1
|
D’aes J, Fraiture MA, Bogaerts B, Van Laere Y, De Keersmaecker SC, Roosens NH, Vanneste K. Metagenomics-based tracing of genetically modified microorganism contaminations in commercial fermentation products. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100236. [PMID: 39834589 PMCID: PMC11743831 DOI: 10.1016/j.fochms.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Genetically modified microorganisms (GMM) are frequently employed for the production of microbial fermentation products such as food enzymes. Although presence of the GMM or its recombinant DNA in the final product is not authorized, contaminations occur frequently. Insight into the contamination source of a GMM is of crucial importance to allow the competent authorities to take appropriate action. The aim of this study was to explore the feasibility of a metagenomic shotgun sequencing approach to investigate microbial contamination in fermentation products, focusing on source tracing of GMM strains using innovative strain deconvolution and phylogenomic approaches. In most cases, analysis of 16 GMM-contaminated food enzyme products supported finding the same GM producer strains in different products, while often multiple GMM contaminations per product were detected. Presence of AMR genes in the samples was strongly associated with GMM contamination, emphasizing the potential public health risk. Additionally, a variety of other microbial contaminations were detected, identifying a group of samples with a conspicuously similar contamination profile, which suggested that these samples originated from the same production facility or batch. Together, these findings highlight the need for guidelines and quality control for traceability of these products to ensure the safety of consumers. This study demonstrates the added value of metagenomics to obtain insight in the microbial contamination profiles, as well as their underlying relationships, in commercial microbial fermentation products. The proposed approach may be applied to other types of microbial fermentation products and/or to other (genetically modified) producer strains.
Collapse
Affiliation(s)
- Jolien D’aes
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Marie-Alice Fraiture
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Bert Bogaerts
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Yari Van Laere
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
- UGent, Department of Plant Biotechnology & Bioinformatics, Technologiepark 71 9052 Zwijnaarde, Belgium
| | | | - Nancy H.C. Roosens
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Kevin Vanneste
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Campodónico VL, Ruelle J, Fitzgerald A, Bergman Y, Osborne B, Bourdas D, Lu J, Carroll KC, Simner PJ. Evaluation of long-read 16S rRNA next-generation sequencing for identification of bacterial isolates in a clinical diagnostic laboratory. J Clin Microbiol 2025:e0167024. [PMID: 40261041 DOI: 10.1128/jcm.01670-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/11/2025] [Indexed: 04/24/2025] Open
Abstract
Sanger sequencing of the first ~500 bp of the 16S rRNA gene is frequently used to identify bacterial pathogens that have ambiguous biochemical profiles or proteomic mass spectra. When diversity does not occur within that region, genus-level and/or species-level identification may not be possible, and a longer sequence or alternative target may be required to distinguish between genera/species. In this study, we evaluated a clinically relevant end-to-end solution for long-read (~1,500 nt) 16S rRNA next-generation sequencing by Oxford Nanopore Technologies (ONT) compared to a ~500 nt Sanger sequencing approach for the identification of 153 bacterial clinical isolates. Sequencing data were analyzed using the IDNS software from SmartGene and its proprietary 16S Centroid reference database (Centroid database) SmartGene software and the Centroid database. The agreement of the two platforms on species- and genus-level identification was determined, and discrepancies were resolved by whole-genome sequencing. ONT had a higher taxonomic resolution at the genus level (P < 0.01). When genus-level identification was achieved by both methods, concordance to the best matching genus was 100%. When species-level identification was achieved by both methods, concordance to the best matching species was 91%. The costs per test were ~$25.30 (when multiplexing 24 samples/run) and $74 for ONT and Sanger sequencing, respectively. The hands-on time spent performing sequencing was similar for both methods, but the turnaround time of ONT was significantly shorter than that of Sanger sequencing.IMPORTANCEThis study adds to existing literature by describing a validated end-to-end solution of 16S rRNA gene Oxford Nanopore sequencing for bacterial isolate identification, including sequencing run time evaluation, automated analysis (SmartGene 16S Identification App) and interpretation of results, that can be incorporated into clinical and public health laboratories with a simple and cost-effective workflow.
Collapse
Affiliation(s)
- Victoria L Campodónico
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean Ruelle
- SmartGene Services, EPFL Innovation Park, Lausanne, Switzerland
| | - Anna Fitzgerald
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yehudit Bergman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brenda Osborne
- SmartGene Services, EPFL Innovation Park, Lausanne, Switzerland
| | - Dimitrios Bourdas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Lu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen C Carroll
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Sherry NL, Lee JYH, Giulieri SG, Connor CH, Horan K, Lacey JA, Lane CR, Carter GP, Seemann T, Egli A, Stinear TP, Howden BP. Genomics for antimicrobial resistance-progress and future directions. Antimicrob Agents Chemother 2025:e0108224. [PMID: 40227048 DOI: 10.1128/aac.01082-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Antimicrobial resistance (AMR) is a critical global public health threat, with bacterial pathogens of primary concern. Pathogen genomics has revolutionized the study of bacterial pathogens and provided deep insights into the mechanisms and dissemination of AMR, with the precision of whole-genome sequencing informing better control strategies. However, generating actionable data from genomic surveillance and diagnostic efforts requires integration at the public health and clinical interface that goes beyond academic efforts to identify resistance mechanisms, undertake post hoc analyses of outbreaks, and share data after research publications. In addition to timely genomics data, consideration also needs to be given to epidemiological sampling frames, analysis, and reporting mechanisms that meet International Organization for Standardization (ISO) standards and generation of reports that are interpretable and actionable for public health and clinical "end-users." Importantly, ensuring all countries have equitable access to data and technology is critical, through timely data sharing following the FAIR principles (findable, accessible, interoperable, and re-usable). In this review, we describe (i) advances in genomic approaches for AMR research and surveillance to understand emergence, evolution, and transmission of AMR and the key requirements to enable this work and (ii) discuss emerging and future applications of genomics at the clinical and public health interface, including barriers to implementation. Harnessing advances in genomics-enhanced AMR research and embedding robust and reproducible workflows within clinical and public health practice promises to maximize the impact of pathogen genomics for AMR globally in the coming decade.
