1
|
Winand L, Nett M. Whole-cell biocatalysis with Myxococcus xanthus. Methods Enzymol 2025; 714:219-237. [PMID: 40288840 DOI: 10.1016/bs.mie.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Biocatalysis has become an attractive complement to conventional chemical catalysis in the field of organic synthesis. This trend is due to the excellent chemo-, regio- and stereoselectivity of biocatalysis, which typically avoids the formation of unwanted by-products as well as cross-reactivity between reactants. Since the use of isolated enzymes and their cofactors can be associated with high costs, there is a continued interest in whole-cell biocatalysts. Applications range from the production of chiral building blocks to the derivatization of natural products and the generation of new drug candidates for the pharmaceutical and fine chemical industries. The bacterium Myxococcus xanthus is an emerging cell factory, especially for the production of antibiotics and other bioactive natural products. Not only possesses M. xanthus a considerable tolerance toward xenobiotics, but it is also a metabolically versatile host providing important building blocks for natural product biosynthesis. In this chapter, we describe procedures for the whole-cell biocatalysis with M. xanthus. This also involves methods for the construction of expression plasmids and their transfer into M. xanthus.
Collapse
Affiliation(s)
- Lea Winand
- TU Dortmund University, Department of Biochemical and Chemical Engineering, Dortmund, Germany.
| | - Markus Nett
- TU Dortmund University, Department of Biochemical and Chemical Engineering, Dortmund, Germany.
| |
Collapse
|
2
|
Oklitschek M, Carreira LAM, Muratoğlu M, Søgaard-Andersen L, Treuner-Lange A. Combinatorial control of type IVa pili formation by the four polarized regulators MglA, SgmX, FrzS, and SopA. J Bacteriol 2024; 206:e0010824. [PMID: 39404445 PMCID: PMC11580455 DOI: 10.1128/jb.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
Type IVa pili (T4aP) are widespread and enable bacteria to translocate across surfaces. T4aP engage in cycles of extension, surface adhesion, and retraction, thereby pulling cells forward. Accordingly, the number and localization of T4aP are critical to efficient translocation. Here, we address how T4aP formation is regulated in Myxococcus xanthus, which translocates with a well-defined leading and lagging cell pole using T4aP at the leading pole. This localization is orchestrated by the small GTPase MglA and its downstream effector SgmX that both localize at the leading pole and recruit the PilB extension ATPase to the T4aP machinery at this pole. Here, we identify the previously uncharacterized protein SopA and show that it interacts directly with SgmX, localizes at the leading pole, stimulates polar localization of PilB, and is important for T4aP formation. We corroborate that MglA also recruits FrzS to the leading pole, and FrzS stimulates SgmX recruitment. In addition, FrzS and SgmX separately recruit SopA. Precise quantification of T4aP-formation and T4aP-dependent motility in various mutants supports a model whereby the main pathway for stimulating T4aP formation is the MglA/SgmX pathway. FrzS stimulates this pathway by recruiting SgmX and SopA. SopA stimulates the MglA/SgmX pathway by stimulating the function of SgmX, likely by promoting the SgmX-dependent recruitment of PilB to the T4aP machinery. The architecture of the MglA/SgmX/FrzS/SopA protein interaction network for orchestrating T4aP formation allows for combinatorial regulation of T4aP levels at the leading cell pole resulting in discrete levels of T4aP-dependent motility. IMPORTANCE Type IVa pili (T4aP) are widespread bacterial cell surface structures with important functions in translocation across surfaces, surface adhesion, biofilm formation, and virulence. T4aP-dependent translocation crucially depends on the number of pili. To address how the number of T4aP is regulated, we focused on M. xanthus, which assembles T4aP at the leading cell pole and is a model organism for T4aP biology. Our results support a model whereby the four proteins MglA, SgmX, FrzS, and the newly identified SopA protein establish a highly intricate interaction network for orchestrating T4aP formation at the leading cell pole. This network allows for combinatorial regulation of the number of T4aP resulting in discrete levels of T4aP-dependent motility.
