1
|
Qin L, Hu N, Zhang Y, Yang J, Zhao L, Zhang X, Yang Y, Zhang J, Zou Y, Wei K, Zhao C, Li Y, Zeng H, Huang W, Zou Q. Antibody-antibiotic conjugate targeted therapy for orthopedic implant-associated intracellular S. aureus infections. J Adv Res 2024; 65:239-255. [PMID: 38048846 PMCID: PMC11519013 DOI: 10.1016/j.jare.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Treating orthopedic implant-associated infections, especially those caused by Staphylococcus aureus (S. aureus), remains a significant challenge. S. aureus has the ability to invade host cells, enabling it to evade both antibiotics and immune responses during infection, which may result in clinical treatment failures. Therefore, it is critical to identify the host cell type of implant-associated intracellular S. aureus infections and to develop a strategy for highly targeted delivery of antibiotics to the host cells. OBJECTIVES Introduced an antibody-antibiotic conjugate (AAC) for the targeted elimination of intracellular S. aureus. METHODS The AAC comprises of a human monoclonal antibody (M0662) directly recognizes the surface antigen of S. aureus, Staphylococcus protein A, which is conjugated with vancomycin through cathepsin-sensitive linkers that are cleavable in the proteolytic environment of the intracellular phagolysosome. AAC, vancomycin and vancomycin combined with AAC were used in vitro intracellular infection and mice implant infection models. We then tested the effect of AAC in vivo and in vivo by fluorescence imaging, in vivo imaging, bacterial quantitative analysis and bacterial biofilm imaging. RESULTS In vitro, it was observed that AAC captured extracellular S. aureus and co-entered the cells, and subsequently released vancomycin to induce rapid elimination of intracellular S. aureus. In the implant infection model, AAC significantly improved the bactericidal effect of vancomycin. Scanning electron microscopy showed that the application of AAC effectively blocked the formation of bacterial biofilm. Further histochemical and micro-CT analysis showed AAC significantly reduced the level of bone marrow density (BMD) and bone volume fraction (BV/TV) reduction caused by bacterial infection in the distal femur of mice compared to vancomycin treatment alone. CONCLUSIONS The application of AAC in an implant infection model showed that it significantly improved the bactericidal effects of vancomycin and effectively blocked the formation of bacterial biofilms, without apparent toxicity to the host.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Yanhao Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Liqun Zhao
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yun Yang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jinyong Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yinshuang Zou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Keyu Wei
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Yujian Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
2
|
Ward SA, Habibi AA, Ashkenazi I, Arshi A, Meftah M, Schwarzkopf R. Innovations in the Isolation and Treatment of Biofilms in Periprosthetic Joint Infection: A Comprehensive Review of Current and Emerging Therapies in Bone and Joint Infection Management. Orthop Clin North Am 2024; 55:171-180. [PMID: 38403364 DOI: 10.1016/j.ocl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Periprosthetic joint infections (PJIs) are a devastating complication of joint arthroplasty surgeries that are often complicated by biofilm formation. The development of biofilms makes PJI treatment challenging as they create a barrier against antibiotics and host immune responses. This review article provides an overview of the current understanding of biofilm formation, factors that contribute to their production, and the most common organisms involved in this process. This article focuses on the identification of biofilms, as well as current methodologies and emerging therapies in the management of biofilms in PJI.
Collapse
Affiliation(s)
- Spencer A Ward
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Akram A Habibi
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Itay Ashkenazi
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Armin Arshi
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Morteza Meftah
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Ran Schwarzkopf
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA.
