1
|
Gor V, Ohniwa RL, Morikawa K. No Change, No Life? What We Know about Phase Variation in Staphylococcus aureus. Microorganisms 2021; 9:microorganisms9020244. [PMID: 33503998 PMCID: PMC7911514 DOI: 10.3390/microorganisms9020244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Phase variation (PV) is a well-known phenomenon of high-frequency reversible gene-expression switching. PV arises from genetic and epigenetic mechanisms and confers a range of benefits to bacteria, constituting both an innate immune strategy to infection from bacteriophages as well as an adaptation strategy within an infected host. PV has been well-characterized in numerous bacterial species; however, there is limited direct evidence of PV in the human opportunistic pathogen Staphylococcus aureus. This review provides an overview of the mechanisms that generate PV and focuses on earlier and recent findings of PV in S. aureus, with a brief look at the future of the field.
Collapse
Affiliation(s)
- Vishal Gor
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (V.G.); (K.M.)
| | - Ryosuke L. Ohniwa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
- Correspondence: (V.G.); (K.M.)
| |
Collapse
|
2
|
Butrico CE, Cassat JE. Quorum Sensing and Toxin Production in Staphylococcus aureus Osteomyelitis: Pathogenesis and Paradox. Toxins (Basel) 2020; 12:toxins12080516. [PMID: 32806558 PMCID: PMC7471978 DOI: 10.3390/toxins12080516] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen capable of infecting nearly every vertebrate organ. Among these tissues, invasive infection of bone (osteomyelitis) is particularly common and induces high morbidity. Treatment of osteomyelitis is notoriously difficult and often requires debridement of diseased bone in conjunction with prolonged antibiotic treatment to resolve infection. During osteomyelitis, S. aureus forms characteristic multicellular microcolonies in distinct niches within bone. Virulence and metabolic responses within these multicellular microcolonies are coordinated, in part, by quorum sensing via the accessory gene regulator (agr) locus, which allows staphylococcal populations to produce toxins and adapt in response to bacterial density. During osteomyelitis, the Agr system significantly contributes to dysregulation of skeletal homeostasis and disease severity but may also paradoxically inhibit persistence in the host. Moreover, the Agr system is subject to complex crosstalk with other S. aureus regulatory systems, including SaeRS and SrrAB, which can significantly impact the progression of osteomyelitis. The objective of this review is to highlight Agr regulation, its implications on toxin production, factors that affect Agr activation, and the potential paradoxical influences of Agr regulation on disease progression during osteomyelitis.
Collapse
Affiliation(s)
- Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-936-6494
| |
Collapse
|
3
|
Abstract
Staphylococcus aureus is responsible for a broad range of infections. This pathogen has a vast arsenal of virulence factors at its disposal, but avirulent strains are frequently isolated as the cause of clinical infections. These isolates have a mutated agr locus and have been believed to have no evolutionary future. Here we show that a fraction of Agr-negative strains can repair their mutated agr locus with mechanisms resembling phase variation. The agr revertants sustain an Agr OFF state as long as they exist as a minority but can activate their Agr system upon phagocytosis. These revertant cells might function as a cryptic insurance strategy to survive immune-mediated host stress that arises during infection. Staphylococcus aureus is an important human pathogen whose success is largely attributed to its vast arsenal of virulence factors that facilitate its invasion into, and survival within, the human host. The expression of these virulence factors is controlled by the quorum sensing accessory gene regulator (Agr) system. However, a large proportion of clinical S. aureus isolates are consistently found to have a mutationally inactivated Agr system. These mutants have a survival advantage in the host but are considered irreversible mutants. Here we show, for the first time, that a fraction of Agr-negative mutants can revert their Agr activity. By serially passaging Agr-negative strains and screening for phenotypic reversion of hemolysis and subsequent sequencing, we identified two mutational events responsible for reversion: a genetic duplication plus inversion event and a poly(A) tract alteration. Additionally, we demonstrate that one clinical Agr-negative methicillin-resistant S. aureus (MRSA) isolate could reproducibly generate Agr-revertant colonies with a poly(A) tract genetic mechanism. We also show that these revertants activate their Agr system upon phagocytosis. We propose a model in which a minor fraction of Agr-negative S. aureus strains are phase variants that can revert their Agr activity and may act as a cryptic insurance strategy against host-mediated stress.