Collapse
Affiliation(s)
- Michel Oklitschek
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Memduha Muratoğlu
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
3
|
Dye KJ, Salar S, Allen U, Smith W, Yang Z. Myxococcus xanthus PilB interacts with c-di-GMP and modulates motility and biofilm formation. J Bacteriol 2023; 205:e0022123. [PMID: 37695853 PMCID: PMC10521364 DOI: 10.1128/jb.00221-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
The regulation of biofilm and motile states as alternate bacterial lifestyles has been studied extensively in flagellated bacteria, where the second messenger cyclic-di-GMP (cdG) plays a crucial role. However, much less is known about the mechanisms of such regulation in motile bacteria without flagella. The bacterial type IV pilus (T4P) serves as a motility apparatus that enables Myxococcus xanthus to move on solid surfaces. PilB, the T4P assembly ATPase, is, therefore, required for T4P-dependent motility in M. xanthus. Interestingly, T4P is also involved in the regulation of exopolysaccharide as the biofilm matrix material in this bacterium. A newly discovered cdG-binding domain, MshEN, is conserved in the N-terminus of PilB (PilBN) in M. xanthus and other bacteria. This suggests that cdG may bind to PilB to control the respective outputs that regulate biofilm development and T4P-powered motility. In this study, we aimed to validate M. xanthus PilB as a cdG effector protein. We performed a systematic mutational analysis of its cdG-binding domain to investigate its relationship with motility, piliation, and biofilm formation. Excluding those resulting in low levels of PilB protein, all other substitution mutations in PilBN resulted in pilB mutants with distinct and differential phenotypes in piliation and biofilm levels in M. xanthus. This suggests that the PilBN domain plays dual roles in modulating motility and biofilm levels, and these two functions of PilB can be dependent on and independent of each other in M. xanthus. IMPORTANCE The regulation of motility and biofilm by cyclic-di-GMP in flagellated bacteria has been extensively investigated. However, our knowledge regarding this regulation in motile bacteria without flagella remains limited. Here, we aimed to address this gap by investigating a non-flagellated bacterium with motility powered by bacterial type-IV pilus (T4P). Previous studies hinted at the possibility of Myxococcus xanthus PilB, the T4P assembly ATPase, serving as a cyclic-di-GMP effector involved in regulating both motility and biofilm. Our findings strongly support the hypothesis that PilB directly interacts with cyclic-di-GMP to act as a potential switch to promote biofilm formation or T4P-dependent motility. These results shed light on the bifurcation of PilB functions and its pivotal role in coordinating biofilm formation and T4P-mediated motility.
Collapse
Affiliation(s)
- Keane J. Dye
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Safoura Salar
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Uvina Allen
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Wraylyn Smith
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Hughes HQ, Christman ND, Dalia TN, Ellison CK, Dalia AB. The PilT retraction ATPase promotes both extension and retraction of the MSHA type IVa pilus in Vibrio cholerae. PLoS Genet 2022; 18:e1010561. [PMID: 36542674 DOI: 10.1371/journal.pgen.1010561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/05/2023] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Diverse bacterial species use type IVa pili (T4aP) to interact with their environments. The dynamic extension and retraction of T4aP is critical for their function, but the mechanisms that regulate this dynamic activity remain poorly understood. T4aP are typically extended via the activity of a dedicated extension motor ATPase and retracted via the action of an antagonistic retraction motor ATPase called PilT. These motors are generally functionally independent, and loss of PilT commonly results in T4aP hyperpiliation due to undeterred pilus extension. However, for the mannose-sensitive hemagglutinin (MSHA) T4aP of Vibrio cholerae, the loss of PilT unexpectedly results in a loss of surface piliation. Here, we employ a combination of genetic and cell biological approaches to dissect the underlying mechanism. Our results demonstrate that PilT is necessary for MSHA pilus extension in addition to its well-established role in promoting MSHA pilus retraction. Through a suppressor screen, we also provide genetic evidence that the MshA major pilin impacts pilus extension. Together, these findings contribute to our understanding of the factors that regulate pilus extension and describe a previously uncharacterized function for the PilT motor ATPase.
