1
|
Rodríguez-Miranda E, Reyes-Escogido MDL, Olmedo-Ramírez V, Jiménez-Garza O, López-Briones S, Hernández-Luna MA. Differential Expression of fimH, ihf, upaB, and upaH Genes in Biofilms- and Suspension-Grown Bacteria From Samples of Different Uropathogenic Strains of Escherichia coli. Int J Microbiol 2024; 2024:5235071. [PMID: 39703715 PMCID: PMC11658850 DOI: 10.1155/ijm/5235071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/27/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains are the main bacteria that cause urinary tract infections (UTIs). UPEC are a significant public health hazard due to their high proliferation, antibiotic resistance, and infection recurrence. The ability to form biofilms is a mechanism of antibiotic resistance, which requires the expression of different genes such as fimH, ihf, upaB, and upaH. Despite the relevance of biofilm formation in bacterial pathogenicity, differences in the expression level of these genes among bacterial growth conditions have been little studied. Here, we have characterized the expression of fimH, ihf, upaB, and upaH genes in biofilms and suspension-grown bacteria of different E. coli strains. These included the UPEC CFT073, the multidrug-resistant strain CDC-AR-0346, and clinical isolates obtained from UTI patients. The expression of fimH, ihf, upaB, and upaH was markedly heterogeneous in clinical isolates, both in terms of transcript levels and response to suspension or biofilm conditions. That expression pattern was distinct from the one in UPEC CFT073, where upaB and upaH were upregulated and ihf and fimH were slightly downregulated in biofilm. In conclusion, the data presented here show that the pattern of biofilm-associated genes in the clinical isolates from UTI patients is not fully related to the reference strain of UPEC CFT073. However, analysis of a larger number of samples is required.
Collapse
Affiliation(s)
- Esmeralda Rodríguez-Miranda
- Translational Biomedicine Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - María de Lourdes Reyes-Escogido
- Metabolism Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - Viridiana Olmedo-Ramírez
- Clinic Laboratory, Silao General Hospital, Ministry of Health of the State of Guanajuato, Silao, Guanajuato, Mexico
| | - Octavio Jiménez-Garza
- Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca, Hidalgo, Mexico
| | - Sergio López-Briones
- Translational Biomedicine Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - Marco Antonio Hernández-Luna
- Translational Biomedicine Laboratory, Department of Medicine and Nutrition, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| |
Collapse
|
2
|
Schlosserová K, Daniel O, Labská K, Jakubů V, Stárková T, Bílý J, Dresler J, Lang C, Fruth A, Flieger A, Žemličková H, Bielaszewska M, Havlíčková M. Enteroaggregative Escherichia coli: Frequent, yet underdiagnosed pathotype among E. coli O111 strains isolated from children with gastrointestinal disorders in the Czech Republic. Int J Med Microbiol 2024; 316:151628. [PMID: 38936338 DOI: 10.1016/j.ijmm.2024.151628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains including those of serogroup O111 are important causes of diarrhea in children. In the Czech Republic, no information is available on the etiological role of EAEC in pediatric diarrhea due to the lack of their targeted surveillance. To fill this gap, we determined the proportion of EAEC among E. coli O111 isolates from children with gastrointestinal disorders ≤ 2 years of age submitted to the National Reference Laboratory for E. coli and Shigella during 2013-2022. EAEC accounted for 177 of 384 (46.1 %) E. coli O111 isolates, being the second most frequent E. coli O111 pathotype. Most of them (75.7 %) were typical EAEC that carried aggR, usually with aaiC and aatA marker genes; the remaining 24.3 % were atypical EAEC that lacked aggR but carried aaiC and/or aatA. Whole genome sequencing of 11 typical and two atypical EAEC O111 strains demonstrated differences in serotypes, sequence types (ST), virulence gene profiles, and the core genomes between these two groups. Typical EAEC O111:H21/ST40 strains resembled by their virulence profiles including the presence of the aggregative adherence fimbriae V (AAF/V)-encoding cluster to such strains from other countries and clustered with them in the core genome multilocus sequence typing (cgMLST). Atypical EAEC O111:H12/ST10 strains lacked virulence genes of typical EAEC and differed from them in cgMLST. All tested EAEC O111 strains displayed stacked-brick aggregative adherence to human intestinal epithelial cells. The AAF/V-encoding cluster was located on a plasmid of 95,749 bp or 93,286 bp (pAAO111) which also carried aggR, aap, aar, sepA, and aat cluster. EAEC O111 strains were resistant to antibiotics, in particular to aminopenicillins and cephalosporins; 88.3 % produced AmpC β-lactamase, and 4.1 % extended spectrum β-lactamase. We conclude that EAEC are frequent among E. coli O111 strains isolated from children with gastrointestinal disorders in the Czech Republic. To reliably assess the etiological role of EAEC in pediatric diarrhea, a serotype-independent, PCR-based pathotype surveillance system needs to be implemented in the future.
