1
|
White IS, Canniffe DP, Hitchcock A. The diversity of physiology and metabolism in chlorophototrophic bacteria. Adv Microb Physiol 2025; 86:1-98. [PMID: 40404267 DOI: 10.1016/bs.ampbs.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Photosynthesis by (bacterio)chlorophyll-producing organisms ("chlorophototrophy") sustains virtually all life on Earth, providing the biosphere with food and energy. The oxygenic process carried out by plants, algae and cyanobacteria also generates the oxygen we breathe, and ancient cyanobacteria were responsible for oxygenating the atmosphere, creating the conditions that allowed the evolution of complex life. Cyanobacteria were also the endosymbiotic progenitors of chloroplasts, play major roles in biogeochemical cycles and as primary producers in aquatic ecosystems, and act as genetically tractable model organisms for studying oxygenic photosynthesis. In addition to the Cyanobacteriota, eight other bacterial phyla, namely Proteobacteria/Pseudomonadota, Chlorobiota, Chloroflexota, Bacillota, Acidobacteriota, Gemmatimonadota, Vulcanimicrobiota and Myxococcota contain at least one putative chlorophototrophic species, all of which perform a variant of anoxygenic photosynthesis, which does not yield oxygen as a by-product. These chlorophototrophic organisms display incredible diversity in the habitats that they colonise, and in their biochemistry, physiology and metabolism, with variation in the light-harvesting complexes and pigments they produce to utilise solar energy. Whilst some are very well understood, such as the proteobacterial 'purple bacteria', others have only been identified in the last few years and therefore relatively little is known about them - especially those that have not yet been isolated and cultured. In this chapter, we aim to summarise and compare the photosynthetic physiology and central metabolic processes of chlorophototrophic members from the nine phyla in which they are found, giving both a short historical perspective and highlighting gaps in our understanding.
Collapse
Affiliation(s)
- Isaac S White
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel P Canniffe
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Wang XP, Yu B, Qi CH, Wang GL, Zou M, Zhang C, Yu LJ, Ma F. Energy Transfer and Exciton Relaxation in B880-B800-RC Complex through Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2024; 15:3619-3626. [PMID: 38530255 DOI: 10.1021/acs.jpclett.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The light-harvesting (LH) and reaction center (RC) core complex of purple bacterium Roseiflexus castenholzii, B880-B800-RC, are different from those of the typical photosynthetic unit, (B850-B800)x-B880-RC. To investigate the excitation flowing dynamics in this unique complex, two-dimensional electronic spectroscopy is employed. The obtained time constants for the exciton relaxation in B880, exciton relaxation in B800, B800 → B880 energy transfer (EET), and B880 → closed RC EET are 43 fs, 177 fs, 1.9 ps, and 205 ps, respectively. These time constants result in an overall EET efficiency similar to that of the typical photosynthetic unit. Analysis of the oscillatory signals reveals that while several vibronic coherences are involved in the exciton relaxation process, only one prominent vibronic coherence, with a frequency of 27 cm-1 and coupled to the B880 electronic transition, may contribute to the B800 → B880 EET process.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buyang Yu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijuan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
3
|
Yu L, Min Z, Liu M, Xin Y, Liu A, Kuang J, Wu W, Wu J, He H, Xin J, Blankenship RE, Tian C, Xu X. A cytochrome c 551 mediates the cyclic electron transport chain of the anoxygenic phototrophic bacterium Roseiflexus castenholzii. PLANT COMMUNICATIONS 2024; 5:100715. [PMID: 37710959 PMCID: PMC10873879 DOI: 10.1016/j.xplc.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Roseiflexus castenholzii is a gram-negative filamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain (ETC). The ETC is composed of a reaction center (RC)-light-harvesting (LH) complex (rcRC-LH); an alternative complex III (rcACIII), which functionally replaces the cytochrome bc1/b6f complex; and the periplasmic electron acceptor auracyanin (rcAc). Although compositionally and structurally different from the bc1/b6f complex, rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc. However, rcACIII-mediated electron transfer (which includes both an intraprotein route and a downstream route) has not been clearly elucidated, nor have the details of cyclic ETC. Here, we identify a previously unknown monoheme cytochrome c (cyt c551) as a novel periplasmic electron acceptor of rcACIII. It reduces the light-excited rcRC-LH to complete a cyclic ETC. We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance (EPR), spectroelectrochemistry, and enzymatic and structural analyses. We find that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors (rcAc and cyt c551), which eventually reduce the rcRC to form the complete cyclic ETC. This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our understanding of the diversity and molecular evolution of prokaryotic ETCs.
Collapse
Affiliation(s)
- Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Menghua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aokun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Jian Kuang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingyi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China; Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
4
|
Xin J, Shi Y, Zhang X, Yuan X, Xin Y, He H, Shen J, Blankenship RE, Xu X. Carotenoid assembly regulates quinone diffusion and the Roseiflexus castenholzii reaction center-light harvesting complex architecture. eLife 2023; 12:e88951. [PMID: 37737710 PMCID: PMC10516601 DOI: 10.7554/elife.88951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Carotenoid (Car) pigments perform central roles in photosynthesis-related light harvesting (LH), photoprotection, and assembly of functional pigment-protein complexes. However, the relationships between Car depletion in the LH, assembly of the prokaryotic reaction center (RC)-LH complex, and quinone exchange are not fully understood. Here, we analyzed native RC-LH (nRC-LH) and Car-depleted RC-LH (dRC-LH) complexes in Roseiflexus castenholzii, a chlorosome-less filamentous anoxygenic phototroph that forms the deepest branch of photosynthetic bacteria. Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαβ subunits in the nRC-LH, forming a sealed LH ring that was disrupted by transmembrane helices from cytochrome c and subunit X to allow quinone shuttling. dRC-LH lacked subunit X, leading to an exposed LH ring with a larger opening, which together accelerated the quinone exchange rate. We also assigned amino acid sequences of subunit X and two hypothetical proteins Y and Z that functioned in forming the quinone channel and stabilizing the RC-LH interactions. This study reveals the structural basis by which Cars assembly regulates the architecture and quinone exchange of bacterial RC-LH complexes. These findings mark an important step forward in understanding the evolution and diversity of prokaryotic photosynthetic apparatus.