Collapse
Affiliation(s)
- Hannah Q Hughes
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Nicholas D Christman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Courtney K Ellison
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
5
|
Ma M, Welch RD, Garza AG. The σ 54 system directly regulates bacterial natural product genes. Sci Rep 2021; 11:4771. [PMID: 33637792 PMCID: PMC7910581 DOI: 10.1038/s41598-021-84057-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Bacterial-derived polyketide and non-ribosomal peptide natural products are crucial sources of therapeutics and yet little is known about the conditions that favor activation of natural product genes or the regulatory machinery controlling their transcription. Recent findings suggest that the σ54 system, which includes σ54-loaded RNA polymerase and transcriptional activators called enhancer binding proteins (EBPs), might be a common regulator of natural product genes. Here, we explored this idea by analyzing a selected group of putative σ54 promoters identified in Myxococcus xanthus natural product gene clusters. We show that mutations in putative σ54-RNA polymerase binding regions and in putative Nla28 EBP binding sites dramatically reduce in vivo promoter activities in growing and developing cells. We also show in vivo promoter activities are reduced in a nla28 mutant, that Nla28 binds to wild-type fragments of these promoters in vitro, and that in vitro binding is lost when the Nla28 binding sites are mutated. Together, our results indicate that M. xanthus uses σ54 promoters for transcription of at least some of its natural product genes. Interestingly, the vast majority of experimentally confirmed and putative σ54 promoters in M. xanthus natural product loci are located within genes and not in intergenic sequences.
Collapse
Affiliation(s)
- Muqing Ma
- grid.264484.80000 0001 2189 1568Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244 USA
| | - Roy D. Welch
- grid.264484.80000 0001 2189 1568Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244 USA
| | - Anthony G. Garza
- grid.264484.80000 0001 2189 1568Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244 USA
| |
Collapse
|
6
|
Peng R, Wang Y, Feng WW, Yue XJ, Chen JH, Hu XZ, Li ZF, Sheng DH, Zhang YM, Li YZ. CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. Microb Cell Fact 2018; 17:15. [PMID: 29378572 PMCID: PMC5787926 DOI: 10.1186/s12934-018-0867-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The CRISPR/dCas9 system is a powerful tool to activate the transcription of target genes in eukaryotic or prokaryotic cells, but lacks assays in complex conditions, such as the biosynthesis of secondary metabolites. RESULTS In this study, to improve the transcription of the heterologously expressed biosynthetic genes for the production of epothilones, we established the CRISPR/dCas9-mediated activation technique in Myxococcus xanthus and analyzed some key factors involving in the CRISPR/dCas9 activation. We firstly optimized the cas9 codon to fit the M. xanthus cells, mutated the gene to inactivate the nuclease activity, and constructed the dCas9-activator system in an epothilone producer. We compared the improvement efficiency of different sgRNAs on the production of epothilones and the expression of the biosynthetic genes. We also compared the improvement effects of different activator proteins, the ω and α subunits of RNA polymerase, and the sigma factors σ54 and CarQ. By using a copper-inducible promoter, we determined that higher expressions of dCas9-activator improved the activation effects. CONCLUSIONS Our results showed that the CRISPR/dCas-mediated transcription activation is a simple and broadly applicable technique to improve the transcriptional efficiency for the production of secondary metabolites in microorganisms. This is the first time to construct the CRISPR/dCas9 activation system in myxobacteria and the first time to assay the CRISPR/dCas9 activations for the biosynthesis of microbial secondary metabolites.
Collapse
Affiliation(s)
- Ran Peng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, 100050 China
| | - Ye Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Wan-wan Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xin-jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Jiang-he Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xiao-zhuang Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Duo-hong Sheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - You-ming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| |
Collapse
|
7
|
Bretl DJ, Müller S, Ladd KM, Atkinson SN, Kirby JR. Type IV-pili dependent motility is co-regulated by PilSR and PilS2R2 two-component systems via distinct pathways in Myxococcus xanthus. Mol Microbiol 2016; 102:37-53. [PMID: 27393239 DOI: 10.1111/mmi.13445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 01/08/2023]
Abstract
Myxococcus xanthus is an environmental bacterium with two forms of motility. One type, known as social motility, is dependent on extension and retraction of Type-IV pili (T4P) and production of extracellular polysaccharides (EPS). Several signaling systems have been linked to regulation of T4P-dependent motility. In particular, expression of the pilin subunit pilA requires the PilSR two-component signaling system (TCS). A second TCS, PilS2R2, encoded within the same locus that encodes PilSR, has also been linked to M. xanthus T4P-dependent motility. We demonstrate that PilSR and PilS2R2 regulate M. xanthus T4P-dependent motility through distinct pathways. Consistent with known roles of PilSR, our results indicate that the primary function of PilSR is to regulate expression of pilA. In contrast, PilS2 and PilR2 have little to no affect on PilA protein levels. However, deletion of pilR2 resulted in a reduction of assembled pili, significant decreases in EPS production and loss of T4P-dependent motility. Furthermore, the pilR2 mutation led to increased production of outer membrane vesicles (OMV). Collectively, we propose that PilS2R2 is required for proper assembly of T4P and regulation of OMV production, and hypothesize that production of these vesicles is related to M. xanthus motility.