Collapse
Affiliation(s)
- Norelle L Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
| | - Jean Y H Lee
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Stefano G Giulieri
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital, , Melbourne, Victoria, Australia
| | - Christopher H Connor
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jake A Lacey
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Courtney R Lane
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Glen P Carter
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Timothy P Stinear
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Carandang THDC, Cunanan DJ, Co GS, Pilapil JD, Garcia JI, Restrepo BI, Yotebieng M, Torrelles JB, Notarte KI. Diagnostic accuracy of nanopore sequencing for detecting Mycobacterium tuberculosis and drug-resistant strains: a systematic review and meta-analysis. Sci Rep 2025; 15:11626. [PMID: 40185766 PMCID: PMC11971303 DOI: 10.1038/s41598-025-90089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/10/2025] [Indexed: 04/07/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) infection, remains a significant public health threat. The timeliness, portability, and capacity of nanopore sequencing for diagnostics can aid in early detection and drug susceptibility testing (DST), which is crucial for effective TB control. This study synthesized current evidence on the diagnostic accuracy of the nanopore sequencing technology in detecting MTB and its DST profile. A comprehensive literature search in PubMed, Scopus, MEDLINE, Cochrane, EMBASE, Web of Science, AIM, IMEMR, IMSEAR, LILACS, WPRO, HERDIN Plus, MedRxiv, and BioRxiv was performed. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Pooled sensitivity, specificity, predictive values (PV), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated. Thirty-two studies were included; 13 addressed MTB detection only, 15 focused on DST only, and 4 examined both MTB detection and DST. No study used Flongle or PromethION. Seven studies were eligible for meta-analysis on MTB detection and five for DST; studies for MTB detection used GridION only while those for DST profile used MinION only. Our results indicate that GridION device has high sensitivity [88.61%; 95% CI (83.81-92.12%)] and specificity [93.18%; 95% CI (85.32-96.98%)], high positive predictive value [94.71%; 95% CI (89.99-97.27%)], moderately high negative predictive value [84.33%; 95% CI (72.02-91.84%)], and excellent DOR [107.23; 95% CI (35.15-327.15)] and AUC (0.932) in detecting MTB. Based on DOR and AUC, the MinION excelled in detecting pyrazinamide and rifampicin resistance; however, it underperformed in detecting isoniazid and ethambutol resistance. Additional studies will be needed to provide more precise estimates for MinION's sensitivity in detecting drug-resistance, as well as DOR in detecting resistance to pyrazinamide, streptomycin, and ofloxacin. Studies on detecting resistance to bedaquiline, pretomanid, and linezolid are lacking. Subgroup analyses suggest that overall accuracy of MTB detection tends to be higher with prospective study design and use of standards other than CSTB (Chinese national standard for diagnosing TB). Sensitivity analyses reveal that retrospective study design, use of GridION, and use of Illumina whole-genome sequencing (WGS) decrease overall accuracy in detecting any drug-resistant MTB. Findings from both types of analyses, however, should be interpreted with caution because of the low number of studies and uneven distribution of studies in each subgroup.
Collapse
Affiliation(s)
| | | | - Gail S Co
- Ateneo School of Medicine and Public Health, Pasig, 1604, Philippines
| | - John David Pilapil
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology , Kowloon, Hong Kong SAR, 999077, China
| | - Juan Ignacio Garcia
- Tuberculosis Group, Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, 78227, US
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, 78227, US
| | - Blanca I Restrepo
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, 78227, US
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville campus, Brownsville, TX, 7852, US
| | - Marcel Yotebieng
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, 78227, US
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Jordi B Torrelles
- Tuberculosis Group, Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, 78227, US.
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, 78227, US.
| | - Kin Israel Notarte
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, US.
