1
|
Lewis AM, Fallon T, Dittemore GA, Sheppard K. Evolution and variation in amide aminoacyl-tRNA synthesis. IUBMB Life 2024; 76:505-522. [PMID: 38391119 DOI: 10.1002/iub.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
Collapse
Affiliation(s)
- Alexander M Lewis
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | - Trevor Fallon
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | | | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
2
|
Sharma VK, Gupta S, Chhibber-Goel J, Yogavel M, Sharma A. A single amino acid substitution alters activity and specificity in Plasmodium falciparum aspartyl & asparaginyl-tRNA synthetases. Mol Biochem Parasitol 2022; 250:111488. [DOI: 10.1016/j.molbiopara.2022.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
3
|
Chuawong P, Likittrakulwong W, Suebka S, Wiriyatanakorn N, Saparpakorn P, Taweesablamlert A, Sudprasert W, Hendrickson T, Svasti J. Anticodon-binding domain swapping in a nondiscriminating aspartyl-tRNA synthetase reveals contributions to tRNA specificity and catalytic activity. Proteins 2020; 88:1133-1142. [PMID: 32067260 DOI: 10.1002/prot.25881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/15/2019] [Accepted: 02/12/2020] [Indexed: 11/10/2022]
Abstract
The nondiscriminating aspartyl-tRNA synthetase (ND-AspRS), found in many archaea and bacteria, covalently attaches aspartic acid to tRNAAsp and tRNAAsn generating a correctly charged Asp-tRNAAsp and an erroneous Asp-tRNAAsn . This relaxed tRNA specificity is governed by interactions between the tRNA and the enzyme. In an effort to assess the contributions of the anticodon-binding domain to tRNA specificity, we constructed two chimeric enzymes, Chimera-D and Chimera-N, by replacing the native anticodon-binding domain in the Helicobacter pylori ND-AspRS with that of a discriminating AspRS (Chimera-D) and an asparaginyl-tRNA synthetase (AsnRS, Chimera-N), both from Escherichia coli. Both chimeric enzymes showed similar secondary structure compared to wild-type (WT) ND-AspRS and maintained the ability to form dimeric complexes in solution. Although less catalytically active than WT, Chimera-D was more discriminating as it aspartylated tRNAAsp over tRNAAsn with a specificity ratio of 7.0 compared to 2.9 for the WT enzyme. In contrast, Chimera-N exhibited low catalytic activity toward tRNAAsp and was unable to aspartylate tRNAAsn . The observed catalytic activities for the two chimeras correlate with their heterologous toxicity when expressed in E. coli. Molecular dynamics simulations show a reduced hydrogen bond network at the interface between the anticodon-binding domain and the catalytic domain in Chimera-N compared to Chimera-D or WT, explaining its lower stability and catalytic activity.
Collapse
Affiliation(s)
- Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wirot Likittrakulwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Faculty of Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand
| | - Suwimon Suebka
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Faculty of Science and Technology, Valaya Alongkorn Rajabhat University, Pathum Thani, Thailand
| | | | | | - Amata Taweesablamlert
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wanwisa Sudprasert
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
4
|
Songsiriritthigul C, Suebka S, Chen CJ, Fuengfuloy P, Chuawong P. Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 2017; 73:62-69. [PMID: 28177315 PMCID: PMC5297925 DOI: 10.1107/s2053230x16020586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/28/2016] [Indexed: 01/25/2023] Open
Abstract
The N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) plays a crucial role in the recognition of both tRNAAsp and tRNAAsn. Here, the first X-ray crystal structure of the N-terminal domain of this enzyme (ND-AspRS1-104) from the human-pathogenic bacterium Helicobacter pylori is reported at 2.0 Å resolution. The apo form of H. pylori ND-AspRS1-104 shares high structural similarity with the N-terminal anticodon-binding domains of the discriminating aspartyl-tRNA synthetase (D-AspRS) from Escherichia coli and ND-AspRS from Pseudomonas aeruginosa, allowing recognition elements to be proposed for tRNAAsp and tRNAAsn. It is proposed that a long loop (Arg77-Lys90) in this H. pylori domain influences its relaxed tRNA specificity, such that it is classified as nondiscriminating. A structural comparison between D-AspRS from E. coli and ND-AspRS from P. aeruginosa suggests that turns E and F (78GAGL81 and 83NPKL86) in H. pylori ND-AspRS play a crucial role in anticodon recognition. Accordingly, the conserved Pro84 in turn F facilitates the recognition of the anticodons of tRNAAsp (34GUC36) and tRNAAsn (34GUU36). The absence of the amide H atom allows both C and U bases to be accommodated in the tRNA-recognition site.