Collapse
Affiliation(s)
- Daniel J Bretl
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA
| | - Susanne Müller
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA
| | - Kayla M Ladd
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA
| | - Samantha N Atkinson
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA
| | - John R Kirby
- Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
8
|
Patra P, Kissoon K, Cornejo I, Kaplan HB, Igoshin OA. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production. PLoS Comput Biol 2016; 12:e1005010. [PMID: 27362260 PMCID: PMC4928896 DOI: 10.1371/journal.pcbi.1005010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. Collective motility is a key mechanism bacteria use to self-organize into multicellular structures and to adapt to various environments. An important example of such behavior is social (S) motility in the gram-negative bacterium Myxococcus xanthus. S-motile cells are restricted to movement in groups and do not move as individual cells. S-motility is powered by type IV pili (TFP)–multi-subunit filaments, which extrude from the cell poles, adhere to the substrate and retract, pulling the cell forward. TFP retraction or adhesion is suggested to be triggered by extracellular exopolysaccharides (EPS) deposited by cells on the substrate. As individual cells synthesize both pili and EPS, it is unclear why S-motile cells only exhibit group movement. Moreover, the experimentally observed initial cell-density dependence of S-motility remains unexplained. To understand these phenomena, we developed a mathematical model for the colony expansion of S-motile cells. Our model hypothesizes that the EPS level regulates the TFP activity that initiates collective cell movements. With this assumption, the model quantitatively matches the density-dependent expansion rate. Moreover, the model predicts two phases during colony expansion: an initial density-dependent lag phase with a slow expansion rate, followed by a faster expansion phase with a density-independent rate. These model predictions were confirmed by long-term colony expansion experiments.
Collapse
Affiliation(s)
- Pintu Patra
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Kimberley Kissoon
- Department of Natural Sciences, Del Mar College, Corpus Christi, Texas, United States of America
| | - Isabel Cornejo
- Department of Natural Sciences, University of Houston-Downtown, Houston, Texas, United States of America
| | - Heidi B. Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
|
10
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
11
|
MasABK proteins interact with proteins of the type IV pilin system to affect social motility of Myxococcus xanthus. PLoS One 2013; 8:e54557. [PMID: 23342171 PMCID: PMC3546991 DOI: 10.1371/journal.pone.0054557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Gliding motility is critical for normal development of spore-filled fruiting bodies in the soil bacterium Myxococcus xanthus. Mutations in mgl block motility and development but one mgl allele can be suppressed by a mutation in masK, the last gene in an operon adjacent to the mgl operon. Deletion of the entire 5.5 kb masABK operon crippled gliding and fruiting body development and decreased sporulation. Expression of pilAGHI, which encodes type IV pili (TFP) components essential for social (S) gliding, several cryptic pil genes, and a LuxR family protein were reduced significantly in the Δmas mutant while expression of the myxalamide operon was increased significantly. Localization and two-hybrid analysis suggest that the three Mas proteins form a membrane complex. MasA-PhoA fusions confirmed that MasA is an integral cytoplasmic membrane protein with a ≈100 amino acid periplasmic domain. Results from yeast two-hybrid assays showed that MasA interacts with the lipoprotein MasB and MasK, a protein kinase and that MasB and MasK interact with one another. Additionally, yeast two-hybrid analysis revealed a physical interaction between two gene products of the mas operon, MasA and MasB, and PilA. Deletion of mas may be accompanied by compensatory mutations since complementation of the Δmas social gliding and developmental defects required addition of both pilA and masABK.