Collapse
Affiliation(s)
- Klára Schlosserová
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, V Úvalu 84, Prague 150 06, Czech Republic
| | - Ondřej Daniel
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, V Úvalu 84, Prague 150 06, Czech Republic
| | - Klára Labská
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| | - Vladislav Jakubů
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Ruská 87, Prague 100 00, Czech Republic
| | - Tereza Stárková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| | - Jan Bílý
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| | - Jiří Dresler
- Central Military Medical Institute, Military University Hospital, U Vojenské nemocnice 1200, Prague 160 01, Czech Republic
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Burgstrasse 37, Wernigerode 38855, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Burgstrasse 37, Wernigerode 38855, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Burgstrasse 37, Wernigerode 38855, Germany
| | - Helena Žemličková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Ruská 87, Prague 100 00, Czech Republic
| | - Martina Bielaszewska
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, V Úvalu 84, Prague 150 06, Czech Republic.
| | - Monika Havlíčková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| |
Collapse
|
3
|
Correa GB, Freire CA, Dibo M, Huerta-Cantillo J, Navarro-Garcia F, Barbosa AS, Elias WP, Moraes CTP. Plasmid-encoded toxin of Escherichia coli cleaves complement system proteins and inhibits complement-mediated lysis in vitro. Front Cell Infect Microbiol 2024; 14:1327241. [PMID: 38371299 PMCID: PMC10869522 DOI: 10.3389/fcimb.2024.1327241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Plasmid-encoded toxin (Pet) is an autotransporter protein of the serine protease autotransporters of Enterobacteriaceae (SPATE) family, important in the pathogenicity of Escherichia coli. The pet gene was initially found in the enteroaggregative E. coli (EAEC) virulence plasmid, pAA2. Although this virulence factor was initially described in EAEC, an intestinal E. coli pathotype, pet may also be present in other pathotypes, including extraintestinal pathogenic strains (ExPEC). The complement system is an important defense mechanism of the immune system that can be activated by invading pathogens. Proteases produced by pathogenic bacteria, such as SPATEs, have proteolytic activity and can cleave components of the complement system, promoting bacterial resistance to human serum. Considering these factors, the proteolytic activity of Pet and its role in evading the complement system were investigated. Proteolytic assays were performed by incubating purified components of the complement system with Pet and Pet S260I (a catalytic site mutant) proteins. Pet, but not Pet S260I, could cleave C3, C5 and C9 components, and also inhibited the natural formation of C9 polymers. Furthermore, a dose-dependent inhibition of ZnCl2-induced C9 polymerization in vitro was observed. E. coli DH5α survived incubation with human serum pre-treated with Pet. Therefore, Pet can potentially interfere with the alternative and the terminal pathways of the complement system. In addition, by cleaving C9, Pet may inhibit membrane attack complex (MAC) formation on the bacterial outer membrane. Thus, our data are suggestive of a role of Pet in resistance of E. coli to human serum.
Collapse
Affiliation(s)
| | | | - Miriam Dibo
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Jazmin Huerta-Cantillo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
4
|
Karambwe S, Traoré AN, Potgieter N. Epidemiology of Cefotaxime-Hydrolysing β-Lactamase-Producing Escherichia coli in Children with Diarrhoea Reported Globally between 2012 and 2022. Microorganisms 2024; 12:171. [PMID: 38257997 PMCID: PMC10820611 DOI: 10.3390/microorganisms12010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The global spread of cefotaxime-hydrolysing β-lactamase (CTX-M)-producing Escherichia coli (E. coli) and its associated impact on paediatric diarrhoeal treatment and management has become a public health concern. This review assessed surveillance studies on CTX-M-producing E. coli associated with diarrhoea in children published between 2012 and 2022 globally. A total of thirty-eight studies were included for data analysis, categorised into continental regions, and tabulated. The majority (68%) of studies were conducted in Asian countries while few studies were conducted in Europe (11%) and Africa (18%), respectively. On the African continent, the majority (11%) of studies were conducted in Northern Africa while no studies were reported in East Africa. On the American continent, 3% of the studies were reported from South America. The studies included were classified into diarrheagenic E. coli (74%; 28/38) and faecal carriage (26%; 10/38). Of all the E. coli pathotypes associated with CTX-M production, EPEC was frequently reported. The prevalence of CTX-M-producing E. coli including the CTX-M-15-producing variants ranged between 1% and 94%. About 37% of the studies generalised the report as blaCTX-M-positive E. coli. The use of sequencing in characterising the CTX-M-producing E. coli was reported in only 32% of all the studies. This review provides information on the epidemiology of CTX-M-15-producing E. coli in paediatric diarrhoea and the extent to which surveillance is being performed. This is relevant in informing clinical practice for the management of diarrhoea as well as the design of future surveillance studies.