Collapse
Affiliation(s)
- Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Yang Shi
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence & Department of Neurobiology and Department of Pathology of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Xinyi Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Jiejie Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. LouisSt. LouisUnited States
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
5
|
Qi CH, Wang GL, Wang FF, Xin Y, Zou MJ, Madigan MT, Wang-Otomo ZY, Ma F, Yu LJ. New insights on the photocomplex of Roseiflexus castenholzii revealed from comparisons of native and carotenoid-depleted complexes. J Biol Chem 2023; 299:105057. [PMID: 37468106 PMCID: PMC10432797 DOI: 10.1016/j.jbc.2023.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
In wild-type phototrophic organisms, carotenoids (Crts) are primarily packed into specific pigment-protein complexes along with (Bacterio)chlorophylls and play important roles in the photosynthesis. Diphenylamine (DPA) inhibits carotenogenesis but not phototrophic growth of anoxygenic phototrophs and eliminates virtually all Crts from photocomplexes. To investigate the effect of Crts on assembly of the reaction center-light-harvesting (RC-LH) complex from the filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii, we generated carotenoidless (Crt-less) RC-LH complexes by growing cells in the presence of DPA. Here, we present cryo-EM structures of the Rfl. castenholzii native and Crt-less RC-LH complexes with resolutions of 2.86 Å and 2.85 Å, respectively. From the high-quality map obtained, several important but previously unresolved details in the Rfl. castenholzii RC-LH structure were determined unambiguously including the assignment and likely function of three small polypeptides, and the content and spatial arrangement of Crts with bacteriochlorophyll molecules. The overall structures of Crt-containing and Crt-less complexes are similar. However, structural comparisons showed that only five Crts remain in complexes from DPA-treated cells and that the subunit X (TMx) flanked on the N-terminal helix of the Cyt-subunit is missing. Based on these results, the function of Crts in the assembly of the Rfl. castenholzii RC-LH complex and the molecular mechanism of quinone exchange is discussed. These structural details provide a fresh look at the photosynthetic apparatus of an evolutionary ancient phototroph as well as new insights into the importance of Crts for proper assembly and functioning of the RC-LH complex.
Collapse
Affiliation(s)
- Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yueyong Xin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | | | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Zabelin AA, Khristin AM, Kovalev VB, Khatypov RA, Shkuropatov AY. Primary charge separation in native and plant pheophytin a-modified reaction centers of Chloroflexus aurantiacus: Ultrafast transient absorption measurements at low temperature. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148976. [PMID: 37061174 DOI: 10.1016/j.bbabio.2023.148976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Ultrafast transient absorption (TA) spectroscopy was used to study electron transfer (ET) at 100 K in native (as isolated) reaction centers (RCs) of the green filamentous photosynthetic bacterium Chloroflexus (Cfl.) aurantiacus. The rise and decay of the 1028 nm anion absorption band of the monomeric bacteriochlorophyll a molecule at the BA binding site were monitored as indicators of the formation and decay of the P+BA- state, respectively (P is the primary electron donor, a dimer of bacteriochlorophyll a molecules). Global analysis of the TA data indicated the presence of at least two populations of the P⁎ excited state, which decay by distinct means, forming the state P+HA- (HA is a photochemically active bacteriopheophytin a molecule). In one population (~65 %), P⁎ decays in ~2 ps with the formation of P+HA- via a short-lived P+BA- intermediate in a two-step ET process P⁎ → P+BA- → P+HA-. In another population (~35 %), P⁎ decays in ~20 ps to form P+HA- via a superexchange mechanism without producing measurable amounts of P+BA-. Similar TA measurements performed on chemically modified RCs of Cfl. aurantiacus containing plant pheophytin a at the HA binding site also showed the presence of two P⁎ populations (~2 and ~20 ps), with P⁎ decaying through P+BA- only in the ~2 ps population. At 100 K, the quantum yield of primary charge separation in native RCs is determined to be close to unity. The results are discussed in terms of involving a one-step P⁎ → P+HA- superexchange process as an alternative highly efficient ET pathway in Cfl. aurantiacus RCs.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anton M Khristin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Vyacheslav B Kovalev
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Ravil A Khatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anatoly Yu Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation.
| |
Collapse
|
7
|
Du J, Xin J, Liu M, Zhang X, He H, Wu J, Xu X. Preparation of Photo-Bioelectrochemical Cells With the RC-LH Complex From Roseiflexus castenholzii. Front Microbiol 2022; 13:928046. [PMID: 35783423 PMCID: PMC9243436 DOI: 10.3389/fmicb.2022.928046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Roseiflexus castenholzii is an ancient green non-sulfur bacteria that absorbs the solar energy through bacteriochlorophylls (BChls) bound in the only light harvesting (LH) complex, and transfers to the reaction center (RC), wherein primary charge separation occurs and transforms the energy into electrochemical potentials. In contrast to purple bacteria, R. castenholzii RC-LH (rcRC-LH) does not contain an H subunit. Instead, a tightly bound tetraheme cytochrome c subunit is exposed on the P-side of the RC, which contains three BChls, three bacteriopheophytins (BPheos), two menaquinones, and one iron for electron transfer. These novel structural features of the rcRC-LH are advantageous for enhancing the electron transfer efficiency and subsequent photo-oxidation of the c-type hemes. However, the photochemical properties of rcRC-LH and its applications in developing the photo-bioelectrochemical cells (PBECs) have not been characterized. Here, we prepared a PBEC using overlapped fluorine-doped tin oxide (FTO) glass and Pt-coated glass as electrodes, and rcRC-LH mixed with varying mediators as the electrolyte. Absence of the H subunit allows rcRC-LH to be selectively adhered onto the hydrophilic surface of the front electrode with its Q-side. Upon illumination, the photogenerated electrons directly enter the front electrode and transfer to the counter electrode, wherein the accepted electrons pass through the exposed c-type hemes to reduce the excited P+, generating a steady-state current of up to 320 nA/cm2 when using 1-Methoxy-5-methylphenazinium methyl sulfate (PMS) as mediator. This study demonstrated the novel photoelectric properties of rcRC-LH and its advantages in preparing effective PBECs, showcasing a potential of this complex in developing new type PBECs.