Collapse
|
12
|
Two systems for conditional gene expression in Myxococcus xanthus inducible by isopropyl-β-D-thiogalactopyranoside or vanillate. J Bacteriol 2012; 194:5875-85. [PMID: 22923595 DOI: 10.1128/jb.01110-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Conditional expression of a gene is a powerful tool to study its function and is typically achieved by placing the gene under the control of an inducible promoter. There is, however, a dearth of such inducible systems in Myxococcus xanthus, a well-studied prokaryotic model for multicellular development, cell differentiation, motility, and light response and a promising source of secondary metabolites. The few available systems have limitations, and exogenously based ones are unavailable. Here, we describe two new, versatile inducible systems for conditional expression of genes in M. xanthus. One employs isopropyl-β-d-thiogalactopyranoside (IPTG) as an inducer and is inspired by those successfully applied in some other bacteria. The other requires vanillate as an inducer and is based on the system developed originally for Caulobacter crescentus and recently adapted for mammalian cells. Both systems are robust, with essentially no expression in the absence of an inducer. Depending on the inducer and the amounts added, expression levels can be modulated such that either system can conditionally express genes, including ones that are essential and are required at high levels such as ftsZ. The two systems operate during vegetative growth as well as during M. xanthus development. Moreover, they can be used to simultaneously induce expression of distinct genes within the same cell. The conditional expression systems we describe substantially expand the genetic tool kit available for studying M. xanthus gene function and cellular biology.
Collapse
|
13
|
Comprehensive set of integrative plasmid vectors for copper-inducible gene expression in Myxococcus xanthus. Appl Environ Microbiol 2012; 78:2515-21. [PMID: 22287008 DOI: 10.1128/aem.07502-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is widely used as a model system for studying gliding motility, multicellular development, and cellular differentiation. Moreover, M. xanthus is a rich source of novel secondary metabolites. The analysis of these processes has been hampered by the limited set of tools for inducible gene expression. Here we report the construction of a set of plasmid vectors to allow copper-inducible gene expression in M. xanthus. Analysis of the effect of copper on strain DK1622 revealed that copper concentrations of up to 500 μM during growth and 60 μM during development do not affect physiological processes such as cell viability, motility, or aggregation into fruiting bodies. Of the copper-responsive promoters in M. xanthus reported so far, the multicopper oxidase cuoA promoter was used to construct expression vectors, because no basal expression is observed in the absence of copper and induction linearly depends on the copper concentration in the culture medium. Four different plasmid vectors have been constructed, with different marker selection genes and sites of integration in the M. xanthus chromosome. The vectors have been tested and gene expression quantified using the lacZ gene. Moreover, we demonstrate the functional complementation of the motility defect caused by lack of PilB by the copper-induced expression of the pilB gene. These versatile vectors are likely to deepen our understanding of the biology of M. xanthus and may also have biotechnological applications.
Collapse
|
14
|
Wu Y, Jiang Y, Kaiser AD, Alber M. Self-organization in bacterial swarming: lessons from myxobacteria. Phys Biol 2011; 8:055003. [PMID: 21832807 DOI: 10.1088/1478-3975/8/5/055003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
When colonizing surfaces, many bacteria are able to self-organize into an actively expanding biofilm, in which millions of cells move smoothly and orderly at high densities. This phenomenon is known as bacterial swarming. Despite the apparent resemblance to patterns seen in liquid crystals, the dynamics of bacterial swarming cannot be explained by theories derived from equilibrium statistical mechanics. To understand how bacteria swarm, a central question is how order emerges in dense and initially disorganized populations of bacterial cells. Here we briefly review recent efforts, with integrated computational and experimental approaches, in addressing this question.
Collapse
Affiliation(s)
- Yilin Wu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
15
|
Koch MK, McHugh CA, Hoiczyk E. BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol Microbiol 2011; 80:1031-51. [PMID: 21414039 DOI: 10.1111/j.1365-2958.2011.07629.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bactofilins are fibre-forming bacterial cytoskeletal proteins. Here, we report the structural and biochemical characterization of MXAN_7475 (BacM), one of the four bactofilins of Myxococcus xanthus. Absence of BacM leads to a characteristic 'crooked' cell morphology and an increased sensitivity to antibiotics targeting cell wall biosynthesis. The absence of the other three bactofilins MXAN_4637-4635 (BacN-P) has no obvious phenotype. In M. xanthus, BacM exists as a 150-amino-acid full-length version and as a version cleaved before Ser28. In the cell, native BacM forms 3 nm wide fibres, which assemble into bundles forming helix-like cytoplasmic cables throughout the cell, and in a subset of cells additionally a polarly arranged lateral rod-like structure. Isolated fibres consist almost completely of the N-terminally truncated version, suggesting that the proteolytic cleavage occurs before or during fibre formation. Fusion of BacM to mCherry perturbs BacM function and cellular fibre arrangement, resulting for example in the formation of one prominent polar corkscrew-like structure per cell. Immunofluorescence staining of BacM and MreB shows that their cellular distributions are not matching. Taken together, these data suggest that rod-shaped bacteria like M. xanthus use bactofilin fibres to achieve and maintain their characteristic cell morphology and cell wall stability.