Collapse
Affiliation(s)
| | | | - Natasha Potgieter
- Department of Biochemistry and Microbiology, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.K.); (A.N.T.)
| |
Collapse
|
5
|
Llorente MT, Escudero R, Ramiro R, Remacha MA, Martínez-Ruiz R, Galán-Sánchez F, de Frutos M, Elía M, Onrubia I, Sánchez S. Enteroaggregative Escherichia coli as etiological agent of endemic diarrhea in Spain: A prospective multicenter prevalence study with molecular characterization of isolates. Front Microbiol 2023; 14:1120285. [PMID: 37065134 PMCID: PMC10100739 DOI: 10.3389/fmicb.2023.1120285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 03/22/2023] Open
Abstract
BackgroundEnteroaggregative Escherichia coli (EAEC) is increasingly associated with domestically acquired diarrheal episodes in high-income countries, particularly among children. However, its specific role in endemic diarrhea in this setting remains under-recognized and information on molecular characteristics of such EAEC strains is limited. We aimed to investigate the occurrence of EAEC in patients with non-travel related diarrhea in Spain and molecularly characterize EAEC strains associated with illness acquired in this high-income setting.MethodsIn a prospective multicenter study, stool samples from diarrheal patients with no history of recent travel abroad (n = 1,769) were collected and processed for detection of EAEC and other diarrheagenic E. coli (DEC) pathotypes by PCR. An additional case–control study was conducted among children ≤5 years old. Whole-genome sequences (WGS) of the resulting EAEC isolates were obtained.ResultsDetection of DEC in the study population. DEC was detected in 23.2% of patients aged from 0 to 102 years, with EAEC being one of the most prevalent pathotypes (7.8%) and found in significantly more patients ≤5 years old (9.8% vs. 3.4%, p < 0.001). Although not statistically significant, EAEC was more frequent in cases than in controls. WGS-derived characterization of EAEC isolates. Sequence type (ST) 34, ST200, ST40, and ST10 were the predominant STs. O126:H27, O111:H21, and O92:H33 were the predominant serogenotypes. Evidence of a known variant of aggregative adherence fimbriae (AAF) was found in 89.2% of isolates, with AAF/V being the most frequent. Ten percent of isolates were additionally classified as presumptive extraintestinal pathogenic E. coli (ExPEC), uropathogenic E. coli (UPEC), or both, and belonged to clonal lineages that could be specifically associated with extraintestinal infections.ConclusionEAEC was the only bacterial enteric pathogen detected in a significant proportion of cases of endemic diarrhea in Spain, especially in children ≤5 years old. In particular, O126:H27-ST200, O111:H21-ST40, and O92:H33-ST34 were the most important subtypes, with all of them infecting both patients and asymptomatic individuals. Apart from this role as an enteric pathogen, a subset of these domestically acquired EAEC strains revealed an additional urinary/systemic pathogenic potential.
Collapse
Affiliation(s)
- María Teresa Llorente
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Raquel Escudero
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Raquel Ramiro
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - María Antonia Remacha
- Servicio de Microbiología Clínica, Complejo Asistencial Universitario de León, León, Spain
| | - Rocío Martínez-Ruiz
- Servicio de Microbiología y Parasitología, Hospital Puerta de Hierro Majadahonda, Majadahonda, Spain
| | | | - Mónica de Frutos
- Servicio de Microbiología, Hospital Universitario del Río Hortega, Valladolid, Spain
| | - Matilde Elía
- Servicio de Microbiología Clínica, Hospital Universitario de Navarra, Pamplona, Spain
| | - Isabel Onrubia
- Pediatría, Centro de Salud Valle de la Oliva, Majadahonda, Spain
| | - Sergio Sánchez
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
- *Correspondence: Sergio Sánchez,
| |
Collapse
|
6
|
Nakano R, Nakano A, Nishisouzu R, Hikosaka K, Suzuki Y, Kamoshida G, Tansho-Nagakawa S, Endo S, Kasahara K, Ono Y, Yano H. Genetic relatedness of third-generation cephalosporin-resistant Escherichia coli among livestock, farmers, and patients in Japan. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
7
|
High Carriage of Extended-Spectrum, Beta Lactamase-Producing, and Colistin-Resistant Enterobacteriaceae in Tibetan Outpatients with Diarrhea. Antibiotics (Basel) 2022; 11:antibiotics11040508. [PMID: 35453259 PMCID: PMC9032258 DOI: 10.3390/antibiotics11040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) have been detected in human-impacted habitats, especially in densely populated cities. The Qinghai–Tibet Plateau is located far from the heavily populated regions of China, and Tibetan residents have distinct dietary habits and gut microbes. Antibiotic-resistance monitoring in the Tibetan population is rare. Here, we collected stool samples from Tibetan outpatients with diarrhea. From 59 samples, 48 antibiotic-resistant Enterobacteriaceae isolates were obtained, including 19 extended-spectrum beta lactamase (ESBL)-producing isolates from 16 patients and 29 polymyxin-resistant isolates from 22 patients. Either ESBL or mcr genes were found in 17 Escherichia coli isolates, approximately 58.8% of which were multidrug-resistant, and ten incompatible plasmid types were found. The gene blaCTX-M was a common genotype in the ESBL-producing E. coli isolates. Four E. coli isolates contained mcr-1. The same mcr-1-carrying plasmid was found in distinct E. coli isolates obtained from the same sample, thus confirming horizontal transmission of mcr-1 between bacteria. Genomic clustering of E. coli isolates obtained from Lhasa, with strains from other regions providing evidence of clone spreading. Our results reveal a strong presence of ARB and ARGs in Tibetan outpatients with diarrhea, implying that ARB and ARGs should be monitored in the Tibetan population.