Collapse
MESH Headings
- Amino Acid Sequence
- Anticodon/chemistry
- Anticodon/metabolism
- Apoproteins/chemistry
- Apoproteins/genetics
- Apoproteins/metabolism
- Aspartate-tRNA Ligase/chemistry
- Aspartate-tRNA Ligase/genetics
- Aspartate-tRNA Ligase/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression
- Helicobacter pylori/chemistry
- Helicobacter pylori/enzymology
- Models, Molecular
- Plasmids/chemistry
- Plasmids/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Pseudomonas aeruginosa/enzymology
- Pseudomonas aeruginosa/genetics
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/genetics
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Structural Homology, Protein
Collapse
Affiliation(s)
- Chomphunuch Songsiriritthigul
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Nakhon Ratchasima 30000, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Suwimon Suebka
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pitchayada Fuengfuloy
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
6
|
Santos-Garcia D, Vargas-Chavez C, Moya A, Latorre A, Silva FJ. Genome evolution in the primary endosymbiont of whiteflies sheds light on their divergence. Genome Biol Evol 2015; 7:873-888. [PMID: 25716826 PMCID: PMC5322561 DOI: 10.1093/gbe/evv038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2015] [Indexed: 02/07/2023] Open
Abstract
Whiteflies are important agricultural insect pests, whose evolutionary success is related to a long-term association with a bacterial endosymbiont, Candidatus Portiera aleyrodidarum. To completely characterize this endosymbiont clade, we sequenced the genomes of three new Portiera strains covering the two extant whitefly subfamilies. Using endosymbiont and mitochondrial sequences we estimated the divergence dates in the clade and used these values to understand the molecular evolution of the endosymbiont coding sequences. Portiera genomes were maintained almost completely stable in gene order and gene content during more than 125 Myr of evolution, except in the Bemisia tabaci lineage. The ancestor had already lost the genetic information transfer autonomy but was able to participate in the synthesis of all essential amino acids and carotenoids. The time of divergence of the B. tabaci complex was much more recent than previous estimations. The recent divergence of biotypes B (MEAM1 species) and Q (MED species) suggests that they still could be considered strains of the same species. We have estimated the rates of evolution of Portiera genes, synonymous and nonsynonymous, and have detected significant differences among-lineages, with most Portiera lineages evolving very slowly. Although the nonsynonymous rates were much smaller than the synonymous, the genomic dN/dS ratios were similar, discarding selection as the driver of among-lineage variation. We suggest variation in mutation rate and generation time as the responsible factors. In conclusion, the slow evolutionary rates of Portiera may have contributed to its long-term association with whiteflies, avoiding its replacement by a novel and more efficient endosymbiont.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Carlos Vargas-Chavez
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Unidad Mixta de Investigación en Genómica y Salud, FISABIO-Salud Pública and Universitat de València, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Unidad Mixta de Investigación en Genómica y Salud, FISABIO-Salud Pública and Universitat de València, Spain
| | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Unidad Mixta de Investigación en Genómica y Salud, FISABIO-Salud Pública and Universitat de València, Spain
| |
Collapse
|
7
|
Suzuki T, Yamashita K, Tanaka Y, Tanaka I, Yao M. Crystallization and preliminary X-ray crystallographic analysis of a bacterial Asn-transamidosome. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:790-3. [PMID: 24915095 DOI: 10.1107/s2053230x14007274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/01/2014] [Indexed: 11/10/2022]
Abstract
Most canonical aminoacyl-tRNAs are synthesized directly by their cognate aminoacyl-tRNA synthetases (aaRSs), but glutaminyl-tRNA(Gln) and asparaginyl-tRNA(Asn) are synthesized indirectly by two-step processes. These processes are catalyzed by the transamidosome, a large ribonucleoprotein particle composed of GatA, GatB, GatC, aaRS and tRNA. In this study, the Asn-transamidosome from Pseudomonas aeruginosa was reconstructed and crystallized by mixing purified GatCAB complex, AspRS and tRNA(Asn). The crystal of the Asn-transamidosome belonged to space group P2₁, with unit-cell parameters a=93.3, b=186.0, c=287.8 Å, β=93.3°, and diffracted to 3.73 Å resolution. Preliminary X-ray crystallographic analysis showed that the asymmetric unit contained two Asn-transamidosomes, each composed of two GatCABs, one AspRS dimer and two tRNAAsns, indicating that the construction of the current Asn-transamidosome differs from that of Thermus thermophilus.