Collapse
Affiliation(s)
- Matthias K Koch
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
16
|
The chaperone ClpX stimulates expression of Staphylococcus aureus protein A by Rot dependent and independent pathways. PLoS One 2010; 5:e12752. [PMID: 20856878 PMCID: PMC2939077 DOI: 10.1371/journal.pone.0012752] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 08/20/2010] [Indexed: 12/26/2022] Open
Abstract
The Clp ATPases (Hsp100) constitute a family of closely related proteins that have protein reactivating and remodelling activities typical of molecular chaperones. In Staphylococcus aureus the ClpX chaperone is essential for virulence and for transcription of spa encoding Protein A. The present study was undertaken to elucidate the mechanism by which ClpX stimulates expression of Protein A. For this purpose, we prepared antibodies directed against Rot, an activator of spa transcription, and demonstrated that cells devoid of ClpX contain three-fold less Rot than wild-type cells. By varying Rot expression from an inducible promoter we showed that expression of Protein A requires a threshold level of Rot. In the absence of ClpX the Rot content is reduced below this threshold level, hence, explaining the substantially reduced Protein A expression in the clpX mutant. Experiments addressed at pinpointing the role of ClpX in Rot synthesis revealed that ClpX is required for translation of Rot. Interestingly, translation of the spa mRNA was, like the rot mRNA, enhanced by ClpX. These data demonstrate that ClpX performs dual roles in regulating Protein A expression, as ClpX stimulates transcription of spa by enhancing translation of Rot, and that ClpX additionally is required for full translation of the spa mRNA. The current findings emphasize that ClpX has a central role in fine-tuning virulence regulation in S. aureus.
Collapse
|
17
|
Kaiser D, Robinson M, Kroos L. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2010; 2:a000380. [PMID: 20610548 PMCID: PMC2908774 DOI: 10.1101/cshperspect.a000380] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myxobacteria are renowned for the ability to sporulate within fruiting bodies whose shapes are species-specific. The capacity to build those multicellular structures arises from the ability of M. xanthus to organize high cell-density swarms, in which the cells tend to be aligned with each other while constantly in motion. The intrinsic polarity of rod-shaped cells lays the foundation, and each cell uses two polar engines for gliding on surfaces. It sprouts retractile type IV pili from the leading cell pole and secretes capsular polysaccharide through nozzles from the trailing pole. Regularly periodic reversal of the gliding direction was found to be required for swarming. Those reversals are generated by a G-protein switch which is driven by a sharply tuned oscillator. Starvation induces fruiting body development, and systematic reductions in the reversal frequency are necessary for the cells to aggregate rather than continue to swarm. Developmental gene expression is regulated by a network that is connected to the suppression of reversals.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
18
|
Yang Z, Lux R, Hu W, Hu C, Shi W. PilA localization affects extracellular polysaccharide production and fruiting body formation in Myxococcus xanthus. Mol Microbiol 2010; 76:1500-13. [PMID: 20444090 DOI: 10.1111/j.1365-2958.2010.07180.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myxococcus xanthus is a Gram-negative bacterium capable of complex developmental processes involving vegetative swarming and fruiting body formation. Social (S-) gliding motility, one of the two motility systems used by M. xanthus, requires at least two cell surface structures: type IV pili (TFP) and extracellular polysaccharides (EPS). Extended TFP that are composed of thousands of copies of PilA retract upon binding to EPS and thereby pull the cell forward. TFP also act as external sensor to regulate EPS production. In this study, we generated a random PilA mutant library and identified one derivative, SW1066, which completely failed to undergo developmental processes. Detailed characterization revealed that SW1066 produced very little EPS but wild-type amounts of PilA. These mutated PilA subunits, however, are unable to assemble into functional TFP despite their ability to localize to the membrane. By preventing the mutated PilA of SW1066 to translocate from the cytoplasm to the membrane, fruiting body formation and EPS production were restored to the levels observed in mutant strains lacking PilA. This apparent connection between PilA membrane accumulation and reduction in surface EPS implies that specific cellular PilA localization are required to maintain the EPS level necessary to sustain normal S-motility in M. xanthus.
