1
|
Jeong S, Lee N, Park MJ, Jeon K, Kim HS, Kim HS, Kim JS, Song W. Genotypic Distribution and Antimicrobial Susceptibilities of Carbapenemase-Producing Enterobacteriaceae Isolated From Rectal and Clinical Samples in Korean University Hospitals Between 2016 and 2019. Ann Lab Med 2022; 42:36-46. [PMID: 34374347 PMCID: PMC8368229 DOI: 10.3343/alm.2022.42.1.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background The emergence of carbapenemase-producing Enterobacteriaceae (CPE) represents a major clinical problem. Recently, the occurrence of CPE has increased globally, but epidemiological patterns vary across region. We report the trends in the genotypic distribution and antimicrobial susceptibility of CPE isolated from rectal and clinical samples during a four-year period. Methods Between January 2016 and December 2019, 1,254 nonduplicated CPE isolates were obtained from four university hospitals in Korea. Carbapenemase genotypes were determined by multiplex real-time PCR. Antimicrobial susceptibility was profiled using the Vitek 2 system (bioMérieux, Hazelwood, MO, USA) or MicroScan Walkaway-96 system (Siemens West Sacramento, CA, USA). The proportions of carbapenemase genotypes and nonsusceptibility were analyzed using Pearson’s chi-square test. Results Among the 1,254 CPE isolates, 486 (38.8%), 371 (29.6%), 357 (28.5%), 8 (0.6%), 8 (0.6%), and 24 (1.9%) were Klebsiella pneumoniae carbapenemase (KPC), oxacillinase (OXA)-48-like, New Delhi metallo-β-lactamase (NDM), imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), and multiple producers, respectively. The predominant species was K. pneumoniae (72.6%), followed by Escherichia coli (6.5%). More than 90% of the isolates harboring KPC, NDM, and OXA-48-like were nonsusceptible to cephalosporins, aztreonam, and carbapenems. Conclusions The impact of CPE is primarily due to KPC-, NDM-, and OXA-48-like-producing K. pneumoniae isolates. Isolates carrying these carbapenemase are mostly multidrug-resistant. Control strategies based on these genotypic distributions and antimicrobial susceptibilities of CPE isolates are required.
Collapse
Affiliation(s)
- Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Nuri Lee
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Kibum Jeon
- Department of Laboratory Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Lynch JP, Clark NM, Zhanel GG. Escalating antimicrobial resistance among Enterobacteriaceae: focus on carbapenemases. Expert Opin Pharmacother 2021; 22:1455-1473. [PMID: 33823714 DOI: 10.1080/14656566.2021.1904891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Over the past few decades, antimicrobial resistance (AMR) has skyrocketed globally among bacteria within the Family Enterobacteriaceae (i.e. Enterobacter spp, Klebsiella spp, Escherichia coli, Proteus spp, Serratia marcescens, Citrobacter spp, and others). Enterobacteriaceae are intestinal flora and are important pathogens in nosocomial and community settings. Enterobacteriaceae spread easily between humans and may acquire AMR via plasmids or other mobile resistance elements. The emergence and spread of multidrug resistant (MDR) clones have greatly limited therapeutic options. Some infections are untreatable with existing antimicrobials.Areas covered: The authors discuss the escalation of CRE globally, the epidemiology and outcomes of CRE infections, the optimal therapy, and the potential role of several new antimicrobials to combat MDR organisms. An exhaustive search for literature related to Enterobacteriaceae was performed using PubMed, using the following key words: antimicrobial resistance; carbapenemases; Enterobacterales; Enterobacteriaceae; Klebsiella pneumoniae; Escherichia coli; global epidemiology; metallo-β-lactamases; multidrug resistance; New Delhi Metalloproteinase-1 (NDM-1); plasmidsExpert opinion: Innovation and development of new classes of antibacterial agents are critical to expand effective therapeutic options. The authors encourage the judicious use of antibiotics and aggressive infection-control measures are essential to minimize the spread of AMR.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology;The David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Nina M Clark
- The Division of Infectious Diseases, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Bokhary H, Pangesti KNA, Rashid H, Abd El Ghany M, Hill-Cawthorne GA. Travel-Related Antimicrobial Resistance: A Systematic Review. Trop Med Infect Dis 2021; 6:11. [PMID: 33467065 PMCID: PMC7838817 DOI: 10.3390/tropicalmed6010011] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence that human movement facilitates the global spread of resistant bacteria and antimicrobial resistance (AMR) genes. We systematically reviewed the literature on the impact of travel on the dissemination of AMR. We searched the databases Medline, EMBASE and SCOPUS from database inception until the end of June 2019. Of the 3052 titles identified, 2253 articles passed the initial screening, of which 238 met the inclusion criteria. The studies covered 30,060 drug-resistant isolates from 26 identified bacterial species. Most were enteric, accounting for 65% of the identified species and 92% of all documented isolates. High-income countries were more likely to be recipient nations for AMR originating from middle- and low-income countries. The most common origin of travellers with resistant bacteria was Asia, covering 36% of the total isolates. Beta-lactams and quinolones were the most documented drug-resistant organisms, accounting for 35% and 31% of the overall drug resistance, respectively. Medical tourism was twice as likely to be associated with multidrug-resistant organisms than general travel. International travel is a vehicle for the transmission of antimicrobial resistance globally. Health systems should identify recent travellers to ensure that adequate precautions are taken.