Collapse
|
8
|
Martínez-Santos VI, Ruíz-Rosas M, Ramirez-Peralta A, Zaragoza García O, Resendiz-Reyes LA, Romero-Pineda OJ, Castro-Alarcón N. Enteroaggregative Escherichia coli is associated with antibiotic resistance and urinary tract infection symptomatology. PeerJ 2021; 9:e11726. [PMID: 34513321 PMCID: PMC8395569 DOI: 10.7717/peerj.11726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background Uropathogenic Escherichia coli (UPEC) is the causative agent of uncomplicated urinary tract infections (UTIs) in ambulatory patients. However, enteroaggregative E. coli (EAEC), an emergent bacterial pathogen that causes persistent diarrhoea, has recently been associated with UTIs. The aim of this study was to determine the frequency of EAEC virulence genes, antibiotic resistance, as well as biofilm production of UPEC isolates obtained from ambulatory patients with non-complicated UTIs that attended to the ISSSTE clinic in Chilpancingo, Guerrero, Mexico, and correlate these with the patients' urinary tract infection symptomatology. Methods One hundred clinical isolates were obtained. The identification of clinical isolates, antimicrobial susceptibility testing, and extended spectrum beta-lactamases (ESBLs) production were performed using the Vitek automated system. Assignment of E. coli phylogenetic groups was performed using the quadruplex phylo-group assignment PCR assay. UPEC virulence genes (hlyA, fimH, papC, iutA, and cnf1) and EAEC virulence genes (aap, aggR, and aatA) were detected by multiple PCR. Results We found that 22% of the isolates carried the aggR gene and were classified as UPEC/EAEC. The main phylogenetic group was B2 (44.1% were UPEC and 77.27% UPEC/EAEC isolates, respectively). Over half of the UPEC/EAEC isolates (63.64%) were obtained from symptomatic patients, however the aatA gene was the only one found to be associated with the risk of developing pyelonephritis (OR = 5.15, p = 0.038). A total of 77.71% of the UPEC/EAEC isolates were ESBL producers and 90.91% multidrug-resistant (MDR). In conclusion, UPEC/EAEC isolates are more frequent in symptomatic patients and the aatA gene was associated with a higher risk of developing pyelonephritis, along with UPEC genes hlyA and cfn1. UPEC/EAEC isolates obtained from UTI showed ESBL production and MDR.
Collapse
Affiliation(s)
| | - María Ruíz-Rosas
- Laboratorio Clínico, Área Microbiología, Clínica Hospital ISSSTE Chilpancingo, Chilpancingo, Guerrero, México
| | - Arturo Ramirez-Peralta
- Laboratorio de Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Oscar Zaragoza García
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Luis Armando Resendiz-Reyes
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Obed Josimar Romero-Pineda
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| |
Collapse
|
9
|
Abstract
Escherichia coli is a commensal of the vertebrate gut that is increasingly involved in various intestinal and extra-intestinal infections as an opportunistic pathogen. Numerous pathotypes that represent groups of strains with specific pathogenic characteristics have been described based on heterogeneous and complex criteria. The democratization of whole-genome sequencing has led to an accumulation of genomic data that render possible a population phylogenomic approach to the emergence of virulence. Few lineages are responsible for the pathologies compared with the diversity of commensal strains. These lineages emerged multiple times during E. coli evolution, mainly by acquiring virulence genes located on mobile elements, but in a specific chromosomal phylogenetic background. This repeated emergence of stable and cosmopolitan lineages argues for an optimization of strain fitness through epistatic interactions between the virulence determinants and the remaining genome.
