1
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
2
|
Caccamo M, Dobruk-Serkowska A, Rodríguez-Castañeda F, Pennica C, Barillà D, Hayes F. Genome Segregation by the Venus Flytrap Mechanism: Probing the Interaction Between the ParF ATPase and the ParG Centromere Binding Protein. Front Mol Biosci 2020; 7:108. [PMID: 32613008 PMCID: PMC7308502 DOI: 10.3389/fmolb.2020.00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 11/23/2022] Open
Abstract
The molecular events that underpin genome segregation during bacterial cytokinesis have not been fully described. The tripartite segrosome complex that is encoded by the multiresistance plasmid TP228 in Escherichia coli is a tractable model to decipher the steps that mediate accurate genome partitioning in bacteria. In this case, a “Venus flytrap” mechanism mediates plasmid segregation. The ParG sequence-specific DNA binding protein coats the parH centromere. ParF, a ParA-type ATPase protein, assembles in a three-dimensional meshwork that penetrates the nucleoid volume where it recognizes and transports ParG-parH complexes and attached plasmids to the nucleoid poles. Plasmids are deposited at the nucleoid poles following the partial dissolution of the ParF network through a combination of localized ATP hydrolysis within the meshwork and ParG-mediated oligomer disassembly. The current study demonstrates that the conformation of the nucleotide binding pocket in ParF is tuned exquisitely: a single amino acid change that perturbs the molecular arrangement of the bound nucleotide moderates ATP hydrolysis. Moreover, this alteration also affects critical interactions of ParF with the partner protein ParG. As a result, plasmid segregation is inhibited. The data reinforce that the dynamics of nucleotide binding and hydrolysis by ParA-type proteins are key to accurate genome segregation in bacteria.
Collapse
Affiliation(s)
- Marisa Caccamo
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Aneta Dobruk-Serkowska
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Cecilia Pennica
- Department of Biology, University of York, York, United Kingdom
| | - Daniela Barillà
- Department of Biology, University of York, York, United Kingdom
| | - Finbarr Hayes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Dedrick RM, Mavrich TN, Ng WL, Cervantes Reyes JC, Olm MR, Rush RE, Jacobs-Sera D, Russell DA, Hatfull GF. Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems. Mol Microbiol 2016; 101:625-44. [PMID: 27146086 DOI: 10.1111/mmi.13414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
Abstract
More than 180 individual phages infecting hosts in the phylum Actinobacteria have been sequenced and grouped into Cluster A because of their similar overall nucleotide sequences and genome architectures. These Cluster A phages are either temperate or derivatives of temperate parents, and most have an integration cassette near the centre of the genome containing an integrase gene and attP. However, about 20% of the phages lack an integration cassette, which is replaced by a 1.4 kbp segment with predicted partitioning functions, including plasmid-like parA and parB genes. Phage RedRock forms stable lysogens in Mycobacterium smegmatis in which the prophage replicates at 2.4 copies/chromosome and the partitioning system confers prophage maintenance. The parAB genes are expressed upon RedRock infection of M. smegmatis, but are downregulated once lysogeny is established by binding of RedRock ParB to parS-L, one of two centromere-like sites flanking the parAB genes. The RedRock parS-L and parS-R sites are composed of eight directly repeated copies of an 8 bp motif that is recognized by ParB. The actinobacteriophage parABS cassettes span considerable sequence diversity and specificity, providing a suite of tools for use in mycobacterial genetics.
Collapse
Affiliation(s)
- Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Wei L Ng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Matthew R Olm
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rachael E Rush
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
4
|
Okibe N, Suzuki N, Inui M, Yukawa H. pCGR2 copy number depends on the par
locus that forms a ParC-ParB-DNA partition complex in Corynebacterium glutamicum. J Appl Microbiol 2013; 115:495-508. [DOI: 10.1111/jam.12257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Naoko Okibe
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Nobuaki Suzuki
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| |
Collapse
|
5
|
Abstract
Partition systems are responsible for the process whereby large and essential plasmids are accurately positioned to daughter cells during bacterial division. They are typically made of three components: a centromere-like DNA zone, an adaptor protein, and an assembling protein that is either a Walker-box ATPase (type I) or an actin-like ATPase (type II). A recently described type III segregation system has a tubulin/FtsZ-like protein, called TubZ, for plasmid movement. Here, we present the 2.3 Å structure and dynamic assembly of a TubZ tubulin homolog from a bacteriophage and unravel the Clostridium botulinum phage c-st type III partition system. Using biochemical and biophysical approaches, we prove that a gene upstream from tubZ encodes the partner TubR and localize the centromeric region (tubS), both of which are essential for anchoring phage DNA to the motile TubZ filaments. Finally, we describe a conserved fourth component, TubY, which modulates the TubZ-R-S complex interaction.
