1
|
Darlow CA, Hope W, Dubey V. Cefepime/Enmetazobactam: a microbiological, pharmacokinetic, pharmacodynamic, and clinical evaluation. Expert Opin Drug Metab Toxicol 2025; 21:115-123. [PMID: 39508805 DOI: 10.1080/17425255.2024.2427310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Cefepime/enmetazobactam is a novel β-lactam/β-lactamase inhibitor (BL-BLI) combination with broad Gram-positive and -negative activity. Cefepime is relatively resistant to hydrolysis by AmpC, and enmetazobactam inhibits all Ambler Class A extended spectrum β-lactamases (ESBLs). Hence, the combination is resistant to hydrolysis by many ESBLs. Important spectrum gaps are MRSA, enterococci, Acinetobacter spp. and anaerobes. There is no completely reliable activity against carbapenem-resistant organisms. AREAS COVERED We describe the chemistry, pharmacodynamics, pharmacokinetics, toxicities, drug-drug interactions, clinical efficacy, and current regulatory position of cefepime/enmetazobactam, following a review of available published literature relating to cefepime/enmetazobactam. EXPERT OPINION The main potential role for cefepime/enmetazobactam is as a carbapenem-sparing agent for the treatment of infections caused by ESBL-producing Enterobacterales to prevent the use of carbapenems and to avoid the toxicities of non-β-lactam alternatives.There may be potential uses for cefepime/enmetazobactam for the treatment of reproductive tract infections, abdominal infections and neonatal sepsis, given the spectrum of activity and pharmacokinetic properties. However, additional non-clinical and clinical studies are required before use in these settings.
Collapse
Affiliation(s)
- Christopher A Darlow
- Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK
| | - Vineet Dubey
- Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Nguyen TTT, Nguyen TTT, Nguyen HD, Nguyen TK, Pham PTV, Tran LTT, Pham HKT, Truong PCH, Tran LT, Tran MH. Anti- Staphylococcus aureus potential of compounds from Ganoderma sp.: A comprehensive molecular docking and simulation approaches. Heliyon 2024; 10:e28118. [PMID: 38596094 PMCID: PMC11002548 DOI: 10.1016/j.heliyon.2024.e28118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
In this study, a series of secondary metabolites from Ganoderma sp. were screened against Staphylococcus aureus protein targets, including as phosphotransacetylase, clumping factor A, and dihydrofolate reductase, using molecular docking simulations. The chemicals that showed the strongest binding energy with the targeted proteins were ganodermanontriol, lucidumol B, ganoderic acid J, ergosterol, ergosterol peroxide, 7-oxoganoderic acid Z, ganoderic acid AM1, ganosinoside A, ganoderic acid D, and 24R-ergosta-7,2E-diene-3β,5α,6β-triol. Interestingly, ganosinoside A showed the greatest affinity for the protein clumping factor A, a result validated by molecular dynamic simulation. Additionally, three natural Ganoderma sp. Strains as Ganoderma lingzhi VNKKK1903, Ganoderma lingzhi VNKK1905A2, and Amauroderma subresinosum VNKKK1904 were collected from Kon Ka Kinh National Park in central land of Vietnam and evaluated for their antibacterial activity against Staphylococcus aureus using an agar well diffusion technique. These results suggest that the fungal extracts and secondary metabolites may serve as valuable sources of antibiotics against Staphylococcus aureus. These findings provided an important scientific groundwork for further exploration of the antibacterial mechanisms of compounds derived from Ganoderma sp. in future research.