| |
Collapse
|
5
|
Bejaoui S, Nielsen SH, Rasmussen A, Coia JE, Andersen DT, Pedersen TB, Møller MV, Kusk Nielsen MT, Frees D, Persson S. Comparison of Illumina and Oxford Nanopore sequencing data quality for Clostridioides difficile genome analysis and their application for epidemiological surveillance. BMC Genomics 2025; 26:92. [PMID: 39885402 PMCID: PMC11783910 DOI: 10.1186/s12864-025-11267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The burden of Clostridioides difficile as a nosocomial- and community-acquired pathogen has been increasing over the recent decades, including reports of severe outbreaks. Molecular and virulence genotyping are central for the epidemiological surveillance of this pathogen, but need to balance accuracy and rapid turnaround time of the results. While Illumina short-read sequencing has been adopted as the gold standard to investigate C. difficile virulence and transmission routes, little is known about the potential of Nanopore long-read sequencing in this field. The goal of our study was to compare sequencing and assembly quality of 37 C. difficile isolates using Illumina (SPAdes assembled) and Nanopore (Flye and Unicycler assembled) data alone, along with hybrid assemblies obtained with short-read polishing of long reads. RESULTS Illumina sequencing produced reads with an average quality of 99.68% (Q25), while Nanopore sequencing produced reads reaching an average quality of 96.84% (Q15), showing a tenfold difference in quality. Sequence type (ST) designation from Nanopore assemblies failed to detect ST5, ST7, ST8, ST13 and ST49, while ST designation based on unpolished Nanopore reads using Krocus was successful for all STs. Nanopore sequences exhibited an average of 640 base errors per genome (~ 0.015% substitution rate), which was reflected by the incorrect assignment of over 180 alleles in core genome multilocus sequence typing (cgMLST) analysis. As a result, Nanopore-derived phylogenies were not as accurate as the Illumina reference, and therefore inadequate for precise investigation of transmission events. Both sequencing platforms provided comparable, satisfactory results for the detection of virulence genes tcdA, tcdB, cdtAB and in-frame deletions in tcdC. CONCLUSION Compared to Illumina, Nanopore has higher error rate, which limits its application for high-resolution epidemiological surveillance. However, the short analysis time, lower cost and more simple procedure combined with correctly identified STs and virulence genes, makes it an alternative when fast and less detailed analyses are preferred.
Collapse
Affiliation(s)
- Semeh Bejaoui
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Astrid Rasmussen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - John Eugenio Coia
- Department of Regional Health Research (Esbjerg), University of Southern Denmark, Odense, Denmark
- ESCMID Study Group for C. difficile infections (ESCGD), Basel, Switzerland
| | - Dorte Terp Andersen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Tobias Bruun Pedersen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Martin Vad Møller
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Marc Trunjer Kusk Nielsen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Søren Persson
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
6
|
Polkhovskaya E, Moskalev E, Merkulov P, Dudnikova K, Dudnikov M, Gruzdev I, Demurin Y, Soloviev A, Kirov I. Cost-Effective Detection of SNPs and Structural Variations in Full-Length Genes of Wheat and Sunflower Using Multiplex PCR and Rapid Nanopore Kit. BIOLOGY 2025; 14:138. [PMID: 40001906 PMCID: PMC11851361 DOI: 10.3390/biology14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The rapid identification of allele variants in target genes is crucial for accelerating marker-assisted selection (MAS) in plant breeding. Although current high-throughput genotyping methods are efficient in detecting known polymorphisms, they are limited when multiple variant sites are scattered along the gene. This study presents a target amplicon sequencing approach using Oxford Nanopore Technologies (ONT-TAS) to rapidly sequence full-length genes and identify allele variants in sunflower and wheat collections. This procedure combines multiplex PCR and a rapid sequencing kit, significantly reducing the time and cost compared to previous methods. The efficiency of the approach was demonstrated by sequencing four genes (Ahasl1, Ahasl2, Ahasl3, and FAD2) in 40 sunflower genotypes and three genes (Ppo, Wx, and Lox) in 30 wheat genotypes. The ONT-TAS revealed a complete picture of SNPs and InDels distributed over the individual alleles, enabling rapid (4.5 h for PCR and sequencing) characterization of the genetic diversity of the target genes in the germplasm collections. The results showed a significant diversity of the Ahasl1/Ahasl3 and Wx-A/Lox-B genes in the sunflower and wheat collections, respectively. This method offers a high-throughput, cost-effective (USD 3.4 per gene) solution for genotyping and identifying novel allele variants in plant breeding programs.
Collapse
Affiliation(s)
- Ekaterina Polkhovskaya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Evgeniy Moskalev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Ksenia Dudnikova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Ivan Gruzdev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oilseed Crops, Filatova St. 17, 350038 Krasnodar, Russia;
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
- All-Russia Center for Plant Quarantine, 140150 Ramenski, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| |
Collapse
|
7
|
Bogaerts B, Van Braekel J, Van Uffelen A, D'aes J, Godfroid M, Delcourt T, Kelchtermans M, Milis K, Goeders N, De Keersmaecker SCJ, Roosens NHC, Winand R, Vanneste K. Galaxy @Sciensano: a comprehensive bioinformatics portal for genomics-based microbial typing, characterization, and outbreak detection. BMC Genomics 2025; 26:20. [PMID: 39780046 PMCID: PMC11715294 DOI: 10.1186/s12864-024-11182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
The influx of whole genome sequencing (WGS) data in the public health and clinical diagnostic sectors has created a need for data analysis methods and bioinformatics expertise, which can be a bottleneck for many laboratories. At Sciensano, the Belgian national public health institute, an intuitive and user-friendly bioinformatics tool portal was implemented using Galaxy, an open-source platform for data analysis and workflow creation. The Galaxy @Sciensano instance is available to both internal and external scientists and offers a wide range of tools provided by the community, complemented by over 50 custom tools and pipelines developed in-house. The tool selection is currently focused primarily on the analysis of WGS data generated using Illumina sequencing for microbial pathogen typing, characterization and outbreak detection, but it also addresses specific use cases for other data types. Our Galaxy instance includes several custom-developed 'push-button' pipelines, which are user-friendly and intuitive stand-alone tools that perform complete characterization of bacterial isolates based on WGS data and generate interactive HTML output reports with key findings. These pipelines include quality control, de novo assembly, sequence typing, antimicrobial resistance prediction and several relevant species-specific assays. They are tailored for pathogens with active genomic surveillance programs, and clinical relevance, such as Escherichia coli, Listeria monocytogenes, Salmonella spp. and Mycobacterium tuberculosis. These tools and pipelines utilize internationally recognized databases such as PubMLST, EnteroBase, and the NCBI National Database of Antibiotic Resistant Organisms, which are automatically synchronized on a regular basis to ensure up-to-date results. Many of these pipelines are part of the routine activities of Belgian national reference centers and laboratories, some of which use them under ISO accreditation. This resource is publicly available for noncommercial use at https://galaxy.sciensano.be/ and can help other laboratories establish reliable, traceable and reproducible bioinformatics analyses for pathogens encountered in public health settings.