Collapse
|
10
|
Emergence of Enteroaggregative Escherichia coli within the ST131 Lineage as a Cause of Extraintestinal Infections. mBio 2020; 11:mBio.00353-20. [PMID: 32430467 PMCID: PMC7240153 DOI: 10.1128/mbio.00353-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
E. coli ST131 is an important extraintestinal pathogenic lineage. A signature characteristic of ST131 is its ability to asymptomatically colonize the gastrointestinal tract and then opportunistically cause extraintestinal infections, such as cystitis, pyelonephritis, and urosepsis. In this study, we identified an ST131 H27 sublineage that has acquired the enteroaggregative diarrheagenic phenotype, spread across multiple continents, and caused multiple outbreaks of community-acquired ESBL-associated bloodstream infections in Denmark. The strain’s ability to both cause diarrhea and innocuously colonize the human gastrointestinal tract may facilitate its dissemination and establishment in the community. Escherichia coli sequence type 131 (ST131) is a major cause of urinary and bloodstream infections. Its association with extended-spectrum β-lactamases (ESBLs) significantly complicates treatment. Its best-described component is the rapidly expanding H30Rx clade, containing allele 30 of the type 1 fimbrial adhesin gene fimH. This lineage appears to have emerged in the United States and spread around the world in part due to the acquisition of the ESBL-encoding blaCTX-M-15 gene and resistance to fluoroquinolones. However, non-H30 ST131 sublineages with other acquired CTX-M-type resistance genes are also emerging. Based on whole-genome analyses, we describe here the presence of an (fimH) H27 E. coli ST131 sublineage that has recently caused an outbreak of community-acquired bacteremia and recurrent urinary tract infections (UTIs) in Denmark. This sublineage has acquired both a virulence plasmid (pAA) that defines the enteroaggregative E. coli (EAEC) diarrheagenic pathotype and multiple genes associated with extraintestinal E. coli (ExPEC); combined, these traits have made this particular ST131 sublineage successful at colonizing its human host and causing recurrent UTI. Moreover, using a historic World Health Organization (WHO) E. coli collection and publicly available genome sequences, we identified a global H27 EAEC ST131 sublineage that dates back as far as 1998. Most H27 EAEC ST131 isolates harbor pAA or pAA-like plasmids, and our analysis strongly implies a single ancestral acquisition among these isolates. These findings illustrate both the profound plasticity of this important pathogenic E. coli ST131 H27 sublineage and genetic acquisitions of EAEC-specific virulence traits that likely confer an enhanced ability to cause intestinal colonization.
Collapse
|
11
|
Dias RCB, Tanabe RHS, Vieira MA, Cergole-Novella MC, Dos Santos LF, Gomes TAT, Elias WP, Hernandes RT. Analysis of the Virulence Profile and Phenotypic Features of Typical and Atypical Enteroaggregative Escherichia coli (EAEC) Isolated From Diarrheal Patients in Brazil. Front Cell Infect Microbiol 2020; 10:144. [PMID: 32391284 PMCID: PMC7188757 DOI: 10.3389/fcimb.2020.00144] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important agent of acute and persistent diarrhea in children and adults worldwide. Here we report a characterization of 220 EAEC isolates, 88.2% (194/220) of which were typical and 11.8% (26/220) were atypical, obtained from diarrheal patients during seven years (2010-2016) of epidemiological surveillance in Brazil. The majority of the isolates were assigned to phylogroups A (44.1%, 97/220) or B1 (21.4%, 47/220). The aggregative adherence (AA) pattern was detected in 92.7% (204/220) of the isolates, with six of them exhibiting AA concomitantly with a chain-like adherence pattern; and agg5A and agg4A were the most common adhesin-encoding genes, which were equally detected in 14.5% (32/220) of the isolates. Each of 12 virulence factor-encoding genes (agg4A, agg5A, pic, aap, aaiA, aaiC, aaiG, orf3, aar, air, capU, and shf) were statistically associated with typical EAEC (P < 0.05). The genes encoding the newly described aggregate-forming pili (AFP) searched (afpB, afpD, afpP, and afpA2), and/or its regulator (afpR), were exclusively detected in atypical EAEC (57.7%, 15/26), and showed a significant association with this subgroup of EAEC (P < 0.001). In conclusion, we presented an extensive characterization of the EAEC circulating in the Brazilian settings and identified the afp genes as putative markers for increasing the efficiency of atypical EAEC diagnosis.