Collapse
Affiliation(s)
- Hamid Bokhary
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
- University Medical Center, Umm Al-Qura University, Al Jamiah, Makkah, Makkah Region 24243, Saudi Arabia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Krisna N. A. Pangesti
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Harunor Rashid
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- National Centre for Immunisation Research and Surveillance (NCIRS), Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Moataz Abd El Ghany
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Grant A. Hill-Cawthorne
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| |
Collapse
|
4
|
Denisuik AJ, Garbutt LA, Golden AR, Adam HJ, Baxter M, Nichol KA, Lagacé-Wiens P, Walkty AJ, Karlowsky JA, Hoban DJ, Mulvey MR, Zhanel GG. Antimicrobial-resistant pathogens in Canadian ICUs: results of the CANWARD 2007 to 2016 study. J Antimicrob Chemother 2020; 74:645-653. [PMID: 30500898 DOI: 10.1093/jac/dky477] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To describe the microbiology and antimicrobial resistance patterns of cultured samples acquired from Canadian ICUs. METHODS From 2007 to 2016, tertiary care centres from across Canada submitted 42938 bacterial/fungal isolates as part of the CANWARD surveillance study. Of these, 8130 (18.9%) were from patients on ICUs. Susceptibility testing guidelines and MIC interpretive criteria were defined by CLSI. RESULTS Of the 8130 pathogens collected in this study, 58.2%, 36.3%, 3.1% and 2.4% were from respiratory, blood, wound and urine specimens, respectively. The top five organisms collected from Canadian ICUs accounted for 55.4% of all isolates and included Staphylococcus aureus (21.5%), Pseudomonas aeruginosa (10.6%), Escherichia coli (10.4%), Streptococcus pneumoniae (6.5%) and Klebsiella pneumoniae (6.4%). MRSA accounted for 20.7% of S. aureus collected, with community-associated (CA) MRSA genotypes increasing in prevalence over time (P < 0.001). The highest susceptibility rates among MRSA were 100% for vancomycin, 100% for ceftobiprole, 100% for linezolid, 99.7% for ceftaroline, 99.7% for daptomycin and 99.7% for tigecycline. The highest susceptibility rates among E. coli were 100% for tigecycline, 99.9% for meropenem, 99.7% for colistin and 94.2% for piperacillin/tazobactam. MDR was identified in 26.3% of E. coli isolates, with 10.1% producing an ESBL. The highest susceptibility rates among P. aeruginosa were 97.5% for ceftolozane/tazobactam, 96.1% for amikacin, 94.7% for colistin and 93.3% for tobramycin. CONCLUSIONS The most active agents against Gram-negative bacilli were the carbapenems, tigecycline and piperacillin/tazobactam. Against Gram-positive cocci, the most active agents were vancomycin, daptomycin and linezolid. The prevalence of CA-MRSA genotypes and ESBL-producing E. coli collected from ICUs increased significantly over time.
