+)) and pET28a((+)), respectively. The recombinant plasmids pETAFPGA and pETPCM were transformed into the same host cell Escherichia coli BL21 (DE3). Results suggested that the two plasmids could peacefully exist in the host cell and the two genes could be efficiently expressed after induction. The product of pcm gene could function as a helper molecule for enzyme AFPGA. PIMT increased the enzymatic activities in supernatant of ferment broth (1.6 folds) and cell lysate (1.8 folds), while it did not significantly affect the expression level of penicillin G acylase.
Collapse
Affiliation(s)
- Tianwen Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | | | | | |
Collapse
|
14
|
de Groot NS, Aviles FX, Vendrell J, Ventura S. Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer's peptide. Side-chain properties correlate with aggregation propensities. FEBS J 2006; 273:658-68. [PMID: 16420488 DOI: 10.1111/j.1742-4658.2005.05102.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein misfolding and deposition underlie an increasing number of debilitating human disorders. Alzheimer's disease is pathologically characterized by the presence of numerous insoluble amyloid plaques in the brain, composed primarily of the 42 amino acid human beta-amyloid peptide (Abeta42). Disease-linked mutations in Abeta42 occur in or near a central hydrophobic cluster comprising residues 17-21. We exploited the ability of green fluorescent protein to act as a reporter of the aggregation of upstream fused Abeta42 variants to characterize the effects of a large set of single-point mutations at the central position of this hydrophobic sequence as well as substitutions linked to early onset of the disease located in or close to this region. The aggregational properties of the different protein variants clearly correlated with changes in the intrinsic physicochemical properties of the side chains at the point of mutation. Reduction in hydrophobicity and beta-sheet propensity resulted in an increase of in vivo fluorescence indicating disruption of aggregation, as confirmed by the in vitro analysis of synthetic Abeta42 variants. The results confirm the key role played by the central hydrophobic stretch on Abeta42 deposition and support the hypothesis that sequence tunes the aggregation propensities of polypeptides.
Collapse
Affiliation(s)
- Natalia Sánchez de Groot
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona
| | | | | | | |
Collapse
|
15
|
O'Connor CM. 13 Protein L-isoaspartyl, D-aspartyl O-methyltransferases: Catalysts for protein repair. Enzymes 2006; 24:385-433. [PMID: 26718047 DOI: 10.1016/s1874-6047(06)80015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Protein L-isoaspartyl, D-aspartyl O-methyltransferases (PIMTs) are ancient enzymes distributed through all phylogenetic domains. PIMTs catalyze the methylation of L-isoaspartyl, and to a lesser extent D-aspartyl, residues arising from the spontaneous deamidation and isomerization of protein asparaginyl and aspartyl residues. PIMTs catalyze the methylation of isoaspartyl residues in a large number of primary sequence configurations, which accounts for the broad specificity of the enzyme for protein substrates both in vitro and in vivo. PIMT-catalyzed methylation of isoaspartyl substrates initiates the repair of the polypeptide backbone in its damaged substrates by a spontaneous mechanism that involves a succinimidyl intermediate. The repair process catalyzed by PEVITs is not completely efficient, however, leaving open the possibility that unidentified enzymatic activities cooperate with PIMT in the repair process. Structurally, PIMTs are members of the class I family of AdoMet-dependent methyltransferases. PIMTs have a unique topological arrangement of strands in the central β sheet that provides a signature for this class of enzymes. The regulation and physiological significance of PIMT has been studied in several model organisms. PIMTs are constitutively synthesized by cells, but they can be upregulated in response to conditions that are potentially damaging to protein structures, or when proteins are stored for prolonged periods of time. Disruption of PIMT genes in bacteria and simple eukaryotes produces subtle phenotypes that are apparent only under stress. Loss of PIMT function in transgenic mice leads to fatalepilepsy, suggesting that PIMT function is particularly important to neurons in mammals.
Collapse
Affiliation(s)
- Clare M O'Connor
- Biology Department Boston College 140 Commonwealth Avenue Chestnut Hill, MA 02467, USA
| |
Collapse
|