Collapse
Affiliation(s)
- Regiane C B Dias
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | - Rodrigo H S Tanabe
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | - Melissa A Vieira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | | | | | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo T Hernandes
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| |
Collapse
|
12
|
Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S, Lyras D, Schembri MA, Totsika M. Intestinal Colonization Traits of Pandemic Multidrug-Resistant Escherichia coli ST131. J Infect Dis 2019; 218:979-990. [PMID: 29471349 PMCID: PMC6093498 DOI: 10.1093/infdis/jiy031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Background Epidemiological studies point to the gut as a key reservoir of multidrug resistant Escherichia coli multilocus sequence type 131 (ST131), a globally dominant pathogenic clone causing urinary tract and bloodstream infections. Here we report a detailed investigation of its intestinal lifestyle. Methods Clinical ST131 isolates and type 1 fimbriae null mutants were assessed for colonization of human intestinal epithelia and in mouse intestinal colonization models. Mouse gut tissue underwent histologic analysis for pathology and ST131 localization. Key findings were corroborated in mucus-producing human cell lines and intestinal biopsy specimens. Results ST131 strains adhered to and invaded human intestinal epithelial cells more than probiotic and commensal strains. The reference ST131 strain EC958 established persistent intestinal colonization in mice, and expression of type 1 fimbriae mediated higher colonization levels. Bacterial loads were highest in the distal parts of the mouse intestine and did not cause any obvious pathology. Further analysis revealed that EC958 could bind to both mucus and underlying human intestinal epithelia. Conclusions ST131 strains can efficiently colonize the mammalian gut and persist long term. Type 1 fimbriae enhance ST131 intestinal colonization, suggesting that mannosides, currently developed as therapeutics for bladder infections and Crohn’s disease, could also be used to limit intestinal ST131 reservoirs.
Collapse
Affiliation(s)
- Sohinee Sarkar
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Rinaldo Ruter
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Stephanie Schüller
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- Correspondence: M. Totsika, PhD, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, QLD 4059, Australia ()
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The current review is to update the results on epidemiology, pathobiology, and genes related to virulence, clinical presentation, molecular diagnosis, antimicrobial resistance, and extraintestinal infection of enteroaggregative Escherichia coli (EAEC). RECENT FINDINGS EAEC subclinical infection was significantly associated with reduced length at 2 years of age and EAEC and coinfections were associated with reduced delta weight-for-length and weight-for-age z-scores in the first 6 months of age in the MAL-ED birth cohort study. EAEC was associated with malnutrition in children 6-24 months of age in prospective case-control studies in Bangladesh and Brazil. Virulence gene-based studies have suggested aggregative fimbriae II may be a major contributor to disease, whereas AggR-activated regulator a marker of less severe disease. The high ability of EAEC colonization likely exacerbates effects of other microbial virulence strategies. Molecular diagnosis has been useful for understanding EAEC burden, although different criteria may relate to different pathogenic outcomes. SUMMARY EAEC gained special interest in the past few years, especially due to association with growth decrements in children with subclinical infections and its important role as a copathogen. Understanding of EAEC pathogenesis advanced but further research is needed for elucidating both microbial and host factors influencing infection outcomes.
Collapse
|
14
|
Tang F, Wang J, Li D, Gao S, Ren J, Ma L, Liu F, Zhuge X, Yan G, Lu Y, Dai J. Comparative genomic analysis of 127 Escherichia coli strains isolated from domestic animals with diarrhea in China. BMC Genomics 2019; 20:212. [PMID: 30866824 PMCID: PMC6416869 DOI: 10.1186/s12864-019-5588-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/06/2019] [Indexed: 11/16/2022] Open
Abstract
Background Escherichia coli is an important pathogen that causes diarrhea in both humans and animals. To determine the relationships between putative virulence factors and pathotypes or host taxa, many molecular studies on diarrhea-associated E. coli have been reported. However, little is known regarding genome-wide variation of E. coli from animal hosts. In this study, we performed whole genome sequencing of 127 E. coli isolates from sheep and swine with diarrhea in China. We compared isolates to explore the phylogenomic relatedness based on host origin. We explored the relationships of putative virulence factors across host taxa and pathotypes. Antimicrobial resistance was also tested. Results The E. coli genomes in this study were diverse with clear differences in the SNP, MLST, and O serotypes. Seven putative virulence factors (VFs) were prevalent (> 95%) across the isolates, including Hcp, csgC, dsdA, feoB, fepA, guaA, and malX. Sixteen putative VFs showed significantly different distributions (P < 0.05) in strains from sheep and swine and were primarily adhesion- and toxin-related genes. Some putative VFs were co-occurrent in some specific pathotypes and O serotypes. The distribution of 4525 accessory genes of the 127 strains significantly differed (P < 0.05) between isolates obtained from the two animal species. The 127 animal isolates sequenced in this study were each classified into one of five pathotypes: EAEC, ETEC, STEC, DAEC, and EPEC, with 