Collapse
Affiliation(s)
- Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Julien Van Braekel
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | - Jolien D'aes
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Maxime Godfroid
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Thomas Delcourt
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | - Kato Milis
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Nathalie Goeders
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium.
| |
Collapse
|
8
|
Wu CT, Shropshire WC, Bhatti MM, Cantu S, Glover IK, Anand SS, Liu X, Kalia A, Treangen TJ, Chemaly RF, Spallone A, Shelburne S. Rapid whole genome characterization of antimicrobial-resistant pathogens using long-read sequencing to identify potential healthcare transmission. Infect Control Hosp Epidemiol 2024; 46:1-7. [PMID: 39727230 PMCID: PMC11790330 DOI: 10.1017/ice.2024.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Whole genome sequencing (WGS) can help identify transmission of pathogens causing healthcare-associated infections (HAIs). However, the current gold standard of short-read, Illumina-based WGS is labor and time intensive. Given recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing, we sought to establish a low resource approach providing accurate WGS-pathogen comparison within a time frame allowing for infection prevention and control (IPC) interventions. METHODS WGS was prospectively performed on pathogens at increased risk of potential healthcare transmission using the ONT MinION sequencer with R10.4.1 flow cells and Dorado basecaller. Potential transmission was assessed via Ridom SeqSphere+ for core genome multilocus sequence typing and MINTyper for reference-based core genome single nucleotide polymorphisms using previously published cutoff values. The accuracy of our ONT pipeline was determined relative to Illumina. RESULTS Over a six-month period, 242 bacterial isolates from 216 patients were sequenced by a single operator. Compared to the Illumina gold standard, our ONT pipeline achieved a mean identity score of Q60 for assembled genomes, even with a coverage rate as low as 40×. The mean time from initiating DNA extraction to complete analysis was 2 days (IQR 2-3.25 days). We identified five potential transmission clusters comprising 21 isolates (8.7% of sequenced strains). Integrating ONT with epidemiological data, >70% (15/21) of putative transmission cluster isolates originated from patients with potential healthcare transmission links. CONCLUSIONS Via a stand-alone ONT pipeline, we detected potentially transmitted HAI pathogens rapidly and accurately, aligning closely with epidemiological data. Our low-resource method has the potential to assist in IPC efforts.
Collapse
Affiliation(s)
- Chin-Ting Wu
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - William C. Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Micah M Bhatti
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sherry Cantu
- Infection Control, Chief Quality Office, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Israel K Glover
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Selvalakshmi Selvaraj Anand
- PhD Program in Synthetic Biology Institute Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| | - Xiaojun Liu
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Spallone
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Infection Control, Chief Quality Office, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Pham VD, Xu ZS, Simpson DJ, Zhang JS, Gänzle MG. Does strain-level persistence of lactobacilli in long-term back-slopped sourdoughs inform on domestication of food-fermenting lactic acid bacteria? Appl Environ Microbiol 2024; 90:e0189224. [PMID: 39503491 DOI: 10.1128/aem.01892-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 12/19/2024] Open
Abstract
Sourdoughs are maintained by back-slopping over long time periods. To determine strain-level persistence of bacteria, we characterized four sourdoughs from bakeries over a period of 3.3, 11.0, 18.0, and 19.0 years. One sourdough included isolates of Levilactobacillus spp. and Fructilactobacillus spp. that differed by fewer than 10 single-nucleotide polymorphisms (SNPs) from the isolates obtained 3.3 years earlier and thus likely represent the same strain. Isolates of Levilactobacillus parabrevis differed by 200-300 SNPs; their genomes were under positive selection, indicating transmission from an external source. In two other sourdoughs, isolates of Fructilactobacillus sanfranciscensis that were obtained 11 and 18 years apart differed by 19 and 29 SNPs, respectively, again indicating repeated isolation of the same strain. The isolate of Fl. sanfranciscensis from the fourth sourdough differed by 45 SNPs from the isolate obtained 19 years previously. We thus identified strain-level persistence in three out of four long-term back-slopped sourdoughs, making it possible that strains persisted over periods that are long enough to allow bacterial speciation and domestication.IMPORTANCEThe assembly of microbial communities in sourdough is shaped by dispersal and selection. Speciation and domestication of fermentation microbes in back-slopped food fermentations have been documented for food-fermenting fungi including sourdough yeasts but not for bacteria, which evolve at a slower rate. Bacterial speciation in food fermentations requires strain-level persistence of fermentation microbes over hundreds or thousands of years. By documenting strain-level persistence in three out of four sourdoughs over a period of up to 18 years, we demonstrate that persistence over hundreds or thousands of years is possible, if not likely. We thus not only open a new perspective on fermentation control in bakeries but also support the possibility that all humans, despite their cultural diversity, share the same fermentation microbes.