Collapse
Affiliation(s)
- Andrew J Denisuik
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lauren A Garbutt
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alyssa R Golden
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Clinical Microbiology, Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Melanie Baxter
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kimberly A Nichol
- Clinical Microbiology, Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Philippe Lagacé-Wiens
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Clinical Microbiology, Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Walkty
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Clinical Microbiology, Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Clinical Microbiology, Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Daryl J Hoban
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael R Mulvey
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Antimicrobial Resistance Branch, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Mijovic H, Wakeham S, Ng K, Al-Rawahi GN, Tilley P, Ho L, Roberts A. Running out of options: Extensively drug-resistant urinary tract infection in an infant. Paediatr Child Health 2019; 24:371-373. [PMID: 31528107 DOI: 10.1093/pch/pxz048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/13/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hana Mijovic
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia
| | - Susan Wakeham
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario
| | - Karen Ng
- Department of Pharmacy, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia
| | - Ghada N Al-Rawahi
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia
| | - Peter Tilley
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia
| | - Louisa Ho
- Department of Urology, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia
| | - Ashley Roberts
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia
| |
Collapse
|
6
|
Infection prevention and control practices related to carbapenemase-producing Enterobacteriaceae (CPE) in acute-care hospitals in Ontario, Canada. Infect Control Hosp Epidemiol 2019; 40:1006-1012. [PMID: 31244458 DOI: 10.1017/ice.2019.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine infection prevention and control (IPAC) practices for carbapenemase-producing Enterobacteriaceae (CPE), an emerging threat, at acute-care hospitals in Ontario, Canada. DESIGN A descriptive cross-sectional survey. METHODS We surveyed IPAC directors and managers at all acute-care hospitals in Ontario, Canada, to gather information on IPAC practices related to CPE, including admission screening, other patient screening, environmental testing, use of precautions to prevent transmission, and outbreak management. RESULTS Of 116 acute-care hospitals, 105 (91%) responded. Admission screening included patients previously colonized or infected with CPE (n = 64, 61%), patients recently hospitalized outside of Canada (Indian subcontinent, n = 62, 59%; other countries, n = 56, 53%), and patients recently hospitalized in Canada (n = 22, 21%). Fifty-one hospitals (49%) screened patients for colonization during an outbreak. Almost all hospitals (n = 101, 96%) used precautions to prevent transmission from patients with CPE colonization or infection; most hospitals (n = 54, 53%) continued precautions indefinitely. Few hospitals (n = 19, 18%) performed environmental cultures. Eight hospitals (8%) reported at least 1 outbreak, and 6 hospitals (6%) reported transmission from sink or shower drains to patients. CONCLUSIONS Variability in practices may result from lack of evidence and challenges in updating guidelines as evidence emerges. A coordinated approach to slow the emergence of CPE should be considered in our population.
Collapse
|
7
|
Kohler PP, Melano RG, Patel SN, Shafinaz S, Faheem A, Coleman BL, Green K, Armstrong I, Almohri H, Borgia S, Borgundvaag E, Johnstone J, Katz K, Lam F, Muller MP, Powis J, Poutanen SM, Richardson D, Rebbapragada A, Sarabia A, Simor A, McGeer A. Emergence of Carbapenemase-Producing Enterobacteriaceae, South-Central Ontario, Canada 1. Emerg Infect Dis 2019; 24:1674-1682. [PMID: 30124197 PMCID: PMC6106407 DOI: 10.3201/eid2409.180164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We analyzed population-based surveillance data from the Toronto Invasive Bacterial Diseases Network to describe carbapenemase-producing Enterobacteriaceae (CPE) infections during 2007–2015 in south-central Ontario, Canada. We reviewed patients’ medical records and travel histories, analyzed microbiologic and clinical characteristics of CPE infections, and calculated incidence. Among 291 cases identified, New Delhi metallo-β-lactamase was the predominant carbapenemase (51%). The proportion of CPE-positive patients with prior admission to a hospital in Canada who had not received healthcare abroad or traveled to high-risk areas was 13% for patients with oxacillinase-48, 24% for patients with New Delhi metallo-β-lactamase, 55% for patients with Klebsiella pneumoniae carbapenemase, and 67% for patients with Verona integron-encoded metallo-β-lactamase. Incidence of CPE infection increased, reaching 0.33 cases/100,000 population in 2015. For a substantial proportion of patients, no healthcare abroad or high-risk travel could be established, suggesting CPE acquisition in Canada. Policy and practice changes are needed to mitigate nosocomial CPE transmission in hospitals in Canada.