| |
Collapse
|
3
|
Bakalakos M, Vlachos C, Ampadiotaki MM, Stylianakis A, Sipsas N, Pneumaticos S, Vlamis J. Role of Dithiothreitol in Detection of Orthopaedic Implant-Associated Infections. J Pers Med 2024; 14:334. [PMID: 38672961 PMCID: PMC11050915 DOI: 10.3390/jpm14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Orthopaedic implant-associated infections (OIAIs) represent a notable complication of contemporary surgical procedures, exerting a considerable impact on patient outcomes and escalating healthcare expenditures. Prompt diagnosis holds paramount importance in managing OIAIs, with sonication widely acknowledged as the preferred method for detecting biofilm-associated infections. Recently, dithiothreitol (DTT) has emerged as a potential substitute for sonication, owing to its demonstrated ability to impede biofilm formation. This study aimed to compare the efficacy of DTT with sonication in identifying microorganisms within implants. Conducted as a prospective cohort investigation, the study encompassed two distinct groups: patients with suspected infections undergoing implant removal (Group A) and those slated for hardware explantation (Group B). Hardware segments were assessed for biofilm-related microorganisms using both sonication and DTT, with a comparative analysis of the two methods. A total of 115 patients were enrolled. In Group A, no statistically significant disparity was observed between DTT and sonication. DTT exhibited a sensitivity of 89.47% and specificity of 96.3%. Conversely, in Group B, both DTT and sonication fluid cultures yielded negative results in all patients. Consequently, this investigation suggests that DTT holds comparable efficacy to sonication in detecting OIAIs, offering a novel, cost-effective, and readily accessible diagnostic modality for identifying implant-associated infections.
Collapse
Affiliation(s)
- Matthaios Bakalakos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (C.V.); (S.P.); (J.V.)
| | - Christos Vlachos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (C.V.); (S.P.); (J.V.)
| | | | | | - Nikolaos Sipsas
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, School of Medicine, 11527 Athens, Greece
| | - Spiros Pneumaticos
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (C.V.); (S.P.); (J.V.)
| | - John Vlamis
- 3rd Orthopaedic Department, National and Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece; (C.V.); (S.P.); (J.V.)
| |
Collapse
|
4
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
Affiliation(s)
| | | | | | - Cedric Taylor
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | |
Collapse
|
5
|
Soares Í, Faria J, Marques A, Ribeiro IAC, Baleizão C, Bettencourt A, Ferreira IMM, Baptista AC. Drug Delivery from PCL/Chitosan Multilayer Coatings for Metallic Implants. ACS OMEGA 2022; 7:23096-23106. [PMID: 35847270 PMCID: PMC9280759 DOI: 10.1021/acsomega.2c00504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implant-related infections, mainly caused by Staphylococcus aureus, are a major health concern. Treatment is challenging due to multi-resistant strains and the ability of S. aureus to adhere and form biofilms on bone and implant surfaces. The present work involved the preparation and evaluation of a novel dual polymeric film coating on stainless steel. Chitosan and polycaprolactone (PCL) multilayers, loaded with poly(methyl methacrylate) (PMMA) microspheres encapsulating vancomycin or daptomycin, produced by the dip-coating technique, allowed local antibiotic-controlled delivery for the treatment of implant-related infections. Enhanced adhesion of the film to the metal substrate surface was achieved by mechanical abrasion of its surface. Studies have shown that for both drugs the release occurs by diffusion, but the release profile depends on the type of drug (daptomycin or vancomycin), the pH of the solution, and whether the drug is freestanding (directly incorporated into the films) or encapsulated in PMMA microspheres. Daptomycin freestanding films reached 90% release after 1 day at pH 7.4 and 4 days at pH 5.5. In comparison, films with daptomycin encapsulated microspheres reached 90% release after 2 h at pH 5.5 and 2 days at pH 7.4. Vancomycin encapsulated and freestanding films showed a similar behavior reaching 90% release after 20 h of release at pH 5.5 and 2 and 3 days, respectively, at pH 7.4. Furthermore, daptomycin-loaded films showed activity (assessed by agar diffusion assays) against sensitive (ATCC 25923) and clinically isolated (MRSA) S. aureus strains.