Collapse
Affiliation(s)
- Jinsong Du
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Jiyu Xin
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Menghua Liu
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Xin Zhang
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Huimin He
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Jingyi Wu
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Xiaoling Xu
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
8
|
Zabelin AA, Shkuropatov AY. Pigment-modified reaction centers of Chloroflexus aurantiacus: chemical exchange of bacteriopheophytins with plant-type pheophytins. PHOTOSYNTHESIS RESEARCH 2021; 149:313-328. [PMID: 34138452 DOI: 10.1007/s11120-021-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
The pigment composition of isolated reaction centers (RCs) of the green filamentous bacterium Chloroflexus (Cfl.) aurantiacus was changed by chemical exchange of native bacteriopheophytin a (BPheo) molecules with externally added pheophytin a (Pheo) or [3-acetyl]-Pheo upon incubation of RC/pheophytin mixtures at room temperature and 45 °C. The modified RCs were characterized by Vis/NIR absorption spectroscopy, and the effect of pigment exchange on RC photochemical activity was assessed by measuring the photoaccumulation of the reduced pigment at the binding site HA. It is shown that both pheophytins can be exchanged into the HA site instead of BPheo by incubation at room temperature. While the newly introduced Pheo molecule is not active in electron transfer, the [3-acetyl]-Pheo molecule is able to replace functionally the photoreducible HA BPheo molecule with the formation of the [3-acetyl]-Pheo- radical anion instead of the BPheo-. After incubation at 45 °C, the majority (~ 90%) of HA BPheo molecules is replaced by both Pheo and [3-acetyl]-Pheo. Only a partial replacement of inactive BPheo molecules with pheophytins is observed even when the incubation temperature is raised to 50 °C. The results are discussed in terms of (i) differences in the accessibility of BPheo binding sites for extraneous pigments depending on structural constraints and incubation temperature and (ii) the effect of the reduction potential of pigments introduced into the HA site on the energetics of the charge separation process. The possible implication of Pheo-exchanged preparations for studying early electron-transfer events in Cfl. aurantiacus RCs is considered.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Basic Biological Problems of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russian Federation
| | - Anatoly Ya Shkuropatov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Basic Biological Problems of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russian Federation.
| |
Collapse
|
9
|
Kimura Y, Nojima S, Nakata K, Yamashita T, Wang XP, Takenaka S, Akimoto S, Kobayashi M, Madigan MT, Wang-Otomo ZY, Yu LJ. Electrostatic charge controls the lowest LH1 Q y transition energy in the triply extremophilic purple phototrophic bacterium, Halorhodospira halochloris. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148473. [PMID: 34310933 DOI: 10.1016/j.bbabio.2021.148473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Halorhodospira (Hlr.) halochloris is a unique phototrophic purple bacterium because it is a triple extremophile-the organism is thermophilic, alkalophilic, and halophilic. The most striking photosynthetic feature of Hlr. halochloris is that the bacteriochlorophyll (BChl) b-containing core light-harvesting (LH1) complex surrounding its reaction center (RC) exhibits its LH1 Qy absorption maximum at 1016 nm, which is the lowest transition energy among phototrophic organisms. Here we report that this extraordinarily red-shifted LH1 Qy band of Hlr. halochloris exhibits interconvertible spectral shifts depending on the electrostatic charge distribution around the BChl b molecules. The 1016 nm band of the Hlr. halochloris LH1-RC complex was blue-shifted to 958 nm upon desalting or pH decrease but returned to its original position when supplemented with salts or pH increase. Resonance Raman analysis demonstrated that these interconvertible spectral shifts are not associated with the strength of hydrogen-bonding interactions between BChl b and LH1 polypeptides. Furthermore, circular dichroism signals for the LH1 Qy transition of Hlr. halochloris appeared with a positive sign (as in BChl b-containing Blastochloris species) and opposite those of BChl a-containing purple bacteria, possibly due to a combined effect of slight differences in the transition dipole moments between BChl a and BChl b and in the interactions between adjacent BChls in their assembled state. Based on these findings and LH1 amino acid sequences, it is proposed that Hlr. halochloris evolved its unique and tunable light-harvesting system with electrostatic charges in order to carry out photosynthesis and thrive in its punishing hypersaline and alkaline habitat.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan.