Collapse
Affiliation(s)
- Trang Thi Thu Nguyen
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Trinh Thi Tuyet Nguyen
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Hoang Duc Nguyen
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Tan Khanh Nguyen
- Scientific Management Department, Dong A University, 33 Xo Viet Nghe Tinh, Hai Chau District, Da Nang City, 550000, Viet Nam
| | - Phu Tran Vinh Pham
- VN-UK Institute for Research and Executive Education, The University of Danang, 158A Le Loi, Hai Chau District, Danang City, 550000, Viet Nam
| | - Linh Thuy Thi Tran
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue, 530000, Viet Nam
| | - Hong Khuyen Thi Pham
- School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son District, Da Nang City, 550000, Viet Nam
| | - Phu Chi Hieu Truong
- School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son District, Da Nang City, 550000, Viet Nam
| | - Linh Thuoc Tran
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Manh Hung Tran
- School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son District, Da Nang City, 550000, Viet Nam
| |
Collapse
|
3
|
Nguyen TTT, Nguyen TTT, Nguyen HD, Nguyen TK, Pham PTV, Tran LT, Tran LTT, Tran MH. Integrating in Silico and In Vitro Studies to Screen Anti- Staphylococcus aureus Activity From Vietnamese Ganoderma multiplicatum and Ganoderma sinense. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231167289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Background: Staphylococcus aureus is a nosocomial pathogen responsible for many serious infectious diseases in humans. Finding the anti- S. aureus agents is a time-consuming and costly process. Recently, computational methods have provided a better understanding of the interactions between herbal medicine drug targets to help clinical practitioners rationally design herbal formulae. Methods: In this study, molecular docking simulation was applied to screen a list of natural secondary metabolites from Ganoderma sp. on the protein target S. aureus sortase A. Molecular dynamics models were used to assess the stability of protein–ligand complexes during the first 100 ns. To validate the computational results, 2 Ganoderma species, G. multiplicatum VNKKK1901 and G. sinense VNKKK1902, were tested for antibacterial activity against S. aureus using the disk diffusion method. Results: The results showed that, among the selected compounds, ganosinensin B and ganosinoside A generated the highest binding energy on S. aureus sortase A, and demonstrated strong and stable binding capacity to proteins. In addition, the extracts of G. sinense VNKKK1902 and G. multiplicatum VNKKK1901 were bactericidal, with minimum bactericidal concentration (MBC)/minimum inhibitory concentration (MIC) ratios of 2. Conclusion: Our findings provide the first scientific report on the antibacterial activity of Ganoderma sp., which contain 2 promising compounds, ganosinensin B and ganosinoside A, as potential hits for developing novel drugs capable of supporting treatment of S. aureus infection.
Collapse
Affiliation(s)
- Trang Thi Thu Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trinh Thi Tuyet Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Duc Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tan Khanh Nguyen
- Scientific Management Department, Dong A University, Da Nang city Vietnam
| | - Phu Tran Vinh Pham
- Faculty of Medicine, Dong A University, Hai Chau District, Da Nang City, Vietnam
| | - Linh Thuoc Tran
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Linh Thuy Thi Tran
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Manh Hung Tran
- School of Medicine and Pharmacy, The University of Danang, Da Nang City, Vietnam
| |
Collapse
|
4
|
Liu S, She P, Li Z, Li Y, Li L, Yang Y, Zhou L, Wu Y. Drug synergy discovery of tavaborole and aminoglycosides against Escherichia coli using high throughput screening. AMB Express 2022; 12:151. [PMID: 36454354 PMCID: PMC9715904 DOI: 10.1186/s13568-022-01488-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
High incidences of urinary tract infection (UTI) of aminoglycosides-resistant E.coli causes a severe burden for public health. A new therapeutic strategy to ease this crisis is to repurpose non-antibacterial compounds to increase aminoglycosides sensibility against multidrug resistant E.coli pathogens. Based on high throughput screening technology, we profile the antimicrobial activity of tavaborole, a first antifungal benzoxaborole drug for onychomycosis treatment, and investigate the synergistic interaction between tavaborole and aminoglycosides, especially tobramycin and amikacin. Most importantly, by resistance accumulation assay, we found that, tavaborole not only slowed resistance occurrence of aminoglycosides, but also reduced invasiveness of E.coli in combination with tobramycin. Mechanistic studies preliminary explored that tavaborole and aminoglycosides lead to mistranslation, but would be still necessary to investigate more details for further research. In addition, tavaborole exhibited low systematic toxicity in vitro and in vivo, and enhanced aminoglycoside bactericidal activity in mice peritonitis model. Collectively, these results suggest the potential of tavaborole as a novel aminoglycosides adjuvant to tackle the clinically relevant drug resistant E. coli and encourages us to discover more benzoxaborole analogues for circumvention of recalcitrant infections.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
5
|
Variability of Beta-Lactam Broth Microdilution for Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:e0064021. [PMID: 34310211 DOI: 10.1128/aac.00640-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial susceptibility testing for Pseudomonas aeruginosa is critical to determine suitable treatment options. Commercial susceptibility tests are typically calibrated against the reference method, broth microdilution (BMD). Imprecision of minimum inhibitory concentrations (MICs) obtained by BMD for the same isolate on repeat testing is known to exist. Factors that impact the extent of variability include concentration of the inoculum, operator effects, contents of the media, inherent strain properties, and the testing process or materials. We evaluated the variability of BMD for anti-pseudomonal beta-lactams (aztreonam, cefepime, ceftazidime, meropenem, piperacillin-tazobactam, ceftazidime-avibactam, ceftolozane-tazobactam) tested against a collection of P. aeruginosa isolates. Multiple replicate BMD tests were performed and MICs were compared to assess reproducibility, including the impact of the inoculum and operator. Overall, essential agreement (EA) was ≥ 90% for all beta-lactams tested. Absolute agreement (AA) was as low as 70% for some beta-lactams. Variability from the inoculum and operators impacted the reproducibility of MICs. Piperacillin-tazobactam exhibited the highest degree of variability with 74% AA and 94%% EA. The implications of MIC variability are extensive as the MIC is essential for multiple facets of microbiology, such as the development of new compounds and susceptibility tests, dose optimization and pharmacokinetic/pharmacodynamic (PK/PD) targets for individual patients.