Collapse
|
6
|
Centromere binding and evolution of chromosomal partition systems in the Burkholderiales. J Bacteriol 2012; 194:3426-36. [PMID: 22522899 DOI: 10.1128/jb.00041-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.
Collapse
|
7
|
Wu M, Zampini M, Bussiek M, Hoischen C, Diekmann S, Hayes F. Segrosome assembly at the pliable parH centromere. Nucleic Acids Res 2011; 39:5082-97. [PMID: 21378121 PMCID: PMC3130281 DOI: 10.1093/nar/gkr115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The segrosome of multiresistance plasmid TP228 comprises ParF, which is a member of the ParA ATPase superfamily, and the ParG ribbon–helix–helix factor that assemble jointly on the parH centromere. Here we demonstrate that the distinctive parH site (∼100-bp) consists of an array of degenerate tetramer boxes interspersed by AT-rich spacers. Although numerous consecutive AT-steps are suggestive of inherent curvature, parH lacks an intrinsic bend. Sequential deletion of parH tetramers progressively reduced centromere function. Nevertheless, the variant subsites could be rearranged in different geometries that accommodated centromere activity effectively revealing that the site is highly elastic in vivo. ParG cooperatively coated parH: proper centromere binding necessitated the protein's N-terminal flexible tails which modulate the centromere binding affinity of ParG. Interaction of the ParG ribbon–helix–helix domain with major groove bases in the tetramer boxes likely provides direct readout of the centromere. In contrast, the AT-rich spacers may be implicated in indirect readout that mediates cooperativity between ParG dimers assembled on adjacent boxes. ParF alone does not bind parH but instead loads into the segrosome interactively with ParG, thereby subtly altering centromere conformation. Assembly of ParF into the complex requires the N-terminal flexible tails in ParG that are contacted by ParF.
Collapse
Affiliation(s)
- Meiyi Wu
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|
8
|
Dam B. A type Ib plasmid segregation machinery of the Advenella kashmirensis plasmid pBTK445. Plasmid 2010; 65:185-91. [PMID: 21192970 DOI: 10.1016/j.plasmid.2010.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/17/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
pBTK445 is a newly described large (∼60Kb), low-copy number, conjugative plasmid indigenous to the sulfur-chemolithoautotroph Advenella kashmirensis. Based on its minimal replication region, a shuttle vector, pBTKS was constructed which can be used for diverse Alcaligenaceae members. The construct was found to be stably maintained both in the native host as well as in Escherichia coli in the absence of selective pressure which indicated that pBTKS harbors the stabilizing system of pBTK445, that are commonly coded by low-copy-number plasmids. Deletion analyzes of pBTKS confirmed the essentiality of parA (encoding a Walker-type ATPase of 214 amino acids) and the downstream located small parB (encoding an 85 amino acid protein having no sequence homolog in the database) in the faithful partitioning of pBTK445. A 1075bp PCR product, containing parA, parB and an upstream sequence having nine 11bp direct repeats (parS site) was found to comprise the partition functions of pBTK445, stabilizing both low-copy or high-copy number homologous and heterologous replicons in diverse hosts. The incompatibility determinant and the par promoter, P(par) were both found to be present within a 191bp iterated sequence present upstream of parA. ParB was found to regulate the expression of the Par proteins from P(par). The presence of a typical Walker-type ATPase motif in ParA, a short phylogenetically unrelated ParB, that acts as a repressor of P(par), and location of the iterated parS site upstream of parA, confirm that the active partition system of pBTK445 belongs to the type Ib.