66.9% of isolates belonging to EAEC. Analysis of stx subtypes and a minimum spanning tree based on MLST revealed that STEC isolates from sheep and EAEC isolates from sheep and swine have low potential to infect humans. Antibiotic resistance analysis showed that the E. coli isolates were highly resistant to ampicillin and doxycycline. Isolates from southeast China were more resistant to antibiotics than isolates from northwest China. Additionally, the plasmid-mediated colist in resistance gene mcr-1 was detected in 15 isolates, including 4 from sheep in Qinghai and 11 from swine in Jiangsu. Conclusions Our study provides insight into the genomes of E. coli isolated from animal sources. Distinguishable differences between swine and sheep isolates at the genomic level provides a baseline for future investigations of animal E. coli pathogens. Electronic supplementary material The online version of this article (10.1186/s12864-019-5588-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Tang
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Juanfang Wang
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Dezhi Li
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Song Gao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jianluan Ren
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Liqing Ma
- Qinghai Academy of veterinary Medicine and Animal Science, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Fei Liu
- CAS key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Xiangkai Zhuge
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Genqiang Yan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Yan Lu
- Qinghai Academy of veterinary Medicine and Animal Science, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Jianjun Dai
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
15
|
Distribution of genes encoding virulence factors and multilocus variable-number tandem-repeat analysis (MLVA) of entero-aggregative Escherichia coli (EAEC) isolated in Iran from patients with diarrhoea. J Med Microbiol 2018; 67:1334-1339. [DOI: 10.1099/jmm.0.000786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Vergis J, Pathak R, Kumar M, Sunitha R, Malik SVS, Barbuddhe SB, Rawool DB. A comparative study for detection of extended spectrum β-lactamase (ESBL) production by Enteroaggregative Escherichia coli (EAEC) strains using double disc, nitrocefin and PCR assays. J Microbiol Methods 2018; 151:57-61. [PMID: 29913188 DOI: 10.1016/j.mimet.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/26/2022]
Abstract
We explored and evaluated for the first time colorimetric nitrocefin assay in conjunction with the double disc test and PCR assay. We suggested the use of nitrocefin assay for rapid screening of ESBL-production by Enteroaggregative Escherichia coli.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - R Sunitha
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - S V S Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - S B Barbuddhe
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad 500 092, India
| | - Deepak B Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India.
| |
Collapse
|
17
|
Sonda T, Kumburu H, van Zwetselaar M, Alifrangis M, Mmbaga BT, Aarestrup FM, Kibiki G, Lund O. Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania. Antimicrob Resist Infect Control 2018; 7:72. [PMID: 29977533 PMCID: PMC5992844 DOI: 10.1186/s13756-018-0361-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/22/2018] [Indexed: 01/06/2023] Open
Abstract
Background Limited information regarding the clonality of circulating E. coli strains in tertiary care hospitals in low and middle-income countries is available. The purpose of this study was to determine the serotypes, antimicrobial resistance and virulence genes. Further, we carried out a phylogenetic tree reconstruction to determine relatedness of E. coli isolated from patients in a tertiary care hospital in Tanzania. Methods E. coli isolates from inpatients admitted at Kilimanjaro Christian Medical Centre between August 2013 and August 2015 were fully genome-sequenced at KCMC hospital. Sequence analysis was done for identification of resistance genes, Multi-Locus Sequence Typing, serotyping, and virulence genes. Phylogeny reconstruction using CSI Phylogeny was done to ascertain E. coli relatedness. Stata 13 (College Station, Texas 77,845 USA) was used to determine Cohen's kappa coefficient of agreement between the phenotypically tested and whole genome sequence predicted antimicrobial resistance. Results Out of 38 E. coli isolates, 21 different sequence types (ST) were observed. Eight (21.1%) isolates belonged to ST131; of which 7 (87.5.%) were serotype O25:H4. Ten (18.4%) isolates belonged to ST10 clonal complex; of these, four (40.0%) were ST617 with serotype O89:H10. Twenty-eight (73.7%) isolates carried genes encoding beta-lactam resistance enzymes. On average, agreement across all drugs tested was 83.9%. Trimethoprim/sulphamethoxazole (co-trimoxazole) showed moderate agreement: 45.8%, kappa =15% and p = 0.08. Amoxicillin-clavulanate showed strongest agreement: 87.5%, kappa = 74% and p = 0.0001. Twenty-two (57.9%) isolates carried virulence factors for host cells adherence and 25 (65.7%) for factors that promote E. coli immune evasion by increasing survival in serum. The phylogeny analysis showed that ST131 clustering close together whereas ST10 clonal complex had a very clear segregation of the ST617 and a mix of the rest STs. Conclusion There is a high diversity of E. coli isolated from patients admitted to a tertiary care hospital in Tanzania. This underscores the necessity to routinely screen all bacterial isolates of clinical importance in tertiary health care facilities. WGS use for laboratory-based surveillance can be an effective early warning system for emerging pathogens and resistance mechanisms in LMICs.