Collapse
|
8
|
Zhou K, Yu W, Cao X, Shen P, Lu H, Luo Q, Rossen JWA, Xiao Y. Characterization of the population structure, drug resistance mechanisms and plasmids of the community-associated Enterobacter cloacae complex in China. J Antimicrob Chemother 2018; 73:66-76. [PMID: 29088362 DOI: 10.1093/jac/dkx361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 01/06/2023] Open
Abstract
Objectives To investigate the population structure, drug resistance mechanisms and plasmids of community-associated Enterobacter cloacae complex (CA-ECC) isolates in China. Methods Sixty-two CA-ECC isolates collected from 31 hospitals across China were typed by hsp60 typing and MLST. ESBL and AmpC-overexpression phenotype was determined by double-disc synergy test. Replicon typing and conjugation were performed for plasmid analysis. All ESBL-positive isolates and representative conjugants were subjected to detailed characterization by WGS. Results Enterobacter hormaechei and Enterobacter kobei were predominant in our collections. MLST distinguished 46 STs with a polyclonal structure. ST591 was the most prevalent clone detected in northern China. Twenty-two isolates (35.5%) were ESBL positive and half of them were E. kobei. ESBL positivity was related to ESBL production (15/22) and to AmpC overexpression (18/22). Core-genome phylogenetic analysis identified intra- and inter-regional dissemination of ESBL-producing E. kobei clones. ESBL producers were exclusively classified as E. hormaechei and E. kobei, and blaCTX-M-3 was the most prevalent ESBL genotype (10/15) detected in four different environments. In the ESBL-positive population, the ESBL producers encoded more drug resistance genes (8-24 genes) by carrying more plasmids (1-3 plasmids) than the non-ESBL-producing isolates, resulting in an inter-group difference in drug susceptibilities. IncHI-type plasmids were prevalent in the ESBL producers (12/15). All IncHI2-type plasmids (n = 11) carried ESBL genes and shared a similar backbone to p09-036813-1A_261 recovered from Salmonella enterica in Canada. Conclusions The species-specific distribution, species-dependent ESBL mechanism and endemic plasmids identified in our study highlight the necessity for tailored surveillance of CA-ECC in the future.
Collapse
Affiliation(s)
- Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Miyagi K, Sano K, Hirai I. Sanitary evaluation of domestic water supply facilities with storage tanks and detection of Aeromonas, enteric and related bacteria in domestic water facilities in Okinawa Prefecture of Japan. WATER RESEARCH 2017; 119:171-177. [PMID: 28458058 DOI: 10.1016/j.watres.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
To provide for temporary restrictions of the public water supply system, storage tanks are commonly installed in the domestic water systems of houses and apartment buildings in Okinawa Prefecture of Japan. To learn more about the sanitary condition and management of these water supply facilities with storage tanks (hereafter called "storage tank water systems") and the extent of bacterial contamination of water from these facilities, we investigated their usage and the existence of Aeromonas, enteric and related bacteria. Verbal interviews concerning the use and management of the storage tank water systems were carried out in each randomly sampled household. A total of 54 water samples were collected for bacteriological and physicochemical examinations. Conventional methods were used for total viable count, fecal coliforms, identification of bacteria such as Aeromonas, Enterobacteriaceae and non-fermentative Gram-negative rods (NF-GNR), and measurement of residual chlorine. On Aeromonas species, tests for putative virulence factor and an identification using 16S rRNA and rpoB genes were also performed. Water from the water storage systems was reported to be consumed directly without boiling in 22 of the 54 houses (40.7%). 31 of the sampled houses had installed water storage tanks of more than 1 cubic meter (m3) per inhabitant, and in 21 of the sampled houses, the tank had never been cleaned. In all samples, the total viable count and fecal coliforms did not exceed quality levels prescribed by Japanese waterworks law. Although the quantity of bacteria detected was not high, 23 NF-GNR, 14 Enterobacteriaceae and 5 Aeromonas were isolated in 42.6%, 7.4% and 3.7% of samples respectively. One isolated A. hydrophila and four A. caviae possessed various putative virulence factors, especially A. hydrophila which had diverse putative pathogenic genes such as aer, hlyA, act, alt, ast, ser, and dam. Many bacteria were isolated when the concentration of residual chlorine was below 0.1 mg/l and the water temperature was above 20 °C. These results suggest that elevated water temperature and mismatch between tank size and water demand lead to loss of residual chlorine in tap water. Therefore, to minimize growth of aquatic bacteria such as Aeromonas spp. and Pseudomonas spp., we recommend that an appropriate size tank and/or volume of stored water is always used, and also suggest installation of some means of reducing water temperature such as shading.