Collapse
|
6
|
Sigmoid Emax Modeling To Define the Fixed Concentration of Enmetazobactam for MIC Testing in Combination with Cefepime. Antimicrob Agents Chemother 2021; 65:e0092621. [PMID: 34097479 DOI: 10.1128/aac.00926-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The use of carbapenem antibiotics to treat infections caused by Enterobacterales expressing increasingly aggressive extended-spectrum β-lactamases (ESBLs) has contributed to the emergence of carbapenem resistance. Enmetazobactam is a novel ESBL inhibitor being developed in combination with cefepime as a carbapenem-sparing option for infections caused by ESBL-producing Enterobacterales. Cefepime-enmetazobactam checkerboard MIC profiles were obtained for a challenge panel of cefepime-resistant ESBL-producing clinical isolates of Klebsiella pneumoniae. Sigmoid maximum effect (Emax) modeling described cefepime MICs as a function of enmetazobactam concentration with no bias. A concentration of 8 μg/ml enmetazobactam proved sufficient to restore >95% of cefepime antibacterial activity in vitro against >95% of isolates tested. These results support a fixed concentration of 8 μg/ml of enmetazobactam for MIC testing.
Collapse
|
7
|
Belley A, Morrissey I, Hawser S, Kothari N, Knechtle P. Third-generation cephalosporin resistance in clinical isolates of Enterobacterales collected between 2016-2018 from USA and Europe: genotypic analysis of β-lactamases and comparative in vitro activity of cefepime/enmetazobactam. J Glob Antimicrob Resist 2021; 25:93-101. [PMID: 33746112 DOI: 10.1016/j.jgar.2021.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES This study aimed to investigate third-generation cephalosporin (3GC) resistance determinants [extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases and OXA-type β-lactamases] in contemporary clinical Enterobacterales isolates and to determine the in vitro activity of β-lactams and β-lactam/β-lactamase inhibitor combinations, including the investigational combination of cefepime and the novel β-lactamase inhibitor enmetazobactam. METHODS Antibacterial susceptibility of 7168 clinical Enterobacterales isolates obtained between 2016-2018 from North America and Europe was determined according to CLSI guidelines. Phenotypic resistance to the 3GC ceftazidime (MIC ≥ 16 µg/mL) and/or ceftriaxone (MIC ≥ 4 µg/mL) but retaining susceptibility to meropenem (MIC ≤ 1 µg/mL) was determined. β-Lactamase genotyping was performed on clinical isolates with ceftazidime, ceftriaxone, cefepime or meropenem MIC ≥ 1 µg/mL. RESULTS Phenotypic resistance to 3GCs occurred in 17.5% of tested isolates, whereas 2.1% of isolates were resistant to the carbapenem meropenem. Within the 3GC-resistant subgroup, 60.1% (n = 752) of isolates encoded an ESBL, 25.6% (n = 321) encoded an AmpC-type β-lactamase and 0.9% (n = 11) encoded an OXA-type β-lactamase. Susceptibility of the subgroup to piperacillin/tazobactam (57.5%) and ceftolozane/tazobactam (71.3%) was <90% based on breakpoints established by the CLSI. Projected susceptibility to cefepime/enmetazobactam was 99.6% when applying the cefepime susceptible, dose-dependent breakpoint of 8 µg/mL. Against ESBL-producing isolates (n = 801) confirmed by genotyping, only susceptibility to meropenem (96.0%) and cefepime/enmetazobactam (99.9%) exceeded 90%. CONCLUSION This study describes the antibacterial activity of important therapies against contemporary 3GC-resistant clinical Enterobacterales isolates and supports the development of cefepime/enmetazobactam as a carbapenem-sparing option for ESBL-producing pathogens.