| | - Shingo Nojima
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Kazuna Nakata
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | | | - Xiang-Ping Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Seiji Akimoto
- Department of Science, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | | | - Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | | | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
10
|
Saghaï A, Zivanovic Y, Moreira D, Tavera R, López-García P. A Novel Microbialite-Associated Phototrophic Chloroflexi Lineage Exhibiting a Quasi-Clonal Pattern along Depth. Genome Biol Evol 2021; 12:1207-1216. [PMID: 32544224 PMCID: PMC7486959 DOI: 10.1093/gbe/evaa122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
Chloroflexales (Chloroflexi) are typical members of the anoxygenic photosynthesizing component of microbial mats and have mostly been characterized from communities associated to hot springs. Here, we report the assembly of five metagenome-assembled genomes (MAGs) of a novel lineage of Chloroflexales found in mesophilic lithifying microbial mats (microbialites) in Lake Alchichica (Mexico). Genomic and phylogenetic analyses revealed that the bins shared 92% of their genes, and these genes were nearly identical despite being assembled from samples collected along a depth gradient (1-15 m depth). We tentatively name this lineage Candidatus Lithoflexus mexicanus. Metabolic predictions based on the MAGs suggest that these chlorosome-lacking mixotrophs share features in central carbon metabolism, electron transport, and adaptations to life under oxic and anoxic conditions, with members of two related lineages, Chloroflexineae and Roseiflexineae. Contrasting with the other diverse microbialite community members, which display much lower genomic conservation along the depth gradient, Ca. L. mexicanus MAGs exhibit remarkable similarity. This might reflect a particular flexibility to acclimate to varying light conditions with depth or the capacity to occupy a very specific spatial ecological niche in microbialites from different depths. Alternatively, Ca. L. mexicanus may also have the ability to modulate its gene expression as a function of the local environmental conditions during diel cycles in microbialites along the depth gradient.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.,Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yvan Zivanovic
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Rosaluz Tavera
- Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
11
|
Gardiner AT, Nguyen-Phan TC, Cogdell RJ. A comparative look at structural variation among RC-LH1 'Core' complexes present in anoxygenic phototrophic bacteria. PHOTOSYNTHESIS RESEARCH 2020; 145:83-96. [PMID: 32430765 PMCID: PMC7423801 DOI: 10.1007/s11120-020-00758-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 05/30/2023]
Abstract
All purple photosynthetic bacteria contain RC-LH1 'Core' complexes. The structure of this complex from Rhodobacter sphaeroides, Rhodopseudomonas palustris and Thermochromatium tepidum has been solved using X-ray crystallography. Recently, the application of single particle cryo-EM has revolutionised structural biology and the structure of the RC-LH1 'Core' complex from Blastochloris viridis has been solved using this technique, as well as the complex from the non-purple Chloroflexi species, Roseiflexus castenholzii. It is apparent that these structures are variations on a theme, although with a greater degree of structural diversity within them than previously thought. Furthermore, it has recently been discovered that the only phototrophic representative from the phylum Gemmatimonadetes, Gemmatimonas phototrophica, also contains a RC-LH1 'Core' complex. At present only a low-resolution EM-projection map exists but this shows that the Gemmatimonas phototrophica complex contains a double LH1 ring. This short review compares these different structures and looks at the functional significance of these variations from two main standpoints: energy transfer and quinone exchange.
Collapse
Affiliation(s)
- Alastair T Gardiner
- Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradska 237, 379 01, Třeboň, Czech Republic.
| | - Tu C Nguyen-Phan
- Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
12
|
Shi Y, Xin Y, Wang C, Blankenship RE, Sun F, Xu X. Cryo-EM structures of the air-oxidized and dithionite-reduced photosynthetic alternative complex III from Roseiflexus castenholzii. SCIENCE ADVANCES 2020; 6:eaba2739. [PMID: 32832681 PMCID: PMC7439408 DOI: 10.1126/sciadv.aba2739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/11/2020] [Indexed: 05/27/2023]
Abstract
Alternative complex III (ACIII) is a multisubunit quinol:electron acceptor oxidoreductase that couples quinol oxidation with transmembrane proton translocation in both the respiratory and photosynthetic electron transport chains of bacteria. The coupling mechanism, however, is poorly understood. Here, we report the cryo-EM structures of air-oxidized and dithionite-reduced ACIII from the photosynthetic bacterium Roseiflexus castenholzii at 3.3- and 3.5-Å resolution, respectively. We identified a menaquinol binding pocket and an electron transfer wire comprising six hemes and four iron-sulfur clusters that is capable of transferring electrons to periplasmic acceptors. We detected a proton translocation passage in which three strictly conserved, mid-passage residues are likely essential for coupling the redox-driven proton translocation across the membrane. These results allow us to propose a previously unrecognized coupling mechanism that links the respiratory and photosynthetic functions of ACIII. This study provides a structural basis for further investigation of the energy transformation mechanisms in bacterial photosynthesis and respiration.
Collapse
Affiliation(s)
- Yang Shi
- National Laboratory of Biomacromolecules, National Center of Protein Science-Beijing, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueyong Xin
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou 311121, Zhejiang Province, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Chao Wang
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou 311121, Zhejiang Province, China
| | - Robert E. Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fei Sun
- National Laboratory of Biomacromolecules, National Center of Protein Science-Beijing, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoling Xu
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou 311121, Zhejiang Province, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Medicine and The Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
13
|
Wang C, Xin Y, Min Z, Qi J, Zhang C, Xu X. Structural basis underlying the electron transfer features of a blue copper protein auracyanin from the photosynthetic bacterium Roseiflexus castenholzii. PHOTOSYNTHESIS RESEARCH 2020; 143:301-314. [PMID: 31933173 DOI: 10.1007/s11120-020-00709-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Auracyanin (Ac) is a blue copper protein that mediates the electron transfer between Alternative Complex III (ACIII) and downstream electron acceptors in both fort chains of filamentous anoxygenic phototrophs. Here, we extracted and purified the air-oxidized RfxAc from the photoheterotrophically grown Roseiflexus castenholzii, and we illustrated the structural basis underlying its electron transferring features. Spectroscopic and enzymatic analyses demonstrated the reduction of air-oxidized RfxAc by the ACIII upon oxidation of menaquinol-4 and menaquinol-7. Crystal structures of the air-oxidized and Na-dithionite-reduced RfxAc at 2.2 and 2.0 Å resolutions, respectively, showed that the copper ions are coordinated by His77, His146, Cys141, and Met151 in minor different geometries. The Cu1-Sδ bond length increase of Met151, and the electron density Fourier differences at Cu1 and His77 demonstrated their essential roles in the dithionite-induced reduction. Structural comparisons further revealed that the RfxAc contains a Chloroflexus aurantiacus Ac-A-like copper binding pocket and a hydrophobic patch surrounding the exposed edge of His146 imidazole, as well as an Ac-B-like Ser- and Thr-rich polar patch located at a different site on the surface. These spectroscopic and structural features allow RfxAc to mediate electron transfers between the ACIII and redox partners different from those of Ac-A and Ac-B. These results provide a structural basis for further investigating the electron transfer and energy transformation mechanism of bacterial photosynthesis, and the diversity and evolution of electron transport chains.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yueyong Xin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zhenzhen Min
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Junjie Qi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chenyun Zhang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoling Xu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
- Institute of Cardiovascular Disease Research, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang, China.