Collapse
Affiliation(s)
- Tateki Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keitaro Yamashita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Isao Tanaka
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
8
|
Mladenova SR, Stein KR, Bartlett L, Sheppard K. Relaxed tRNA specificity of theStaphylococcus aureusaspartyl-tRNA synthetase enables RNA-dependent asparagine biosynthesis. FEBS Lett 2014; 588:1808-12. [DOI: 10.1016/j.febslet.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
9
|
Highlights on trypanosomatid aminoacyl-tRNA synthesis. Subcell Biochem 2013; 74:271-304. [PMID: 24264250 DOI: 10.1007/978-94-007-7305-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Aminoacyl-tRNA synthetases aaRSs are responsible for the aminoacylation of tRNAs in the first step of protein synthesis. They comprise a group of enzymes that catalyze the formation of each possible aminoacyl-tRNA necessary for messenger RNA decoding in a cell. These enzymes have been divided into two classes according to structural features of their active sites and, although each class shares a common active site core, they present an assorted array of appended domains that makes them sufficiently diverse among the different living organisms. Here we will explore what is known about the diversity encountered among trypanosomatids' aaRSs that has helped us not only to understand better the biology of these parasites but can be used rationally for the design of drugs against these protozoa.
Collapse
|
10
|
Fuengfuloy P, Chuawong P, Suebka S, Wattana-amorn P, Williams C, Crump MP, Songsiriritthigul C. Overproduction of the N-terminal anticodon-binding domain of the non-discriminating aspartyl-tRNA synthetase from Helicobacter pylori for crystallization and NMR measurements. Protein Expr Purif 2013; 89:25-32. [DOI: 10.1016/j.pep.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
11
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
12
|
Cathopoulis TJT, Chuawong P, Hendrickson TL. Conserved discrimination against misacylated tRNAs by two mesophilic elongation factor Tu orthologs. Biochemistry 2008; 47:7610-6. [PMID: 18627126 PMCID: PMC2897013 DOI: 10.1021/bi800369q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Elongation factor Tu (EF-Tu) binds and loads elongating aminoacyl-tRNAs (aa-tRNAs) onto the ribosome for protein biosynthesis. Many bacteria biosynthesize Gln-tRNA (Gln) and Asn-tRNA (Asn) by an indirect, two-step pathway that relies on the misacylated tRNAs Glu-tRNA (Gln) and Asp-tRNA (Asn) as intermediates. Previous thermodynamic and experimental analyses have demonstrated that Thermus thermophilus EF-Tu does not bind Asp-tRNA (Asn) and predicted a similar discriminatory response against Glu-tRNA (Gln) [Asahara, H., and Uhlenbeck, O. (2005) Biochemistry 46, 6194-6200; Roy, H., et al. (2007) Nucleic Acids Res. 35, 3420-3430]. By discriminating against these misacylated tRNAS, EF-Tu plays a direct role in preventing misincorporation of aspartate and glutamate into proteins at asparagine and glutamine codons. Here we report the characterization of two different mesophilic EF-Tu orthologs, one from Escherichia coli, a bacterium that does not utilize either Glu-tRNA (Gln) or Asp-tRNA (Asn), and the second from Helicobacter pylori, an organism in which both misacylated tRNAs are essential. Both EF-Tu orthologs discriminate against these misacylated tRNAs, confirming the prediction that Glu-tRNA (Gln), like Asp-tRNA (Asn), will not form a complex with EF-Tu. These results also demonstrate that the capacity of EF-Tu to discriminate against both of these aminoacyl-tRNAs is conserved even in bacteria like E. coli that do not generate either misacylated tRNA.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Helicobacter pylori/genetics
- Helicobacter pylori/metabolism
- Hydrolysis
- Kinetics
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/genetics
- Peptide Elongation Factor Tu/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/metabolism
Collapse
Affiliation(s)
- Terry J. T. Cathopoulis
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218
| | - Pitak Chuawong
- Department of Chemistry, Kasetsart University, Pahonyothin Rd., Chatuchak, Bangkok 10900, Thailand