Collapse
Affiliation(s)
- Zhe Yang
- Molecular Biology Institute and School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
19
|
Genetic analysis of the regulation of type IV pilus function by the Chp chemosensory system of Pseudomonas aeruginosa. J Bacteriol 2009; 192:994-1010. [PMID: 20008072 DOI: 10.1128/jb.01390-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of many virulence factors, including type IV pili, which are required for colonization of host tissues and for twitching motility. Type IV pilus function is controlled in part by the Chp chemosensory system, which includes a histidine kinase, ChpA, and two CheY-like response regulators, PilG and PilH. How the Chp components interface with the type IV pilus motor proteins PilB, PilT, and PilU is unknown. We present genetic evidence confirming the role of ChpA, PilG, and PilB in the regulation of pilus extension and the role of PilH and PilT in regulating pilus retraction. Using informative double and triple mutants, we show that (i) ChpA, PilG, and PilB function upstream of PilH, PilT, and PilU; (ii) that PilH enhances PilT function; and (iii) that PilT and PilB retain some activity in the absence of signaling input from components of the Chp system. By site-directed mutagenesis, we demonstrate that the histidine kinase domain of ChpA and the phosphoacceptor sites of both PilG and PilH are required for type IV pilus function, suggesting that they form a phosphorelay system important in the regulation of pilus extension and retraction. Finally, we present evidence suggesting that pilA transcription is regulated by intracellular PilA levels. We show that PilA is a negative regulator of pilA transcription in P. aeruginosa and that the Chp system functionally regulates pilA transcription by controlling PilA import and export.
Collapse
|
20
|
A vitamin B12-based system for conditional expression reveals dksA to be an essential gene in Myxococcus xanthus. J Bacteriol 2009; 191:3108-19. [PMID: 19251845 DOI: 10.1128/jb.01737-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a prokaryotic model system for the study of multicellular development and the response to blue light. The previous analyses of these processes and the characterization of new genes would benefit from a robust system for controlled gene expression, which has been elusive so far for this bacterium. Here, we describe a system for conditional expression of genes in M. xanthus based on our recent finding that vitamin B12 and CarH, a MerR-type transcriptional repressor, together downregulate a photoinducible promoter. Using this system, we confirmed that M. xanthus rpoN, encoding sigma(54), is an essential gene, as reported earlier. We then tested it with ftsZ and dksA. In most bacteria, ftsZ is vital due to its role in cell division, whereas null mutants of dksA, whose product regulates the stringent response via transcriptional control of rRNA and amino acid biosynthesis promoters, are viable but cause pleiotropic effects. As with rpoN, it was impossible to delete endogenous ftsZ or dksA in M. xanthus except in a merodiploid background carrying another functional copy, which indicates that these are essential genes. B12-based conditional expression of ftsZ was insufficient to provide the high intracellular FtsZ levels required. With dksA, as with rpoN, cells were viable under permissive but not restrictive conditions, and depletion of DksA or sigma(54) produced filamentous, aberrantly dividing cells. dksA thus joins rpoN in a growing list of genes dispensable in many bacteria but essential in M. xanthus.
Collapse
|
21
|
Affiliation(s)
- Dale Kaiser
- Departments of Biochemistry and of Developmental Biology, Stanford University School of Medicine, Stanford, California, 94305;
| |
Collapse
|
22
|
The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS One 2008; 3:e2103. [PMID: 18461135 PMCID: PMC2330069 DOI: 10.1371/journal.pone.0002103] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/19/2008] [Indexed: 11/29/2022] Open
Abstract
Anaeromyxobacter dehalogenans strain 2CP-C is a versaphilic delta-Proteobacterium distributed throughout many diverse soil and sediment environments. 16S rRNA gene phylogenetic analysis groups A. dehalogenans together with the myxobacteria, which have distinguishing characteristics including strictly aerobic metabolism, sporulation, fruiting body formation, and surface motility. Analysis of the 5.01 Mb strain 2CP-C genome substantiated that this organism is a myxobacterium but shares genotypic traits with the anaerobic majority of the delta-Proteobacteria (i.e., the Desulfuromonadales). Reflective of its respiratory versatility, strain 2CP-C possesses 68 genes coding for putative c-type cytochromes, including one gene with 40 heme binding motifs. Consistent with its relatedness to the myxobacteria, surface motility was observed in strain 2CP-C and multiple types of motility genes are present, including 28 genes for gliding, adventurous (A-) motility and 17 genes for type IV pilus-based motility (i.e., social (S-) motility) that all have homologs in Myxococcus xanthus. Although A. dehalogenans shares many metabolic traits with the anaerobic majority of the delta-Proteobacteria, strain 2CP-C grows under microaerophilic conditions and possesses detoxification systems for reactive oxygen species. Accordingly, two gene clusters coding for NADH dehydrogenase subunits and two cytochrome oxidase gene clusters in strain 2CP-C are similar to those in M. xanthus. Remarkably, strain 2CP-C possesses a third NADH dehydrogenase gene cluster and a cytochrome cbb3 oxidase gene cluster, apparently acquired through ancient horizontal gene transfer from a strictly anaerobic green sulfur bacterium. The mosaic nature of the A. dehalogenans strain 2CP-C genome suggests that the metabolically versatile, anaerobic members of the delta-Proteobacteria may have descended from aerobic ancestors with complex lifestyles.