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
14
|
Nakahara N, Nobu MK, Takaki Y, Miyazaki M, Tasumi E, Sakai S, Ogawara M, Yoshida N, Tamaki H, Yamanaka Y, Katayama A, Yamaguchi T, Takai K, Imachi H. Aggregatilinea lenta gen. nov., sp. nov., a slow-growing, facultatively anaerobic bacterium isolated from subseafloor sediment, and proposal of the new order Aggregatilineales ord. nov. within the class Anaerolineae of the phylum Chloroflexi. Int J Syst Evol Microbiol 2019; 69:1185-1194. [PMID: 30775966 DOI: 10.1099/ijsem.0.003291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel slow-growing, facultatively anaerobic, filamentous bacterium, strain MO-CFX2T, was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediment collected off the Shimokita Peninsula of Japan. Cells were multicellular filamentous, non-motile and Gram-stain-negative. The filaments were generally more than 20 µm (up to approximately 200 µm) long and 0.5-0.6 µm wide. Cells possessed pili-like structures on the cell surface and a multilayer structure in the cytoplasm. Growth of the strain was observed at 20-37 °C (optimum, 30 °C), pH 5.5-8.0 (pH 6.5-7.0), and 0-30 g l-1 NaCl (5 g l-1 NaCl). Under optimum growth conditions, doubling time and maximum cell density were estimated to be approximately 19 days and ~105 cells ml-1, respectively. Strain MO-CFX2T grew chemoorganotrophically on a limited range of organic substrates in anaerobic conditions. The major cellular fatty acids were saturated C16 : 0 (47.9 %) and C18 : 0 (36.9 %), and unsaturated C18 : 1ω9c (6.0 %) and C16 : 1ω7 (5.1 %). The G+C content of genomic DNA was 63.2 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-CFX2T shares a notably low sequence identity with its closest relatives, which were Thermanaerothrix daxensis GNS-1T and Thermomarinilinea lacunifontana SW7T (both 85.8 % sequence identity). Based on these phenotypic and genomic properties, we propose the name Aggregatilinea lenta gen. nov., sp. nov. for strain MO-CFX2T (=KCTC 15625T, =JCM 32065T). In addition, we also propose the associated family and order as Aggregatilineaceae fam. nov. and Aggregatilineales ord. nov., respectively.
Collapse
Affiliation(s)
- Nozomi Nakahara
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.,Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Miyuki Ogawara
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Naoko Yoshida
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Yuko Yamanaka
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
15
|
Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. A brief survey of the "cytochromome". Adv Microb Physiol 2019; 75:69-135. [PMID: 31655743 DOI: 10.1016/bs.ampbs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.
Collapse
|
16
|
Xin Y, Shi Y, Niu T, Wang Q, Niu W, Huang X, Ding W, Yang L, Blankenship RE, Xu X, Sun F. Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote. Nat Commun 2018; 9:1568. [PMID: 29674684 PMCID: PMC5908803 DOI: 10.1038/s41467-018-03881-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
Photosynthetic prokaryotes evolved diverse light-harvesting (LH) antennas to absorb sunlight and transfer energy to reaction centers (RC). The filamentous anoxygenic phototrophs (FAPs) are important early branching photosynthetic bacteria in understanding the origin and evolution of photosynthesis. How their photosynthetic machinery assembles for efficient energy transfer is yet to be elucidated. Here, we report the 4.1 Å structure of photosynthetic core complex from Roseiflexus castenholzii by cryo-electron microscopy. The RC–LH complex has a tetra-heme cytochrome c bound RC encompassed by an elliptical LH ring that is assembled from 15 LHαβ subunits. An N-terminal transmembrane helix of cytochrome c inserts into the LH ring, not only yielding a tightly bound cytochrome c for rapid electron transfer, but also opening a slit in the LH ring, which is further flanked by a transmembrane helix from a newly discovered subunit X. These structural features suggest an unusual quinone exchange model of prokaryotic photosynthetic machinery. Filamentous anoxygenic phototrophs (FAPs) are phylogenetically distant from other anoxygenic photosynthetic bacteria. Here the authors present the 4.1 Å cryo-EM structure of the photosynthetic core complex from the FAP Roseiflexus castenholzii and propose a model for energy and electron transfer.
Collapse
Affiliation(s)
- Yueyong Xin
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou, 311121, Zhejiang Province, China
| | - Yang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, 100049, Beijing, China
| | - Tongxin Niu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, 100049, Beijing, China
| | - Qingqiang Wang
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou, 311121, Zhejiang Province, China
| | - Wanqiang Niu
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou, 311121, Zhejiang Province, China
| | - Xiaojun Huang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
| | - Wei Ding
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
| | - Lei Yang
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou, 311121, Zhejiang Province, China
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xiaoling Xu
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou, 311121, Zhejiang Province, China.
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 19 Yuquan Road, 100049, Beijing, China. .,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China.
| |
Collapse
|
17
|
Ward LM, Hemp J, Shih PM, McGlynn SE, Fischer WW. Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer. Front Microbiol 2018. [PMID: 29515543 PMCID: PMC5826079 DOI: 10.3389/fmicb.2018.00260] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The evolutionary mechanisms behind the extant distribution of photosynthesis is a point of substantial contention. Hypotheses range from the presence of phototrophy in the last universal common ancestor and massive gene loss in most lineages, to a later origin in Cyanobacteria followed by extensive horizontal gene transfer into the extant phototrophic clades, with intermediate scenarios that incorporate aspects of both end-members. Here, we report draft genomes of 11 Chloroflexi: the phototrophic Chloroflexia isolate Kouleothrix aurantiaca as well as 10 genome bins recovered from metagenomic sequencing of microbial mats found in Japanese hot springs. Two of these metagenome bins encode photrophic reaction centers and several of these bins form a metabolically diverse, monophyletic clade sister to the Anaerolineae class that we term Candidatus Thermofonsia. Comparisons of organismal (based on conserved ribosomal) and phototrophy (reaction center and bacteriochlorophyll synthesis) protein phylogenies throughout the Chloroflexi demonstrate that two new lineages acquired phototrophy independently via horizontal gene transfer (HGT) from different ancestral donors within the classically phototrophic Chloroflexia class. These results illustrate a complex history of phototrophy within this group, with metabolic innovation tied to HGT. These observations do not support simple hypotheses for the evolution of photosynthesis that require massive character loss from many clades; rather, HGT appears to be the defining mechanic for the distribution of phototrophy in many of the extant clades in which it appears.