Collapse
Affiliation(s)
- Kazufumi Miyagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Kouichi Sano
- Department of Microbiology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Itaru Hirai
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan
| |
Collapse
|
10
|
Bartolini A, Basso M, Franchin E, Menegotto N, Ferrari A, De Canale E, Andreis S, Scaggiante R, Stefani S, Palù G, Parisi SG. Prevalence, molecular epidemiology and intra-hospital acquisition of Klebsiella pneumoniae strains producing carbapenemases in an Italian teaching hospital from January 2015 to September 2016. Int J Infect Dis 2017; 59:103-109. [PMID: 28412407 DOI: 10.1016/j.ijid.2017.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES We described Klebsiella pneumoniae producing carbapenemase (CPKP) spread from 01/01/2015 to 13/09/16 in a tertiary level hospital. METHODS The first positive surveillance rectal swab (SRS) or clinical sample (CS) collected in the medical department (MD), surgical department (SD) and intensive care department (ICD) were included in the study. A validated in-house Real-Time PCR method was used to detect carbapenemases; multilocus sequence typing (MLST) was used for further characterization of the strains. RESULTS 21535 patients were included: 213 CPKP strains from surveillance rectal swab (SRS) and 98 from clinical samples (CS) were collected. The percentage of CPKP detected in SRS with respect to CS increased in the medical MD from 2015 to 2016 (p=0.01) and in ICD from 2012 to 2015 (p=0.0001), while it decreased in SD from 2014 to 2016 (p=0.003); 68.5% of the positive SRS had a previous negative SRS; CPKP was more frequently identified in CS than in SRS in MD. Twelve strains harboured more than one carbapenemase gene. Many other species harbouring a carbapenemase gene were collected. CONCLUSIONS MDs need more inclusive surveillance criteria. The late detection of positive SRS underlined the risk of colonization during hospitalization.
Collapse
Affiliation(s)
- Andrea Bartolini
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padova, Italy
| | - Monica Basso
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padova, Italy
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padova, Italy
| | - Nicola Menegotto
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padova, Italy
| | - Anna Ferrari
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padova, Italy
| | - Ettore De Canale
- Microbiology and Virology Unit, Padova Hospital, Via Giustiniani, 2, 35121 Padova, Italy
| | - Samantha Andreis
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padova, Italy
| | - Renzo Scaggiante
- Infectious Diseases Unit, Padova Hospital, Via Giustiniani, 2, 35128 Padova, Italy
| | - Stefania Stefani
- Department of Bio-Medical Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padova, Italy
| | - Saverio Giuseppe Parisi
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padova, Italy.
| |
Collapse
|
11
|
Infection control in the new age of genomic epidemiology. Am J Infect Control 2017; 45:170-179. [PMID: 28159067 DOI: 10.1016/j.ajic.2016.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022]
Abstract
With the growing importance of infectious diseases in health care and communicable disease outbreaks garnering increasing attention, new technologies are playing a greater role in helping us prevent health care-associated infections and provide optimal public health. The microbiology laboratory has always played a large role in infection control by providing tools to identify, characterize, and track pathogens. Recently, advances in DNA sequencing technology have ushered in a new era of genomic epidemiology, where traditional molecular diagnostics and genotyping methods are being enhanced and even replaced by genomics-based methods to aid epidemiologic investigations of communicable diseases. The ability to analyze and compare entire pathogen genomes has allowed for unprecedented resolution into how and why infectious diseases spread. As these genomics-based methods continue to improve in speed, cost, and accuracy, they will be increasingly used to inform and guide infection control and public health practices.
Collapse
|
12
|
Gyles C. Antimicrobial use in animals. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2016; 57:573-575. [PMID: 27247455 PMCID: PMC4866659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|