Collapse
|
4
|
Heptinstall S. Platelet activation by an extracellular adherence protein from Staphylococcus aureus acting via modulation of sulfhydryl groups on platelets. Arterioscler Thromb Vasc Biol 2012; 32:1751-2. [PMID: 22815338 DOI: 10.1161/atvbaha.112.252460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Bertling A, Niemann S, Hussain M, Holbrook L, Stanley RG, Brodde MF, Pohl S, Schifferdecker T, Roth J, Jurk K, Müller A, Lahav J, Peters G, Heilmann C, Gibbins JM, Kehrel BE. Staphylococcal extracellular adherence protein induces platelet activation by stimulation of thiol isomerases. Arterioscler Thromb Vasc Biol 2012; 32:1979-90. [PMID: 22539594 DOI: 10.1161/atvbaha.112.246249] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Staphylococcus aureus can induce platelet aggregation. The rapidity and degree of this correlates with the severity of disseminated intravascular coagulation, and depends on platelet peptidoglycans. Surface-located thiol isomerases play an important role in platelet activation. The staphylococcal extracellular adherence protein (Eap) functions as an adhesin for host plasma proteins. Therefore we tested the effect of Eap on platelets. METHODS AND RESULTS We found a strong stimulation of the platelet-surface thiol isomerases protein disulfide isomerase and endoplasmic reticulum stress proteins 57 and 72 by Eap. Eap induced thiol isomerase-dependent glycoprotein IIb/IIIa activation, granule secretion, and platelet aggregation. Treatment of platelets with thiol blockers, bacitracin, and anti-protein disulfide isomerase antibody inhibited Eap-induced platelet activation. The effect of Eap on platelets and protein disulfide isomerase activity was completely blocked by glycosaminoglycans. Inhibition by the hydrophobic probe bis(1-anilinonaphthalene 8-sulfonate) suggested the involvement of hydrophobic sites in protein disulfide isomerase and platelet activation by Eap. CONCLUSIONS In the present study, we found an additional and yet unknown mechanism of platelet activation by a bacterial adhesin, involving stimulation of thiol isomerases. The thiol isomerase stimulatory and prothrombotic features of a microbial secreted protein are probably not restricted to S aureus and Eap. Because many microorganisms are coated with amyloidogenic proteins, it is likely that the observed mechanism is a more general one.
Collapse
Affiliation(s)
- Anne Bertling
- Department of Anesthesiology and Intensive Care, Experimental and Clinical Hemostasis, University of Muenster, Mendelstr 11, 48149 Muenster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Morikawa K, Ohniwa RL, Ohta T, Tanaka Y, Takeyasu K, Msadek T. Adaptation beyond the stress response: cell structure dynamics and population heterogeneity in Staphylococcus aureus. Microbes Environ 2011; 25:75-82. [PMID: 21576857 DOI: 10.1264/jsme2.me10116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Staphylococcus aureus, a major opportunistic pathogen responsible for a broad spectrum of infections, naturally inhabits the human nasal cavity in about 30% of the population. The unique adaptive potential displayed by S. aureus has made it one of the major causes of nosocomial infections today, emphasized by the rapid emergence of multiple antibiotic-resistant strains over the past few decades. The uncanny ability to adapt to harsh environments is essential for staphylococcal persistence in infections or as a commensal, and a growing body of evidence has revealed critical roles in this process for cellular structural dynamics, and population heterogeneity. These two exciting areas of research are now being explored to identify new molecular mechanisms governing these adaptational strategies.
Collapse
Affiliation(s)
- Kazuya Morikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305–8575, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
More than one tandem repeat domain of the extracellular adherence protein of Staphylococcus aureus is required for aggregation, adherence, and host cell invasion but not for leukocyte activation. Infect Immun 2008; 76:5615-23. [PMID: 18794290 DOI: 10.1128/iai.00480-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular adherence protein (Eap) is a multifunctional Staphylococcus aureus protein and broad-spectrum adhesin for several host matrix and plasma proteins. We investigated the interactions of full-length Eap and five recombinant tandem repeat domains with host proteins by use of surface plasmon resonance (BIAcore) and ligand overlay assays. In addition, agglutination and host cell interaction, namely, adherence, invasion, and stimulation of proliferation, were determined. With plasmon resonance, the interaction of full-length Eap isoforms (from strains Newman and Wood 46) with fibrinogen, fibronectin, vitronectin, and thrombospondin-1 was found to be specific but with different affinities for the ligands tested. In the ligand overlay assay, the interactions of five single tandem repeat domains (D1 to D5) of Eap-7 (from strain CI-7) with fibronectin, fibrinogen, vitronectin, thrombospondin-1, and collagen I differed substantially. Most prominently, D3 bound most strongly to fibronectin and fibrinogen. Full-length Eap, but none of the single tandem repeat domains, agglutinated S. aureus and enhanced adherence to and invasion of host cells by S. aureus. Constructs D3-4 and D1-3 (in cis) increased adherence and invasiveness compared to what was seen for single Eap tandem repeat domains. By contrast, single Eap tandem repeat domains and full-length Eap similarly modulated the proliferation of peripheral blood mononuclear cells (PBMCs): low concentrations stimulated, whereas high concentrations inhibited, proliferation. Taken together, the data indicate that Eap tandem repeat domains appear to have distinct characteristics for the binding of soluble ligands, despite a high degree of sequence similarity. In addition, more than one Eap tandem repeat domain is required for S. aureus agglutination, adherence, and cellular invasion but not for the stimulation of PBMC proliferation.