Collapse
Affiliation(s)
- Vi D Pham
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Zhaohui S Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - David J Simpson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Justina S Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Gonzalez-Escalona N, Kwon HJ, Chen Y. Nanopore Sequencing Allows Recovery of High-Quality Completely Closed Genomes of All Cronobacter Species from Powdered Infant Formula Overnight Enrichments. Microorganisms 2024; 12:2389. [PMID: 39770592 PMCID: PMC11678115 DOI: 10.3390/microorganisms12122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Precision metagenomic approaches using Oxford Nanopore Technology (ONT) sequencing has been shown to allow recovery of complete genomes of foodborne bacteria from overnight enrichments of agricultural waters. This study tests the applicability of a similar approach for Cronobacter genome recovery from powdered infant formula (PIF) overnight enrichments, where Cronobacter typically dominates the overall microbiome (>90%). This study aimed to test whether using ONT sequencing of overnight PIF enrichments could recover a completely closed Cronobacter genome for further genomic characterization. Ten PIF samples, each inoculated with different Cronobacter strains, covering Cronobacter sakazakii, C. muytjensii, C. dublinensis, C. turicensis, and C. universalis, were processed according to the Bacteriological Analytical Manual (BAM) protocol. Real-time quantitative PCR (qPCR) was used for initial screening (detection and quantification) of the overnight enrichments and confirmed that the inoculated PIF samples after the overnight enrichment had high levels of Cronobacter (107 to 109 CFU/mL). DNA from overnight PIF enrichments was extracted from the enrichment broth and sequenced using ONT. Results showed that ONT sequencing could accurately identify, characterize, and close the genomes of Cronobacter strains from overnight PIF enrichments in 3 days, much faster than the nearly 2 weeks required by the current BAM method. Complete genome recovery and species differentiation were achieved. This suggests that combining qPCR with ONT sequencing provides a rapid, cost-effective alternative for detecting and characterizing Cronobacter in PIF, enabling timely corrective actions during outbreaks.
Collapse
Affiliation(s)
- Narjol Gonzalez-Escalona
- Genomics Development and Applications Branch, Division of Food Safety Genomics, Office of Applied Microbiology and Technology (OAMT), Office of Laboratory Operations and Applied Science (OLOAS), Human Foods Program, Food & Drug Administration, College Park, MD 20740, USA
| | - Hee Jin Kwon
- Microbial Methods Development Branch, Division of Food and Environmental Safety, Office of Applied Microbiology and Technology (OAMT), Office of Laboratory Operations and Applied Science (OLOAS), Human Foods Program, Food & Drug Administration, College Park, MD 20740, USA; (H.J.K.); (Y.C.)
| | - Yi Chen
- Microbial Methods Development Branch, Division of Food and Environmental Safety, Office of Applied Microbiology and Technology (OAMT), Office of Laboratory Operations and Applied Science (OLOAS), Human Foods Program, Food & Drug Administration, College Park, MD 20740, USA; (H.J.K.); (Y.C.)
| |
Collapse
|
11
|
Hoffmann M, Jang JH, Tallent SM, Gonzalez-Escalona N. Single Laboratory Evaluation of the Q20+ Nanopore Sequencing Kit for Bacterial Outbreak Investigations. Int J Mol Sci 2024; 25:11877. [PMID: 39595947 PMCID: PMC11594029 DOI: 10.3390/ijms252211877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Leafy greens are a significant source of produce-related Shiga toxin-producing Escherichia coli (STEC) outbreaks in the United States, with agricultural water often implicated as a potential source. Current FDA outbreak detection protocols are time-consuming and rely on sequencing methods performed in costly equipment. This study evaluated the potential of Oxford Nanopore Technologies (ONT) with Q20+ chemistry as a cost-effective, rapid, and accurate method for identifying and clustering foodborne pathogens. The study focuses on assessing whether ONT Q20+ technology could facilitate near real-time pathogen identification, including SNP differences, serotypes, and antimicrobial resistance genes. This pilot study evaluated different combinations of two DNA extraction methods (Maxwell RSC Cultured Cell DNA kit and Monarch high molecular weight extraction kits) and two ONT library preparation protocols (ligation and the rapid barcoding sequencing kit) using five well-characterized strains representing diverse foodborne pathogens. High-quality, closed bacterial genomes were obtained from all combinations of extraction and sequencing kits. However, variations in assembly length and genome completeness were observed, indicating the need for further optimization. In silico analyses demonstrated that Q20+ nanopore sequencing chemistry accurately identified species, genotype, and virulence factors, with comparable results to Illumina sequencing. Phylogenomic clustering showed that ONT assemblies clustered with reference genomes, though some indels and SNP differences were observed, likely due to sequencing and analysis methodologies rather than inherent genetic variation. Additionally, the study evaluated the impact of a change in the sampling rates from 4 kHz (260 bases pair second) to 5 kHz (400 bases pair second), finding no significant difference in sequencing accuracy. This evaluation workflow offers a framework for evaluating novel technologies for use in surveillance and foodborne outbreak investigations. Overall, the evaluation demonstrated the potential of ONT Q20+ nanopore sequencing chemistry to assist in identifying the correct strain during outbreak investigations. However, further research, validation studies, and optimization efforts are needed to address the observed limitations and fully realize the technology's potential for improving public health outcomes and enabling more efficient responses to foodborne disease threats.