Collapse
Affiliation(s)
- Íris Soares
- CENIMAT/I3N,
Departamento de Ciência dos Materiais, Faculdade de Ciências
e Tecnologia, FCT, Universidade Nova de
Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Jaime Faria
- CENIMAT/I3N,
Departamento de Ciência dos Materiais, Faculdade de Ciências
e Tecnologia, FCT, Universidade Nova de
Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana Marques
- CENIMAT/I3N,
Departamento de Ciência dos Materiais, Faculdade de Ciências
e Tecnologia, FCT, Universidade Nova de
Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel A. C. Ribeiro
- Research
Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carlos Baleizão
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Bettencourt
- Research
Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel M. M. Ferreira
- CENIMAT/I3N,
Departamento de Ciência dos Materiais, Faculdade de Ciências
e Tecnologia, FCT, Universidade Nova de
Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana Catarina Baptista
- CENIMAT/I3N,
Departamento de Ciência dos Materiais, Faculdade de Ciências
e Tecnologia, FCT, Universidade Nova de
Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
[Microbiological diagnosis of implant-associated infections : Retrospective analysis of 133 patients in an arthroplasty center]. DER ORTHOPADE 2022; 51:531-539. [PMID: 35089368 DOI: 10.1007/s00132-022-04212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Because standardized microbiological cultures of puncture fluids and tissue samples often do not provide pathogen detection in implant-associated infections, sonication and polymerase chain reaction (PCR) are used additionally today. OBJECTIVES Pathogen spectra and previous microbiological standards are examined for agreement of results using the new methods sonication and PCR. MATERIALS AND METHODS In this descriptive, retrospective observational study, we evaluated the data of 133 patients in whom a joint prosthesis, osteosynthesis material or a spacer was removed during revision surgery with suspected implant-associated infection and sent for sonication. RESULTS Pathogen detection was achieved by culture of peri-implant material in 40.1% and by sonication in 42.5%. In each case, coagulase-negative staphylococci were detected most frequently. Overall, the results were consistent in 71.7% of cases. In the discrepant cases, more anaerobes could be detected by sonication, especially for osteosynthesis material and knee prostheses. PCR analyses in 21 cases showed pathogen detection in 14.3% and agreement with the results of peri-implant tissue culture and sonication in 57.1% and 66.7%, respectively. CONCLUSIONS The present results indicate a gain in sensitivity of sonication, especially for anaerobes that are difficult to grow, and a gain in specificity through sonication. PCR analyses should be reserved for specific questions.
Collapse
|
7
|
Sanabria AM, Janice J, Hjerde E, Simonsen GS, Hanssen AM. Shotgun-metagenomics based prediction of antibiotic resistance and virulence determinants in Staphylococcus aureus from periprosthetic tissue on blood culture bottles. Sci Rep 2021; 11:20848. [PMID: 34675288 PMCID: PMC8531021 DOI: 10.1038/s41598-021-00383-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Shotgun-metagenomics may give valuable clinical information beyond the detection of potential pathogen(s). Identification of antimicrobial resistance (AMR), virulence genes and typing directly from clinical samples has been limited due to challenges arising from incomplete genome coverage. We assessed the performance of shotgun-metagenomics on positive blood culture bottles (n = 19) with periprosthetic tissue for typing and prediction of AMR and virulence profiles in Staphylococcus aureus. We used different approaches to determine if sequence data from reads provides more information than from assembled contigs. Only 0.18% of total reads was derived from human DNA. Shotgun-metagenomics results and conventional method results were consistent in detecting S. aureus in all samples. AMR and known periprosthetic joint infection virulence genes were predicted from S. aureus. Mean coverage depth, when predicting AMR genes was 209 ×. Resistance phenotypes could be explained by genes predicted in the sample in most of the cases. The choice of bioinformatic data analysis approach clearly influenced the results, i.e. read-based analysis was more accurate for pathogen identification, while contigs seemed better for AMR profiling. Our study demonstrates high genome coverage and potential for typing and prediction of AMR and virulence profiles in S. aureus from shotgun-metagenomics data.