Collapse
Affiliation(s)
- Lewis M Ward
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - James Hemp
- Department of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Patrick M Shih
- Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Japan
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
18
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
19
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
20
|
Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2015; 126:111-34. [PMID: 25512103 PMCID: PMC4582080 DOI: 10.1007/s11120-014-0065-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
21
|
Choi AR, Shi L, Brown LS, Jung KH. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. PLoS One 2014; 9:e110643. [PMID: 25347537 PMCID: PMC4210194 DOI: 10.1371/journal.pone.0110643] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/02/2014] [Indexed: 12/02/2022] Open
Abstract
A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids.
Collapse
Affiliation(s)
- Ah Reum Choi
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Lichi Shi
- Department of Physics, University of Guelph, Ontario, Canada
| | - Leonid S. Brown
- Department of Physics, University of Guelph, Ontario, Canada
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
Zhao C, Yue H, Cheng Q, Chen S, Yang S. What Caused the Formation of the Absorption Maximum at 421 nmin vivoSpectra ofRhodopseudomonas palustris. Photochem Photobiol 2014; 90:1287-92. [DOI: 10.1111/php.12334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chungui Zhao
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Huiying Yue
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Qianru Cheng
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics; Michigan State University; East Lansing MI
| | - Suping Yang
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| |
Collapse
|
23
|
Xin Y, Pan J, Collins AM, Lin S, Blankenship RE. Excitation energy transfer and trapping dynamics in the core complex of the filamentous photosynthetic bacterium Roseiflexus castenholzii. PHOTOSYNTHESIS RESEARCH 2012; 111:149-156. [PMID: 21792612 DOI: 10.1007/s11120-011-9669-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
The light-harvesting core complex of the thermophilic filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii is intrinsic to the cytoplasmic membrane and intimately bound to the reaction center (RC). Using ultrafast transient absorption and time-resolved fluorescence spectroscopy with selective excitation, energy transfer, and trapping dynamics in the core complex have been investigated at room temperature in both open and closed RCs. Results presented in this report revealed that the excited energy transfer from the BChl 800 to the BChl 880 band of the antenna takes about 2 ps independent of the trapping by the RC. The time constants for excitation quenching in the core antenna BChl 880 by open and closed RCs were found to be 60 and 210 ps, respectively. Assuming that the light harvesting complex is generally similar to LH1 of purple bacteria, the possible structural and functional aspects of this unique antenna complex are discussed. The results show that the core complex of Roseiflexus castenholzii contains characteristics of both purple bacteria and Chloroflexus aurantiacus.
Collapse
Affiliation(s)
- Yueyong Xin
- Departments of Biology and Chemistry, Washington University, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
24
|
Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Yuzawa Y, Nishihara H, Haraguchi T, Masuda S, Shimojima M, Shimoyama A, Yuasa H, Okada N, Ohta H. Phylogeny of galactolipid synthase homologs together with their enzymatic analyses revealed a possible origin and divergence time for photosynthetic membrane biogenesis. DNA Res 2011; 19:91-102. [PMID: 22210603 PMCID: PMC3276260 DOI: 10.1093/dnares/dsr044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The photosynthetic membranes of cyanobacteria and chloroplasts of higher plants have remarkably similar lipid compositions. In particular, thylakoid membranes of both cyanobacteria and chloroplasts are composed of galactolipids, of which monogalactosyldiacylglycerol (MGDG) is the most abundant, although MGDG biosynthetic pathways are different in these organisms. Comprehensive phylogenetic analysis revealed that MGDG synthase (MGD) homologs of filamentous anoxygenic phototrophs Chloroflexi have a close relationship with MGDs of Viridiplantae (green algae and land plants). Furthermore, analyses for the sugar specificity and anomeric configuration of the sugar head groups revealed that one of the MGD homologs exhibited a true MGDG synthetic activity. We therefore presumed that higher plant MGDs are derived from this ancestral type of MGD genes, and genes involved in membrane biogenesis and photosystems have been already functionally associated at least at the time of Chloroflexi divergence. As MGD gene duplication is an important event during plastid evolution, we also estimated the divergence time of type A and B MGDs. Our analysis indicated that these genes diverged ∼323 million years ago, when Spermatophyta (seed plants) were appearing. Galactolipid synthesis is required to produce photosynthetic membranes; based on MGD gene sequences and activities, we have proposed a novel evolutionary model that has increased our understanding of photosynthesis evolution.
Collapse
Affiliation(s)
- Yuichi Yuzawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Collins AM, Wen J, Blankenship RE. Photosynthetic Light-Harvesting Complexes. MOLECULAR SOLAR FUELS 2011. [DOI: 10.1039/9781849733038-00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The light-harvesting antenna systems found in photosynthetic organisms function to collect light and transfer energy in the photon to a reaction center, where electron transfer gives rise to long-term energy storage. The antenna systems found in different types of photosynthetic organisms adapt the organisms to very different photic environments, and almost certainly have been invented multiple times during evolution. The diverse collection of photosynthetic antenna systems is described in terms of their pigment and protein components and their organization in the photosystem. The Förster theory is described as the physical basis of energy transfer in photosynthetic antennas, although in many systems it is not adequate to describe energy transfer in complexes with closely interacting pigments. Regulatory aspects of antennas are described, including the process of non-photochemical quenching.