Collapse
Affiliation(s)
| | | | | | - Narjol Gonzalez-Escalona
- Genomics Development and Applications Branch, Division of Food Safety Genomics, Office of Applied Microbiology and Technology, Office of Laboratory Operations and Applied Science, Human Foods Program, Food & Drug Administration, College Park, MD 20740, USA; (M.H.); (S.M.T.)
| |
Collapse
|
12
|
Hu X, Liu J, Xu T, Qin K, Feng Y, Jia Z, Zhao X. Research progress and application of the third-generation sequencing technologies in forensic medicine. Leg Med (Tokyo) 2024; 71:102532. [PMID: 39504855 DOI: 10.1016/j.legalmed.2024.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 11/08/2024]
Abstract
Third-generation sequencing technologies, exemplified by single-molecule real-time sequencing and nanopore sequencing, provide a constellation of advantages, including long read lengths, high throughput, real-time sequencing capabilities, and remarkable portability. These cutting-edge methodologies have provided new tools for genomic analysis in forensic medicine. To gain a comprehensive understanding of the current applications and cutting-edge trends of third-generation sequencing technologies in forensic medicine, this study retrieved relevant literature from the China National Knowledge Infrastructure (CNKI) database and the Web of Science (WOS) database. Using bibliometric software CiteSpace 6.1.R6, the study visualized publication volume, countries, and keywords related to the application of third-generation sequencing technologies in forensic medicine from 2014 to 2023. The review then summarized the foundational principles, characteristics, and promising prospects of third-generation sequencing technologies in forensic medicine. Notably, it highlights their remarkable contributions in forensic individual identification, body fluid identification, forensic epigenetic analysis, microbial analysis and forensic species identification.
Collapse
Affiliation(s)
- Xiaoxin Hu
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jinjie Liu
- Criminal Investigation Corps of Beijing Public Security Bureau, Beijing 100054, China
| | - Tingyu Xu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Kaiyue Qin
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Yunpeng Feng
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhenjun Jia
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Xingchun Zhao
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
13
|
Lorenzini Campos MN, Amadio AF, Irazoqui JM, Acevedo RM, Rojas FD, Corredor Sanguña LH, Formichelli LB, Lucero RH, Giusiano GE. Applying nanopore sequencing technology in Paracoccidioides sp.: a high-quality DNA isolation method for next-generation genomic studies. Microb Genom 2024; 10:001302. [PMID: 39432409 PMCID: PMC11493184 DOI: 10.1099/mgen.0.001302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Paracoccidioidomycosis is a severe systemic endemic mycosis caused by Paracoccidioides spp. which mainly affects individuals in Latin America. Progress in Paracoccidioides genomics has been slow, as evidenced by the incomplete reference databases available. Next-generation sequencing is a valuable tool for epidemiological surveillance and genomic characterization. With the ability to sequence long reads without the need for prior amplification, Oxford Nanopore Technology (ONT) offers several advantages, but high-quality and high-quantity DNA samples are required to achieve satisfactory results. Due to the low concentration of Paracoccidioides DNA in clinical samples and inefficient culture isolation methods, DNA extraction can be a significant barrier to genomic studies of this genus. This study proposes a method to obtain a high-coverage de novo genome assembly for Paracoccidioides using an improved DNA extraction method suitable for sequencing with ONT. The assembly obtained was comparable in size to those constructed from available data from Illumina technology. To our knowledge, this is the first genome assembly of Paracoccidioides sp. of such a large size constructed using ONT.
Collapse
Affiliation(s)
- Melina Noelia Lorenzini Campos
- Instituto de Medicina Regional (IMR), Universidad Nacional del Nordeste (UNNE), Av. Las Heras 727, (3500) Resistencia, Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Fernando Amadio
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Investigación de la Cadena Láctea (IDICAL), Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 34 km 227, (2300) Rafaela, Santa Fe, Argentina
| | - José Matías Irazoqui
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Investigación de la Cadena Láctea (IDICAL), Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 34 km 227, (2300) Rafaela, Santa Fe, Argentina
| | - Raúl Maximiliano Acevedo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Botánica del Nordeste (IBONE, CONICET-UNNE), Universidad Nacional del Nordeste (UNNE), Sargento Juan Bautista Cabral 2131, (3402BKG) Corrientes capital, Argentina
| | - Florencia Dinorah Rojas
- Instituto de Medicina Regional (IMR), Universidad Nacional del Nordeste (UNNE), Av. Las Heras 727, (3500) Resistencia, Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Luis Hernando Corredor Sanguña
- Instituto de Medicina Regional (IMR), Universidad Nacional del Nordeste (UNNE), Av. Las Heras 727, (3500) Resistencia, Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Belén Formichelli
- Instituto de Medicina Regional (IMR), Universidad Nacional del Nordeste (UNNE), Av. Las Heras 727, (3500) Resistencia, Chaco, Argentina
| | - Raúl Horacio Lucero
- Instituto de Medicina Regional (IMR), Universidad Nacional del Nordeste (UNNE), Av. Las Heras 727, (3500) Resistencia, Chaco, Argentina
| | - Gustavo Emilio Giusiano
- Instituto de Medicina Regional (IMR), Universidad Nacional del Nordeste (UNNE), Av. Las Heras 727, (3500) Resistencia, Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
14
|
Calero-Cáceres W. Revolution in microbiological diagnostics needs LMIC solutions. Lancet Glob Health 2024; 12:e1588. [PMID: 39304233 DOI: 10.1016/s2214-109x(24)00362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Affiliation(s)
- William Calero-Cáceres
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato 180206, Ecuador.