Collapse
Affiliation(s)
- Adriana Maria Sanabria
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jessin Janice
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Norwegian Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Erik Hjerde
- Centre for Bioinformatics, Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Gunnar Skov Simonsen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
8
|
Peng HM, Zhou ZK, Wang F, Yan SG, Xu P, Shang XF, Zheng J, Zhu QS, Cao L, Weng XS. Microbiology of Periprosthetic Hip and Knee Infections in Surgically Revised Cases from 34 Centers in Mainland China. Infect Drug Resist 2021; 14:2411-2418. [PMID: 34211286 PMCID: PMC8241811 DOI: 10.2147/idr.s305205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023] Open
Abstract
Background and Aim Periprosthetic joint infection (PJI) is one of the most devastating complications after total joint arthroplasty (TJA). However, the antibiotic resistance of infecting pathogens can significantly vary in different parts of the country. In the current study, we analyzed the demographic and microbiological profiles of knee and hip PJI over three years and compared the microbiological differences between them. Methods A multicenter retrospective study of PJI patients in 34 referral medical centers in mainland China from January 2015 to November 2017 was performed. Results A total of 925 PJI patients were recruited, 452 were identified as knee PJIs, and 473 were hip PJIs. The most common causative pathogens were Staphylococcus aureus (26.5%) and coagulase-negative staphylococci (14.3%). Methicillin-resistant staphylococci were involved in 25.6% (237/925) of all PJI cases. Mycobacterium and fungus only accounted for 6.5% (61) of all cases. Enteric gram-negative bacilli, anaerobes, and polymicrobial pathogens were more common in hip joint prostheses than in knee PJI (P = 0.014; P = 0.006; P = 0.002, respectively). Conclusion While the majority of causative pathogens in PJI cases are staphylococcal species, the prevalence of atypical organisms and resistant pathogens should also be given attention and warrant the need for empiric antibiotic treatment.
Collapse
Affiliation(s)
- Hui-Ming Peng
- Department of Orthopedics, Peking Union Medical College Hospital, CAMS & PUMC, Beijing, 100730, People's Republic of China
| | - Zong-Ke Zhou
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Fei Wang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Shi-Gui Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Peng Xu
- Department of Adult Joint Reconstruction, Xi' an Honghui Hospital, Xi' An, 710054, Shaanxi Province, People's Republic of China
| | - Xi-Fu Shang
- Department of Orthopedic Surgery, First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China
| | - Jia Zheng
- Department of Orthopedic Surgery, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Qing-Sheng Zhu
- Department of Orthopedic Surgery, Xijing Hospital of Air Force Medical University, Xi' An, 710032, Shanxi Province, People's Republic of China
| | - Li Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Xi-Sheng Weng
- Department of Orthopedics, Peking Union Medical College Hospital, CAMS & PUMC, Beijing, 100730, People's Republic of China
| |
Collapse
|
9
|
Ricciardi BF, Muthukrishnan G, Masters EA, Kaplan N, Daiss JL, Schwarz EM. New developments and future challenges in prevention, diagnosis, and treatment of prosthetic joint infection. J Orthop Res 2020; 38:1423-1435. [PMID: 31965585 PMCID: PMC7304545 DOI: 10.1002/jor.24595] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/03/2020] [Indexed: 02/04/2023]
Abstract
Prosthetic joint infection (PJI) is a devastating complication that results in substantial costs to society and patient morbidity. Advancements in our knowledge of this condition have focused on prevention, diagnosis, and treatment, in order to reduce rates of PJI and improve patient outcomes. Preventive measures such as optimization of patient comorbidities, and perioperative antibiotic usage are intensive areas of current clinical research to reduce the rate of PJI. Improved diagnostic tests such as synovial fluid (SF) α-defensin enzyme-linked immunosorbent assay, and nucleic acid-based tests for serum, SF, and tissue cultures, have improved diagnostic accuracy and organism identification. Increasing the diversity of available antibiotic therapy, immunotherapy, and alternative implant coatings remain promising treatments to improve infection eradication in the setting of PJI.