Collapse
Affiliation(s)
- Tolbert Sonda
- 1Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.,2Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Happiness Kumburu
- 1Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.,2Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Marco van Zwetselaar
- 1Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Blandina T Mmbaga
- 1Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.,2Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | - Gibson Kibiki
- 2Kilimanjaro Christian Medical University College, Moshi, Tanzania.,East African Health Research Commission, Bujumbura, Burundi
| | - Ole Lund
- 5Centre for Biological Sequence Analysis, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
18
|
Doi Y, Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med 2017; 24:S44-S51. [PMID: 28521000 PMCID: PMC5731446 DOI: 10.1093/jtm/taw102] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Since the initial appearance in the 1980s, Enterobacteriaceae producing extended-spectrum β-lactamase (ESBL) have increased in prevalence and emerged as a major antimicrobial-resistant pathogen. The source of these antimicrobial-resistant bacteria in the developed world is an area of active investigation. METHODS A standard internet search was conducted with a focus on the epidemiology and potential sources of ESBL-producing Enterobacteriaceae in the developed world. RESULTS The last decade has witnessed several major changes in the epidemiology of these bacteria: replacement of TEM and SHV-type ESBLs by CTX-M-family ESBLs, emergence of Escherichia coli ST131 as a prevalent vehicle of ESBL, and spread of ESBL-producing E. coli in the community. The most studied potential sources of ESBL-producing Enterobacteriaceae in humans in the community include food and companion animals, the environment and person-to-person transmission, though definitive links are yet to be established. Evidence is emerging that international travel may serve as a major source of introduction of ESBL-producing Enterobacteriaceae into the developed world. CONCLUSIONS ESBL-producing Enterobacteriaceae has become a major multidrug-resistant pathogen in the last two decades, especially in the community settings. The multifactorial nature of its expansion poses a major challenge in the efforts to control them.
Collapse
Affiliation(s)
- Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America.,Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
19
|
Bai L, Wang L, Yang X, Wang J, Gan X, Wang W, Xu J, Chen Q, Lan R, Fanning S, Li F. Prevalence and Molecular Characteristics of Extended-Spectrum β-Lactamase Genes in Escherichia coli Isolated from Diarrheic Patients in China. Front Microbiol 2017; 8:144. [PMID: 28243225 PMCID: PMC5303722 DOI: 10.3389/fmicb.2017.00144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/19/2017] [Indexed: 12/03/2022] Open
Abstract
Background: The emergence and spread of antimicrobial resistance has become a major global public health concern. A component element of this is the spread of the plasmid-encoded extended-spectrum b-lactamase (ESBL) genes, conferring resistance to third-generation cephalosporins. The purpose of this study was to investigate the molecular characteristics of ESBL-encoding genes identified in Escherichia coli cultured from diarrheic patients in China from 2013 to 2014. Materials and Methods: A total of 51 E. coli were confirmed as ESBL producers by double-disk synergy testing of 912 E. coli isolates studied. Polymerase chain reaction (PCR) and DNA sequencing were performed to identify the corresponding ESBL genes. Susceptibility testing was tested by the disk diffusion method. Plasmids were typed by PCR-based replicon typing and their sizes were determined by S1-nuclease pulsed-field gel electrophoresis. Multi-locus sequence typing (MLST) and phylogrouping were also performed. Broth mating assays were carried out for all isolates to determine whether the ESBL marker could be transferred by conjugation. Results: Of the 51 ESBL-positive isolates identified, blaCTX-M, blaTEM, blaOXA, and blaSHV were detected in 51, 26, 3, 1 of these isolates, respectively. Sequencing revealed that 7 blaCTX-M subtypes were detected, with blaCTX-M-14 being the most common, followed by blaCTX-M-79 and blaCTX-M-28. Of the 26 TEM-positive isolates identified, all of these were blaTEM-1 genotypes. All isolates contained one to three large plasmids and 10 replicon types were detected. Of these, IncFrep (n = 50), IncK/B (n = 31), IncFIB (n = 26), IncB/O (n = 14), and IncI1-Ir (n = 8) replicon types were the predominating incompatibility groups. Twenty-six isolates demonstrated the ability to transfer their cefotaxime resistance marker at high transfer rates. MLST typing identified 31 sequence types and phylogenetic grouping showed that 12 of the 51 donor strains belonged to phylogroup B2. Conclusion: This study highlights the diversity of the ESBL producing E. coli and also the diversity of ESBL genes and plasmids carrying these genes in China, which poses a threat to public health.
Collapse
Affiliation(s)
- Li Bai
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment Beijing, China
| | - Lili Wang
- Institute for Nutrition and Food Hygiene, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control Beijing, China
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province Sichuan, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University Xianyang, China
| | - Xin Gan
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment Beijing, China
| | - Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment Beijing, China
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment Beijing, China
| | - Qian Chen
- Institute for Nutrition and Food Hygiene, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW, Australia
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk AssessmentBeijing, China; UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College DublinBelfield, Ireland
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment Beijing, China
| |
Collapse
|