| |
Collapse
|
15
|
Moens C, Bogaerts B, Lorente-Leal V, Vanneste K, De Keersmaecker SCJ, Roosens NHC, Mostin L, Fretin D, Marché S. Genomic comparison between Mycobacterium bovis and Mycobacterium microti and in silico analysis of peptide-based biomarkers for serodiagnosis. Front Vet Sci 2024; 11:1446930. [PMID: 39372902 PMCID: PMC11449866 DOI: 10.3389/fvets.2024.1446930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years, there has been an increase in the number of reported cases of Mycobacterium microti infection in various animals, which can interfere with the ante-mortem diagnosis of animal tuberculosis caused by Mycobacterium bovis. In this study, whole genome sequencing (WGS) was used to search for protein-coding genes to distinguish M. microti from M. bovis. In addition, the population structure of the available M. microti genomic WGS datasets is described, including three novel Belgian isolates from infections in alpacas. Candidate genes were identified by examining the presence of the regions of difference and by a pan-genome analysis of the available WGS data. A total of 80 genes showed presence-absence variation between the two species, including genes encoding Proline-Glutamate (PE), Proline-Proline-Glutamate (PPE), and Polymorphic GC-Rich Sequence (PE-PGRS) proteins involved in virulence and host interaction. Filtering based on predicted subcellular localization, sequence homology and predicted antigenicity resulted in 28 proteins out of 80 that were predicted to be potential antigens. As synthetic peptides are less costly and variable than recombinant proteins, an in silico approach was performed to identify linear and discontinuous B-cell epitopes in the selected proteins. From the 28 proteins, 157 B-cell epitope-based peptides were identified that discriminated between M. bovis and M. microti species. Although confirmation by in vitro testing is still required, these candidate synthetic peptides containing B-cell epitopes could potentially be used in serological tests to differentiate cases of M. bovis from M. microti infection, thus reducing misdiagnosis in animal tuberculosis surveillance.
Collapse
Affiliation(s)
- Charlotte Moens
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
- Laboratory of Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Victor Lorente-Leal
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | - Laurent Mostin
- Experimental Center Machelen, Sciensano, Machelen, Belgium
| | - David Fretin
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Sylvie Marché
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
16
|
Sierra R, Roch M, Moraz M, Prados J, Vuilleumier N, Emonet S, Andrey DO. Contributions of Long-Read Sequencing for the Detection of Antimicrobial Resistance. Pathogens 2024; 13:730. [PMID: 39338921 PMCID: PMC11434816 DOI: 10.3390/pathogens13090730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND In the context of increasing antimicrobial resistance (AMR), whole-genome sequencing (WGS) of bacteria is considered a highly accurate and comprehensive surveillance method for detecting and tracking the spread of resistant pathogens. Two primary sequencing technologies exist: short-read sequencing (50-300 base pairs) and long-read sequencing (thousands of base pairs). The former, based on Illumina sequencing platforms (ISPs), provides extensive coverage and high accuracy for detecting single nucleotide polymorphisms (SNPs) and small insertions/deletions, but is limited by its read length. The latter, based on platforms such as Oxford Nanopore Technologies (ONT), enables the assembly of genomes, particularly those with repetitive regions and structural variants, although its accuracy has historically been lower. RESULTS We performed a head-to-head comparison of these techniques to sequence the K. pneumoniae VS17 isolate, focusing on blaNDM resistance gene alleles in the context of a surveillance program. Discrepancies between the ISP (blaNDM-4 allele identified) and ONT (blaNDM-1 and blaNDM-5 alleles identified) were observed. Conjugation assays and Sanger sequencing, used as the gold standard, confirmed the validity of ONT results. This study demonstrates the importance of long-read or hybrid assemblies for accurate carbapenemase resistance gene identification and highlights the limitations of short reads in the context of gene duplications or multiple alleles. CONCLUSIONS In this proof-of-concept study, we conclude that recent long-read sequencing technology may outperform standard short-read sequencing for the accurate identification of carbapenemase alleles. Such information is crucial given the rising prevalence of strains producing multiple carbapenemases, especially as WGS is increasingly used for epidemiological surveillance and infection control.
Collapse
Affiliation(s)
- Roberto Sierra
- Infectious Diseases Division, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland; (R.S.)
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Mélanie Roch
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Milo Moraz
- Infectious Diseases Division, Institut Central des Hôpitaux (ICH), Valais Hospital, 1951 Sion, Switzerland
| | - Julien Prados
- Bioinformatics Support Platform, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Stéphane Emonet
- Infectious Diseases Division, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland; (R.S.)