| | - Tamara L. Hendrickson
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218
| |
Collapse
|
13
|
Cathopoulis T, Chuawong P, Hendrickson TL. Novel tRNA aminoacylation mechanisms. MOLECULAR BIOSYSTEMS 2007; 3:408-18. [PMID: 17533454 DOI: 10.1039/b618899k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Aspartate-tRNA Ligase/metabolism
- Bacteria/enzymology
- RNA, Transfer, Amino Acyl/biosynthesis
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Asn/biosynthesis
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Gln/biosynthesis
- RNA, Transfer, Gln/chemistry
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Terry Cathopoulis
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
14
|
Schulze JO, Masoumi A, Nickel D, Jahn M, Jahn D, Schubert WD, Heinz DW. Crystal structure of a non-discriminating glutamyl-tRNA synthetase. J Mol Biol 2006; 361:888-97. [PMID: 16876193 DOI: 10.1016/j.jmb.2006.06.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 11/22/2022]
Abstract
Error-free protein biosynthesis is dependent on the reliable charging of each tRNA with its cognate amino acid. Many bacteria, however, lack a glutaminyl-tRNA synthetase. In these organisms, tRNA(Gln) is initially mischarged with glutamate by a non-discriminating glutamyl-tRNA synthetase (ND-GluRS). This enzyme thus charges both tRNA(Glu) and tRNA(Gln) with glutamate. Discriminating GluRS (D-GluRS), found in some bacteria and all eukaryotes, exclusively generates Glu-tRNA(Glu). Here we present the first crystal structure of a non-discriminating GluRS from Thermosynechococcus elongatus (ND-GluRS(Tel)) in complex with glutamate at a resolution of 2.45 A. Structurally, the enzyme shares the overall architecture of the discriminating GluRS from Thermus thermophilus (D-GluRS(Tth)). We confirm experimentally that GluRS(Tel) is non-discriminating and present kinetic parameters for synthesis of Glu-tRNA(Glu) and of Glu-tRNA(Gln). Anticodons of tRNA(Glu) (34C/UUC36) and tRNA(Gln) (34C/UUG36) differ only in base 36. The pyrimidine base of C36 is specifically recognized in D-GluRS(Tth) by the residue Arg358. In ND-GluRS(Tel) this arginine residue is replaced by glycine (Gly366) presumably allowing both cytosine and the bulkier purine base G36 of tRNA(Gln) to be tolerated. Most other ND-GluRS share this structural feature, leading to relaxed substrate specificity.
Collapse
Affiliation(s)
- Jörg O Schulze
- Division of Structural Biology, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Chuawong P, Hendrickson TL. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Biochemistry 2006; 45:8079-87. [PMID: 16800632 PMCID: PMC2654173 DOI: 10.1021/bi060189c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divergent tRNA substrate recognition patterns distinguish the two distinct forms of aspartyl-tRNA synthetase (AspRS) that exist in different bacteria. In some cases, a canonical, discriminating AspRS (D-AspRS) specifically generates Asp-tRNA(Asp) and usually coexists with asparaginyl-tRNA synthetase (AsnRS). In other bacteria, particularly those that lack AsnRS, AspRS is nondiscriminating (ND-AspRS) and generates both Asp-tRNA(Asp) and the noncanonical, misacylated Asp-tRNA(Asn); this misacylated tRNA is subsequently repaired by the glutamine-dependent Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (Asp/Glu-Adt). The molecular features that distinguish the closely related bacterial D-AspRS and ND-AspRS are not well-understood. Here, we report the first characterization of the ND-AspRS from the human pathogen Helicobacter pylori (H. pylori or Hp). This enzyme is toxic when heterologously overexpressed in Escherichia coli. This toxicity is rescued upon coexpression of the Hp Asp/Glu-Adt, indicating that Hp Asp/Glu-Adt can utilize E. coli Asp-tRNA(Asn) as a substrate. Finally, mutations in the anticodon-binding domain of Hp ND-AspRS reduce this enzyme's ability to misacylate tRNA(Asn), in a manner that correlates with the toxicity of the enzyme in E. coli.
Collapse
Affiliation(s)
- Pitak Chuawong
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218
| | - Tamara L. Hendrickson
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St. Baltimore, MD 21218
| |
Collapse
|