Collapse
Affiliation(s)
- Bomba Dam
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl Von Frisch Strasse 10, D-35043 Marburg, Germany.
| |
Collapse
|
9
|
Abstract
Non-essential extra-chromosomal DNA elements such as plasmids are responsible for their own propagation in dividing host cells, and one means to ensure this is to carry a miniature active segregation system reminiscent of the mitotic spindle. Plasmids that are maintained at low numbers in prokaryotic cells have developed a range of such active partitioning systems, which are characterized by an impressive simplicity and efficiency and which are united by the use of dynamic, nucleotide-driven filaments to separate and position DNA molecules. A comparison of different plasmid segregation systems reveals (i) how unrelated filament-forming and DNA-binding proteins have been adopted and modified to create a range of simple DNA segregating complexes and (ii) how subtle changes in the few components of these DNA segregation machines has led to a remarkable diversity in the molecular mechanisms of closely related segregation systems. Here, our current understanding of plasmid segregation systems is reviewed and compared with other DNA segregation systems, and this is extended by a discussion of basic principles of plasmid segregation systems, evolutionary implications and the relationship between an autonomous DNA element and its host cell.
Collapse
Affiliation(s)
- Jeanne Salje
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
10
|
Evolution of genes on the Salmonella Virulence plasmid phylogeny revealed from sequencing of the virulence plasmids of S. enterica serotype Dublin and comparative analysis. Genomics 2008; 92:339-43. [PMID: 18718522 DOI: 10.1016/j.ygeno.2008.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/10/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
Salmonella enterica serotype Dublin harbors an approximately 80-kb virulence plasmid (pSDV), which mediates systemic infection in cattle. There are two types of pSDV: one is pSDVu (pOU1113) in strain OU7025 and the other pSDVr (pOU1115) in OU7409 (SD Lane) and many clinical isolates. Sequence analysis showed that pSDVr was a recombinant plasmid (co-integrate) of pSDVu and a plasmid similar to a 35-kb indigenous plasmid (pOU1114) of S. Dublin. Most of the F-transfer region in pSDVu was replaced by a DNA segment from the pOU1114-like plasmid containing an extra replicon and a pilX operon encoding for a type IV secretion system to form pSDVr. We reconstructed the particular evolutionary history of the seven virulence plasmids of Salmonella by comparative sequence analysis. The whole evolutionary process might begin with two different F-like plasmids (IncFI and IncFII), which then incorporated the spv operon and fimbriae operon from the chromosome to form the primitive virulence plasmids. Subsequently, these plasmids descended by deletion from a relatively large plasmid to smaller ones, with some recombination events occurring over time. Our results suggest that the phylogeny of virulence plasmids as a result of frequent recombination provides the opportunity for rapid evolution of Salmonella in response to the environmental cues.
Collapse
|
11
|
Machón C, Fothergill TJG, Barillà D, Hayes F. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors. J Mol Biol 2007; 374:1-8. [PMID: 17920627 DOI: 10.1016/j.jmb.2007.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.
Collapse
Affiliation(s)
- Cristina Machón
- Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | |
Collapse
|
12
|
Barillà D, Carmelo E, Hayes F. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif. Proc Natl Acad Sci U S A 2007; 104:1811-6. [PMID: 17261809 PMCID: PMC1794263 DOI: 10.1073/pnas.0607216104] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon-helix-helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF approximately 30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal DeltaParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization.
Collapse
Affiliation(s)
- Daniela Barillà
- Department of Biology (Area 10), University of York, York, United Kingdom.
| | | | | |
Collapse
|
13
|
Ringgaard S, Ebersbach G, Borch J, Gerdes K. Regulatory cross-talk in the double par locus of plasmid pB171. J Biol Chem 2006; 282:3134-45. [PMID: 17092933 DOI: 10.1074/jbc.m609092200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The double par locus of Escherichia coli virulence factor pB171 consists of two adjacent and oppositely oriented par loci of different types, called par1 and par2. par1 encodes an actin ATPase (ParM), and par2 encodes an oscillating, MinD-like ATPase (ParA). The par loci share a central cis-acting region of approximately 200 bp, called parC1, located between the two par loci. An additional cis-acting region, parC2, is located downstream of the parAB operon of par2. Here we show that ParR of par1 and ParB of par2 bind cooperatively to unrelated sets of direct repeats in parC1 to form the cognate partition and promoter repression complexes. Surprisingly, ParB repressed transcription of the noncognate par operon, indicating cross-talk and possibly epistasis between the two systems. The par promoters, P1 and P2, affected each other negatively. The DNA binding activities of ParR and ParB correlated well with the observed transcriptional regulation of the par operons in vivo and in vitro. Integration host factor (IHF) was identified as a novel factor involved in par2-mediated plasmid partitioning.