Collapse
Affiliation(s)
- Aaron M. Collins
- Departments of Biology and Chemistry Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Jianzhong Wen
- Departments of Biology and Chemistry Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Robert E. Blankenship
- Departments of Biology and Chemistry Washington University in St. Louis, St. Louis, MO 63130 USA
| |
Collapse
|
27
|
Tang KH, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ, Honchak BM, Karbach LE, Land ML, Lapidus A, Larimer FW, Mikhailova N, Pitluck S, Pierson BK, Blankenship RE. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 2011; 12:334. [PMID: 21714912 PMCID: PMC3150298 DOI: 10.1186/1471-2164-12-334] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/29/2011] [Indexed: 11/16/2022] Open
Abstract
Background Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus. According to previous reports and the genomic information, perspectives of Cfl. aurantiacus in the evolution of photosynthesis are also discussed. Conclusions The genomic analyses presented in this report, along with previous physiological, ecological and biochemical studies, indicate that the anoxygenic phototroph Cfl. aurantiacus has many interesting and certain unique features in its metabolic pathways. The complete genome may also shed light on possible evolutionary connections of photosynthesis.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology and Department of Chemistry, Campus Box 1137, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. ISME JOURNAL 2011; 5:1279-90. [PMID: 21697962 DOI: 10.1038/ismej.2011.37] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The phototrophic microbial mat community of Mushroom Spring, an alkaline siliceous hot spring in Yellowstone National Park, was studied by metatranscriptomic methods. RNA was extracted from mat specimens collected at four timepoints during light-to-dark and dark-to-light transitions in one diel cycle, and these RNA samples were analyzed by both pyrosequencing and SOLiD technologies. Pyrosequencing was used to assess the community composition, which showed that ~84% of the rRNA was derived from members of four kingdoms Cyanobacteria, Chloroflexi, Chlorobi and Acidobacteria. Transcription of photosynthesis-related genes conclusively demonstrated the phototrophic nature of two newly discovered populations; these organisms, which were discovered through metagenomics, are currently uncultured and previously undescribed members of Chloroflexi and Chlorobi. Data sets produced by SOLiD sequencing of complementary DNA provided >100-fold greater sequence coverage. The much greater sequencing depth allowed transcripts to be detected from ~15,000 genes and could be used to demonstrate statistically significant differential transcription of thousands of genes. Temporal differences for in situ transcription patterns of photosynthesis-related genes suggested that the six types of chlorophototrophs in the mats may use different strategies for maximizing their solar-energy capture, usage and growth. On the basis of both temporal pattern and transcript abundance, intra-guild gene expression differences were also detected for two populations of the oxygenic photosynthesis guild. This study showed that, when community-relevant genomes and metagenomes are available, SOLiD sequencing technology can be used for metatranscriptomic analyses, and the results suggested that this method can potentially reveal new insights into the ecophysiology of this model microbial community.
Collapse
|
29
|
Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N, Heidelberg JF, Grossman AR, Bhaya D, Cohan FM, Kühl M, Bryant DA, Ward DM. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME JOURNAL 2011; 5:1262-78. [PMID: 21697961 DOI: 10.1038/ismej.2011.73] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phototrophic microbial mat communities from 60°C and 65°C regions in the effluent channels of Mushroom and Octopus Springs (Yellowstone National Park, WY, USA) were investigated by shotgun metagenomic sequencing. Analyses of assembled metagenomic sequences resolved six dominant chlorophototrophic populations and permitted the discovery and characterization of undescribed but predominant community members and their physiological potential. Linkage of phylogenetic marker genes and functional genes showed novel chlorophototrophic bacteria belonging to uncharacterized lineages within the order Chlorobiales and within the Kingdom Chloroflexi. The latter is the first chlorophototrophic member of Kingdom Chloroflexi that lies outside the monophyletic group of chlorophototrophs of the Order Chloroflexales. Direct comparison of unassembled metagenomic sequences to genomes of representative isolates showed extensive genetic diversity, genomic rearrangements and novel physiological potential in native populations as compared with genomic references. Synechococcus spp. metagenomic sequences showed a high degree of synteny with the reference genomes of Synechococcus spp. strains A and B', but synteny declined with decreasing sequence relatedness to these references. There was evidence of horizontal gene transfer among native populations, but the frequency of these events was inversely proportional to phylogenetic relatedness.
Collapse
Affiliation(s)
- Christian G Klatt
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Collins AM, Kirmaier C, Holten D, Blankenship RE. Kinetics and energetics of electron transfer in reaction centers of the photosynthetic bacterium Roseiflexus castenholzii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:262-9. [PMID: 21126505 DOI: 10.1016/j.bbabio.2010.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
The kinetics and thermodynamics of the photochemical reactions of the purified reaction center (RC)-cytochrome (Cyt) complex from the chlorosome-lacking, filamentous anoxygenic phototroph, Roseiflexus castenholzii are presented. The RC consists of L- and M-polypeptides containing three bacteriochlorophyll (BChl), three bacteriopheophytin (BPh) and two quinones (Q(A) and Q(B)), and the Cyt is a tetraheme subunit. Two of the BChls form a dimer P that is the primary electron donor. At 285K, the lifetimes of the excited singlet state, P*, and the charge-separated state P(+)H(A)(-) (where H(A) is the photoactive BPh) were found to be 3.2±0.3 ps and 200±20 ps, respectively. Overall charge separation P*→→ P(+)Q(A)(-) occurred with ≥90% yield at 285K. At 77K, the P* lifetime was somewhat shorter and the P(+)H(A)(-) lifetime was essentially unchanged. Poteniometric titrations gave a P(865)/P(865)(+) midpoint potential of +390mV vs. SHE. For the tetraheme Cyt two distinct midpoint potentials of +85 and +265mV were measured, likely reflecting a pair of low-potential hemes and a pair of high-potential hemes, respectively. The time course of electron transfer from reduced Cyt to P(+) suggests an arrangement where the highest potential heme is not located immediately adjacent to P. Comparisons of these and other properties of isolated Roseiflexus castenholzii RCs to those from its close relative Chloroflexus aurantiacus and to RCs from the purple bacteria are made.