Collapse
|
8
|
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev 2020; 34:e00115-20. [PMID: 33177185 PMCID: PMC7667665 DOI: 10.1128/cmr.00115-20] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam-β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
Collapse
Affiliation(s)
- Dafna Yahav
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Christian G Giske
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Alise Grāmatniece
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Pauls Stradins University Hospital, University of Latvia, Riga, Latvia
| | - Henrietta Abodakpi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Leonard Leibovici
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
- Medicine E, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| |
Collapse
|
9
|
Pharmacodynamics of Cefepime Combined with the Novel Extended-Spectrum-β-Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia Caused by ESBL-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.00180-20. [PMID: 32253209 DOI: 10.1128/aac.00180-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/17/2020] [Indexed: 01/15/2023] Open
Abstract
Klebsiella pneumoniae strains that produce extended-spectrum beta lactamases (ESBLs) are a persistent public health threat. There are relatively few therapeutic options, and there is undue reliance on carbapenems. Alternative therapeutic options are urgently required. A combination of cefepime and the novel beta lactamase inhibitor enmetazobactam is being developed for the treatment of serious infections caused by ESBL-producing organisms. The pharmacokinetics-pharmacodynamics (PK-PD) of cefepime-enmetazobactam against ESBL-producing K. pneumoniae was studied in a neutropenic murine pneumonia model. Dose-ranging studies were performed. Dose fractionation studies were performed to define the relevant PD index for the inhibitor. The partitioning of cefepime and enmetazobactam into the lung was determined by comparing the area under the concentration-time curve (AUC) in plasma and epithelial lining fluid. The magnitude of drug exposure for cefepime-enmetazobactam required for logarithmic killing in the lung was defined using 3 ESBL-producing strains. Cefepime, given as 100 mg/kg of body weight every 8 h intravenously (q8h i.v.), had minimal antimicrobial effect. When this background regimen of cefepime was combined with enmetazobactam, a half-maximal effect was induced with enmetazobactam at 4.71 mg/kg q8h i.v. The dose fractionation study suggested both fT > threshold and fAUC:MIC are relevant PD indices. The AUCELF:AUCplasma ratio for cefepime and enmetazobactam was 73.4% and 61.5%, respectively. A ≥2-log kill in the lung was achieved with a plasma and ELF cefepime fT > MIC of ≥20% and enmetazobactam fT > 2 mg/liter of ≥20% of the dosing interval. These data and analyses provide the underpinning evidence for the combined use of cefepime and enmetazobactam for nosocomial pneumonia.
Collapse
|
10
|
Pharmacokinetics-Pharmacodynamics of Enmetazobactam Combined with Cefepime in a Neutropenic Murine Thigh Infection Model. Antimicrob Agents Chemother 2020; 64:AAC.00078-20. [PMID: 32253212 DOI: 10.1128/aac.00078-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/29/2020] [Indexed: 01/06/2023] Open
Abstract
Third-generation cephalosporin (3GC)-resistant Enterobacteriaceae are classified as critical priority pathogens, with extended-spectrum β-lactamases (ESBLs) as principal resistance determinants. Enmetazobactam (formerly AAI101) is a novel ESBL inhibitor developed in combination with cefepime for empirical treatment of serious Gram-negative infections in settings where ESBLs are prevalent. Cefepime-enmetazobactam has been investigated in a phase 3 trial in patients with complicated urinary tract infections or acute pyelonephritis. This study examined pharmacokinetic-pharmacodynamic (PK-PD) relationships of enmetazobactam, in combination with cefepime, for ESBL-producing isolates of Klebsiella pneumoniae in 26-h murine neutropenic thigh infection models. Enmetazobactam dose fractionation identified the time above a free threshold concentration (fT > CT ) as the PK-PD index predictive of efficacy. Nine ESBL-producing isolates of K. pneumoniae, resistant to cefepime and piperacillin-tazobactam, were included in enmetazobactam dose-ranging studies. The isolates encoded CTX-M-type, SHV-12, DHA-1, and OXA-48 β-lactamases and covered a cefepime-enmetazobactam MIC range from 0.06 to 2 μg/ml. Enmetazobactam restored the efficacy of cefepime against all isolates tested. Sigmoid curve fitting across the combined set of isolates identified enmetazobactam PK-PD targets for stasis and for a 1-log10 bioburden reduction of 8% and 44% fT > 2 μg/ml, respectively, with a concomitant cefepime PK-PD target of 40 to 60% fT > cefepime-enmetazobactam MIC. These findings support clinical dose selection and breakpoint setting for cefepime-enmetazobactam.
Collapse
|
11
|
Otsuka Y. Potent Antibiotics Active against Multidrug-Resistant Gram-Negative Bacteria. Chem Pharm Bull (Tokyo) 2020; 68:182-190. [DOI: 10.1248/cpb.c19-00842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|