Collapse
|
23
|
PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 2008; 190:2411-21. [PMID: 18223089 DOI: 10.1128/jb.01793-07] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (T4P) are dynamic surface structures that undergo cycles of extension and retraction. T4P dynamics center on the PilB and PilT proteins, which are members of the secretion ATPase superfamily of proteins. Here, we show that PilB and PilT of the T4P system in Myxococcus xanthus have ATPase activity in vitro. Using a structure-guided approach, we systematically mutagenized PilB and PilT to resolve whether both ATP binding and hydrolysis are important for PilB and PilT function in vivo. PilB as well as PilT ATPase activity was abolished in vitro by replacement of conserved residues in the Walker A and Walker B boxes that are involved in ATP binding and hydrolysis, respectively. PilB proteins containing mutant Walker A or Walker B boxes were nonfunctional in vivo and unable to support T4P extension. PilT proteins containing mutant Walker A or Walker B boxes were also nonfunctional in vivo and unable to support T4P retraction. These data provide genetic evidence that both ATP binding and hydrolysis by PilB are essential for T4P extension and that both ATP binding and hydrolysis by PilT are essential for T4P retraction. Thus, PilB and PilT are ATPases that act at distinct steps in the T4P extension/retraction cycle in vivo.
Collapse
|
24
|
Parker D, Kennan RM, Myers GS, Paulsen IT, Songer JG, Rood JI. Regulation of type IV fimbrial biogenesis in Dichelobacter nodosus. J Bacteriol 2006; 188:4801-11. [PMID: 16788189 PMCID: PMC1483018 DOI: 10.1128/jb.00255-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV fimbriae are expressed by several bacterial pathogens and are essential for virulence in Dichelobacter nodosus, which causes ovine footrot. We have identified a two-component signal transduction system (PilR/S) and an alternative sigma factor (sigma 54) that were shown by insertional inactivation to be required for the regulation of fimbrial biogenesis in D. nodosus. Western blots showed that in both pilR and rpoN mutants, fimbrial subunit production was significantly reduced by a process that was shown to occur at a PilR- and sigma 54-dependent promoter. The mutants lacked surface fimbriae, which were shown to be required for the adherence of D. nodosus cells to tissue culture monolayers. The reduction in fimbrial subunit production in these mutants also resulted in a concomitant loss of the ability to secrete extracellular proteases. A maltose binding protein-PilR fusion protein was purified and was shown to bind specifically to a region located 234 to 594 bp upstream of the fimA transcriptional start point. To determine additional targets of PilR and sigma 54, genome-wide transcriptional profiling was performed using a whole-genome oligonucleotide microarray. The results indicated that PilR and sigma 54 regulated genes other than fimA; these genes appear to encode surface-exposed proteins whose role in virulence is unknown. In conclusion, this study represents a significant advancement in our understanding of how the ability of D. nodosus to cause ovine footrot is regulated, as we have shown that the biogenesis of type IV fimbriae in D. nodosus is regulated by a sigma 54-dependent PilR/S system that also indirectly controls protease secretion.
Collapse
Affiliation(s)
- Dane Parker
- Australian Research Council Centre of Excellence for Structrral and Functional Microbial Genomics and Victorian Bioinformatics Consortium, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|