Collapse
Affiliation(s)
- Aaron M Collins
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
31
|
Collins AM, Qian P, Tang Q, Bocian DF, Hunter CN, Blankenship RE. Light-harvesting antenna system from the phototrophic bacterium Roseiflexus castenholzii. Biochemistry 2010; 49:7524-31. [PMID: 20672862 DOI: 10.1021/bi101036t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosynthetic organisms have evolved diverse light-harvesting complexes to harness light of various qualities and intensities. Photosynthetic bacteria can have (bacterio)chlorophyll Q(y) antenna absorption bands ranging from approximately 650 to approximately 1100 nm. This broad range of wavelengths has allowed many organisms to thrive in unique light environments. Roseiflexus castenholzii is a niche-adapted, filamentous anoxygenic phototroph (FAP) that lacks chlorosomes, the dominant antenna found in most green bacteria, and here we describe the purification of a full complement of photosynthetic complexes: the light-harvesting (LH) antenna, reaction center (RC), and core complex (RC-LH). By high-performance liquid chromatography separation of bacteriochlorophyll and bacteriopheophytin pigments extracted from the core complex and the RC, the number of subunits that comprise the antenna was determined to be 15 +/- 1. Resonance Raman spectroscopy of the carbonyl stretching region displayed modes indicating that 3C-acetyl groups of BChl a are all involved in molecular interactions probably similar to those found in LH1 complexes from purple photosynthetic bacteria. Finally, two-dimensional projections of negatively stained core complexes and the LH antenna revealed a closed, slightly elliptical LH ring with an average diameter of 130 +/- 10 A surrounding a single RC that lacks an H-subunit but is associated with a tetraheme c-type cytochrome.
Collapse
Affiliation(s)
- Aaron M Collins
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
32
|
Tsukatani Y, Nakayama N, Shimada K, Mino H, Itoh S, Matsuura K, Hanada S, Nagashima KVP. Characterization of a blue-copper protein, auracyanin, of the filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. Arch Biochem Biophys 2009; 490:57-62. [PMID: 19683508 DOI: 10.1016/j.abb.2009.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 08/02/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
A blue-copper protein auracyanin of the filamentous anoxygenic phototroph Roseiflexus castenholzii was purified and characterized. Genomic sequence analysis showed that R. castenholzii has only one auracyanin, whereas Chloroflexus aurantiacus is known to have two auracyanins, A and B. Absorption spectrum of the Roseiflexus auracyanin was similar to that of auracyanin B of C. aurantiacus. On the other hand, ESR spectrum of the Roseiflexus auracyanin resembles that of auracyanin A of C. aurantiacus. These results suggest that the blue-copper protein auracyanin from R. castenholzii shares features with each of auracyanin A and B. Amino acid sequence alignment of auracyanins from filamentous anoxygenic phototrophs also demonstrated the chimeral feature of the primary structure of the Roseiflexus auracyanin, i.e., auracyanin A-like amino-terminal characteristics and auracyanin B-like one-residue spacing at the Cu-binding loop in the carboxyl-terminus.
Collapse
Affiliation(s)
- Yusuke Tsukatani
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Collins AM, Xin Y, Blankenship RE. Pigment organization in the photosynthetic apparatus of Roseiflexus castenholzii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1050-6. [PMID: 19272352 DOI: 10.1016/j.bbabio.2009.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
The light-harvesting-reaction center (LHRC) complex from the chlorosome-lacking filamentous anoxygenic phototroph (FAP), Roseiflexus castenholzii (R. castenholzii) was purified and characterized for overall pigment organization. The LHRC is a single complex that is comprised of light harvesting (LH) and reaction center (RC) polypeptides as well as an attached c-type cytochrome. The dominant carotenoid found in the LHRC is keto-gamma-carotene, which transfers excitation to the long wavelength antenna band with 35% efficiency. Linear dichroism and fluorescence polarization measurements indicate that the long wavelength antenna pigments absorbing around 880 nm are perpendicular to the membrane plane, with the corresponding Q(y) transition dipoles in the plane of the membrane. The antenna pigments absorbing around 800 nm, as well as the bound carotenoid, are oriented at a large angle with respect to the membrane. The antenna pigments spectroscopically resemble the well-studied LH2 complex from purple bacteria, however the close association with the RC makes the light harvesting component of this complex functionally more like LH1.
Collapse
Affiliation(s)
- Aaron M Collins
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| |
Collapse
|
35
|
Kimura Y, Alric J, Verméglio A, Masuda S, Hagiwara Y, Matsuura K, Shimada K, Nagashima KVP. A new membrane-bound cytochrome c works as an electron donor to the photosynthetic reaction center complex in the purple bacterium, Rhodovulum sulfidophilum. J Biol Chem 2006; 282:6463-72. [PMID: 17197696 DOI: 10.1074/jbc.m604452200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new type of membrane-bound cytochrome c was found in a marine purple photosynthetic bacterium, Rhodovulum sulfidophilum. This cytochrome c was significantly accumulated in cells growing under anaerobic photosynthetic conditions and showed an apparent molecular mass of approximately 100 kDa when purified and analyzed by SDS-PAGE. The midpoint potential of this cytochrome c was 369 mV. Flash-induced kinetic measurements showed that this new cytochrome c can work as an electron donor to the photosynthetic reaction center. The gene coding for this cytochrome c was cloned and analyzed. The deduced molecular mass was nearly equal to 50 kDa. Its C-terminal heme-containing region showed the highest sequence identity to the water-soluble cytochrome c(2), although its predicted secondary structure resembles that of cytochrome c(y). Phylogenetic analyses suggested that this new cytochrome c has evolved from cytochrome c(2). We, thus, propose its designation as cytochrome c(2m). Mutants lacking this cytochrome or cytochrome c(2) showed the same growth rate as the wild type. However, a double mutant lacking both cytochrome c(2) and c(2m) showed no growth under photosynthetic conditions. It was concluded that either the membrane-bound cytochrome c(2m) or the water-soluble cytochrome c(2) work as a physiological electron carrier in the photosynthetic electron transfer pathway of Rvu. sulfidophilum.
Collapse
Affiliation(s)
- Yasuaki Kimura
- Department of Biological Science, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Frigaard NU, Bryant DA. Chlorosomes: Antenna Organelles in Photosynthetic Green Bacteria. MICROBIOLOGY MONOGRAPHS 2006. [DOI: 10.1007/7171_021] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|