Collapse
|
8
|
Phase and antigenic variation mediated by genome modifications. Antonie van Leeuwenhoek 2008; 94:493-515. [DOI: 10.1007/s10482-008-9267-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
|
9
|
The Staphyloccous aureus Eap protein activates expression of proinflammatory cytokines. Infect Immun 2008; 76:2164-8. [PMID: 18332207 DOI: 10.1128/iai.01699-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The extracellular adhesion protein (Eap) secreted by the major human pathogen Staphylococcus aureus is known to have several effects on human immunity. We have recently added to knowledge of these roles by demonstrating that Eap enhances interactions between major histocompatibility complex molecules and human leukocytes. Several studies have indicated that Eap can induce cytokine production by human peripheral blood mononuclear cells (PBMCs). To date, there has been no rigorous attempt to identify the breadth of cytokines produced by Eap stimulation or to identify the cell subsets that respond. Here, we demonstrate that Eap induces the secretion of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) by CD14(+) leukocytes (monocytes and macrophages) within direct ex vivo PBMC populations (note that granulocytes are also CD14(+) but are largely depleted from PBMC preparations). Anti-intercellular adhesion molecule 1 (CD54) antibodies inhibited this induction and implicated a role for this known Eap binding protein in cellular activation. IL-6 and TNF-alpha secretion by murine cells exposed to Eap was also observed. The activation of CD14(+) cells by Eap suggests that it could play a significant role in both septic shock and fever, two of the major pathological features of S. aureus infections.
Collapse
|
10
|
Use of peptide-major histocompatibility complex tetramer technology to study interactions between Staphylococcus aureus proteins and human cells. Infect Immun 2007; 75:5711-5. [PMID: 17938227 DOI: 10.1128/iai.00875-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we report the use of peptide-major histocompatibility complex tetramer technology to study the interactions that occur between Staphylococcus aureus proteins and human leukocytes. We demonstrated that this technology can be used to study the activity of superantigens such as toxic shock syndrome toxin 1 and also found that despite similarities to known proteins (i.e., major histocompatibility complex [MHC] class II molecules and superantigens), the S. aureus Eap protein does not block MHC-T-cell receptor interactions and is not a superantigen. Instead, it has nonspecific cross-linking activity that is dependent upon having at least two of its six 110-amino-acid repeats.
Collapse
|
11
|
van Belkum A. Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). ACTA ACUST UNITED AC 2007; 49:22-7. [PMID: 17266711 DOI: 10.1111/j.1574-695x.2006.00173.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All bacterial genomes contain multiple loci of repetitive DNA. Repeat unit sizes and repeat sequences may vary when multiple loci are considered for different isolates of an individual microbial species. Moreover, it has been documented on many occasions that the number of repeat units per locus is a strain-defining parameter. Consequently, there is isolate-specificity in the number of repeats per locus when different strains of a given bacterial species are compared. The experimental assessment of this variability for a number of different loci has been called 'multilocus variable number of tandem repeat analysis' (MLVA). The approach can be supported or extended by locus-specific DNA sequencing for establishing mutations in the individual repeat units, which usually enhances the resolution of the approach considerably. Essentially, MLVA with or without supportive sequencing has been developed for all of the medically relevant bacterial species and can be used effectively for tracing outbreaks or other forms of bacterial dissemination. MLVA is a modern, timely and versatile bacterial typing methodology.
Collapse
Affiliation(s)
- Alex van Belkum
- Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Lindsay JA, Holden MTG. Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 2006; 6:186-201. [PMID: 16453141 DOI: 10.1007/s10142-005-0019-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/01/2005] [Indexed: 12/22/2022]
Abstract
The bacterium Staphylococcus aureus is a common cause of human infection, and it is becoming increasingly virulent and resistant to antibiotics. Our understanding of the evolution of this species has been greatly enhanced by the recent sequencing of the genomes of seven strains of S. aureus. Comparative genomic analysis allows us to identify variation in the chromosomes and understand the mechanisms by which this versatile bacterium has accumulated diversity within its genome structure.
Collapse
Affiliation(s)
- Jodi A Lindsay
- Department of Cellular and Molecular Medicine, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | | |
Collapse
|