- Infectious Diseases Division, Institut Central des Hôpitaux (ICH), Valais Hospital, 1951 Sion, Switzerland
| | - Diego O. Andrey
- Infectious Diseases Division, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland; (R.S.)
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
17
|
Wu CT, Shropshire WC, Bhatti MM, Cantu S, Glover IK, Anand SS, Liu X, Kalia A, Treangen TJ, Chemaly RF, Spallone A, Shelburne S. Rapid Whole Genome Characterization of High-Risk Pathogens Using Long-Read Sequencing to Identify Potential Healthcare Transmission. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.19.24312266. [PMID: 39228727 PMCID: PMC11370528 DOI: 10.1101/2024.08.19.24312266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Objective Routine use of whole genome sequencing (WGS) has been shown to help identify transmission of pathogens causing healthcare-associated infections (HAIs). However, the current gold standard of short-read, Illumina-based WGS is labor and time-intensive. In light of recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing, we sought to establish a low resource utilization approach capable of providing accurate WGS-based comparisons of HAI pathogens within a time frame allowing for infection prevention and control (IPC) interventions. Methods WGS was prospectively performed on antimicrobial-resistant pathogens at increased risk of potential healthcare transmission using the ONT MinION sequencer with R10.4.1 flow cells and Dorado basecalling algorithm. Potential transmission was assessed via Ridom SeqSphere+ for core genome multilocus sequence typing and MINTyper for reference-based core genome single nucleotide polymorphisms using previously published cut-off values. The accuracy of our ONT pipeline was determined relative to Illumina-based WGS data generated from the same genomic DNA sample. Results Over a six-month period, 242 bacterial isolates from 216 patients were sequenced by a single operator. Compared to the Illumina gold-standard data, our ONT pipeline achieved a Q score of 60 for assembled genomes, even with a coverage rate of as low as 40X. The mean time from initiating DNA extraction to complete genetic analysis was 2 days (IQR 2-3.25 days). We identified five potential transmission clusters comprising 21 isolates (8.7% of all sequenced strains). Combining ONT WGS data with epidemiological data, >70% (15/21) of the isolates originated from patients with potential healthcare transmission links. Conclusions Via a stand-alone ONT pipeline, we detected potentially transmitted HAI pathogens rapidly and accurately, aligning closely with epidemiological data. Our low-resource method has the potential to assist in the efficient detection and deployment of preventative measures against HAI transmission.
Collapse
|
18
|
Hong YP, Chen BH, Wang YW, Teng RH, Wei HL, Chiou CS. The usefulness of nanopore sequencing in whole-genome sequencing-based genotyping of Listeria monocytogenes and Salmonella enterica serovar Enteritidis. Microbiol Spectr 2024; 12:e0050924. [PMID: 38809017 PMCID: PMC11218467 DOI: 10.1128/spectrum.00509-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial genotyping through whole-genome sequencing plays a crucial role in disease surveillance and outbreak investigations in public health laboratories. This study assessed the effectiveness of Oxford Nanopore Technologies (ONT) sequencing in the genotyping of Listeria monocytogenes and Salmonella enterica serovar Enteritidis. Our results indicated that ONT sequences, generated with the R10.4.1 flow cell and basecalled using the Dorado 0.5.0 Super Accurate 4.3 model, exhibited comparable accuracy to Illumina sequences, effectively discriminating among bacterial strains from outbreaks. These findings suggest that ONT sequencing has the potential to be a promising tool for rapid whole-genome sequencing of bacterial pathogens in public health laboratories for epidemiological investigations. IMPORTANCE This study unveils that Oxford Nanopore Technologies sequencing, by itself, holds the potential to serve as a whole-genome sequencing-based genotyping tool in public health laboratories, enabling routine subtyping of bacterial isolates for disease surveillance and outbreak investigations.
Collapse
Affiliation(s)
- Yu-Ping Hong
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Bo-Han Chen
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - You-Wun Wang
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Ru-Hsiou Teng
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Hsiao-Lun Wei
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Chien-Shun Chiou
- Central Region Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| |
Collapse
|
19
|
Mostafa HH. An evolution of Nanopore next-generation sequencing technology: implications for medical microbiology and public health. J Clin Microbiol 2024; 62:e0024624. [PMID: 38563782 PMCID: PMC11077973 DOI: 10.1128/jcm.00246-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Next-generation sequencing has evolved as a powerful tool, with applications that extend from diagnosis to public health surveillance and outbreak investigations. Short-read sequencing, using primarily Illumina chemistry, has been the prevailing approach. Single-molecule sensing and long-read sequencing using Oxford Nanopore Technologies (ONT) has witnessed a breakthrough in the evolution of the technology, performance, and applications in the past few years. In this issue of the Journal of Clinical Microbiology, Bogaerts et al. (https://doi.org/10.1128/jcm.01576-23) describe the utility of the latest ONT sequencing technology, the R10.4.1, in bacterial outbreak investigations. The authors demonstrate that ONT R10.4.1 technology can be comparable to Illumina sequencing for single-nucleotide polymorphism-based phylogeny. The authors emphasize that the reproducibility between ONT and Illumina technologies could facilitate collaborations among laboratories utilizing different sequencing platforms for outbreak investigations.
Collapse
Affiliation(s)
- Heba H. Mostafa
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|