Collapse
Affiliation(s)
- Simon Ringgaard
- Department of Biochemistry and Molecular Biology, Campusvej 55, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
14
|
Yin P, Li TY, Xie MH, Jiang L, Zhang Y. A Type Ib ParB protein involved in plasmid partitioning in a gram-positive bacterium. J Bacteriol 2006; 188:8103-8. [PMID: 16997970 PMCID: PMC1698188 DOI: 10.1128/jb.01232-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our current understanding of segregation of prokaryotic plasmids has been derived mainly from the study of the gram-negative bacterial plasmids. We previously reported a replicon of the cryptic plasmid from a gram-positive bacterium, Leifsonia xyli subsp. cynodontis. The replicon contains a putative plasmid partition cassette including a Walker-type ATPase followed by open reading frame 4 without sequence homologue. Here we reported that the orf4 gene was essential for maintaining the plasmid stability in L. xyli subsp. cynodontis. Furthermore, the purified orf4 protein specifically and cooperatively bound to direct repeat sequences located upstream of the parA gene in vitro, indicating that orf4 is a parB gene and that the direct repeat DNA sequences constitute a partition site, parS. The location of parS and the features of ParA and ParB proteins suggest that this plasmid partition cassette belongs to type Ib, representing the first type Ib cassette identified from a gram-positive bacterial plasmid.
Collapse
Affiliation(s)
- Ping Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | |
Collapse
|
15
|
Hayes F, Barillà D. The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nat Rev Microbiol 2006; 4:133-43. [PMID: 16415929 DOI: 10.1038/nrmicro1342] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of unicellular and multicellular organisms must be partitioned equitably in coordination with cytokinesis to ensure faithful transmission of duplicated genetic material to daughter cells. Bacteria use sophisticated molecular mechanisms to guarantee accurate segregation of both plasmids and chromosomes at cell division. Plasmid segregation is most commonly mediated by a Walker-type ATPase and one of many DNA-binding proteins that assemble on a cis-acting centromere to form a nucleoprotein complex (the segrosome) that mediates intracellular plasmid transport. Bacterial chromosome segregation involves a multipartite strategy in which several discrete protein complexes potentially participate. Shedding light on the basis of genome segregation in bacteria could indicate new strategies aimed at combating pathogenic and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences, University of Manchester, Jackson's Mill, PO BOX 88, Sackville Street, Manchester M60 1QD, UK.
| | | |
Collapse
|
16
|
Abstract
Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement and localization patterns of plasmid foci and does not require the involvement of plasmid-specific host-encoded factors.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
17
|
Carmelo E, Barillà D, Golovanov AP, Lian LY, Derome A, Hayes F. The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression. J Biol Chem 2005; 280:28683-91. [PMID: 15951570 DOI: 10.1074/jbc.m501173200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ParG is the prototype of a group of small (<10 kDa) proteins involved in accurate plasmid segregation. The protein is a dimeric DNA binding factor, which consists of symmetric paired C-terminal domains that interleave into a ribbon-helix-helix fold that is crucial for the interaction with DNA, and unstructured N-terminal domains of previously unknown function. Here the ParG protein is shown to be a transcriptional repressor of the parFG genes. The protein assembles on its operator site initially as a tetramer (dimer of dimers) and, at elevated protein concentrations, as a pair of tetramers. Progressive deletion of the mobile N-terminal tails concomitantly decreased transcriptional repression by ParG and perturbed the DNA binding kinetics of the protein. The flexible tails are not necessary for ParG dimerization but instead modulate the organization of a higher order nucleoprotein complex that is crucial for proper transcriptional repression. This is achieved by transient associations between the flexible and folded domains in complex with the target DNA. Numerous ParG homologs encoded by plasmids of Gram-negative bacteria similarly are predicted to possess N-terminal disordered tails, suggesting that this is a common feature of partition operon autoregulation. The results provide new insights into the role of natively unfolded domains in protein function, the molecular mechanisms of transcription regulation, and the control of plasmid segregation.
Collapse
Affiliation(s)
- Emma Carmelo
- Faculty of Life Sciences, The University of Manchester, Manchester M60 1QD, United Kingdom
| | | | | | | | | | | |
Collapse
|