Collapse
Affiliation(s)
- Benjamin F Ricciardi
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Elysia A Masters
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Nathan Kaplan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| |
Collapse
|
10
|
Muthukrishnan G, Soin S, Beck CA, Grier A, Brodell JD, Lee CC, Ackert-Bicknell CL, Lee FEH, Schwarz EM, Daiss JL. A Bioinformatic Approach to Utilize a Patient's Antibody-Secreting Cells against Staphylococcus aureus to Detect Challenging Musculoskeletal Infections. Immunohorizons 2020; 4:339-351. [PMID: 32571786 DOI: 10.4049/immunohorizons.2000024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
Noninvasive diagnostics for Staphylococcus aureus musculoskeletal infections (MSKI) remain challenging. Abs from newly activated, pathogen-specific plasmablasts in human blood, which emerge during an ongoing infection, can be used for diagnosing and tracking treatment response in diabetic foot infections. Using multianalyte immunoassays on medium enriched for newly synthesized Abs (MENSA) from Ab-secreting cells, we assessed anti-S. aureus IgG responses in 101 MSKI patients (63 culture-confirmed S. aureus, 38 S. aureus-negative) and 52 healthy controls. MENSA IgG levels were assessed for their ability to identify the presence and type of S. aureus MSKI using machine learning and multivariate receiver operating characteristic curves. Eleven S. aureus-infected patients were presented with prosthetic joint infections, 15 with fracture-related infections, 5 with native joint septic arthritis, 15 with diabetic foot infections, and 17 with suspected orthopedic infections in the soft tissue. Anti-S. aureus MENSA IgG levels in patients with non-S. aureus infections and healthy controls were 4-fold (***p = 0.0002) and 8-fold (****p < 0.0001) lower, respectively, compared with those with culture-confirmed S. aureus infections. Comparison of MENSA IgG responses among S. aureus culture-positive patients revealed Ags predictive of active MSKI (IsdB, SCIN, Gmd) and Ags predictive of MSKI type (IsdB, IsdH, Amd, Hla). When combined, IsdB, IsdH, Gmd, Amd, SCIN, and Hla were highly discriminatory of S. aureus MSKI (area under the ROC curve = 0.89 [95% confidence interval 0.82-0.93, p < 0.01]). Collectively, these results demonstrate the feasibility of a bioinformatic approach to use a patient's active immune proteome against S. aureus to diagnose challenging MSKI.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Sandeep Soin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Christopher A Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642.,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642
| | - Alex Grier
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - James D Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Charles C Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Cheryl L Ackert-Bicknell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopedics, University of Colorado Denver, Denver, CO 80045; and
| | - Frances Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642.,Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642; .,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
11
|
Sanabria A, Røkeberg MEO, Johannessen M, Sollid JE, Simonsen GS, Hanssen AM. Culturing periprosthetic tissue in BacT/Alert® Virtuo blood culture system leads to improved and faster detection of prosthetic joint infections. BMC Infect Dis 2019; 19:607. [PMID: 31291897 PMCID: PMC6621959 DOI: 10.1186/s12879-019-4206-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Blood culture bottles (BCBs) provide a semiautomated method for culturing periprosthetic tissue specimens. A study evaluating BCBs for culturing clinical samples other than body fluids is needed before implementation into clinical practice. Our objective was to evaluate use of the BacT/Alert® Virtuo blood culture system for culturing periprosthetic tissue specimens. Methods The study was performed through the analysis of spiked (n = 36) and clinical (n = 158) periprosthetic tissue samples. Clinical samples were analyzed by the BCB method and the results were compared to the conventional microbiological culture-based method for time to detection and microorganisms identified. Results The BacT/Alert® Virtuo blood culture system detected relevant bacteria for prosthetic joint infection in both spiked and clinical samples. The BCB method was found to be as sensitive (79%) as the conventional method (76%) (p = 0.844) during the analyses of clinical samples. The BCB method yielded positive results much faster than the conventional method: 89% against 27% detection within 24 h, respectively. The median detection time was 11.1 h for the BCB method (12 h and 11 h for the aerobic and the anaerobic BCBs, correspondingly). Conclusion We recommend using the BacT/Alert® Virtuo blood culture system for analyzing prosthetic joint tissue, since this detect efficiently and more rapidly a wider range of bacteria than the conventional microbiological method. Electronic supplementary material The online version of this article (10.1186/s12879-019-4206-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana Sanabria
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway.
| | - Merethe E O Røkeberg
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Johanna Ericson Sollid
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Gunnar Skov Simonsen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway.,Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|