1
|
Saliba JG, Zheng W, Shu Q, Li L, Wu C, Xie Y, Lyon CJ, Qu J, Huang H, Ying B, Hu TY. Enhanced diagnosis of multi-drug-resistant microbes using group association modeling and machine learning. Nat Commun 2025; 16:2933. [PMID: 40133304 PMCID: PMC11937555 DOI: 10.1038/s41467-025-58214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
New solutions are needed to detect genotype-phenotype associations involved in microbial drug resistance. Herein, we describe a Group Association Model (GAM) that accurately identifies genetic variants linked to drug resistance and mitigates false-positive cross-resistance artifacts without prior knowledge. GAM analysis of 7,179 Mycobacterium tuberculosis (Mtb) isolates identifies gene targets for all analyzed drugs, revealing comparable performance but fewer cross-resistance artifacts than World Health Organization (WHO) mutation catalogue approach, which requires expert rules and precedents. GAM also reveals generalizability, demonstrating high predictive accuracy with 3,942 S. aureus isolates. GAM refinement by machine learning (ML) improves predictive accuracy with small or incomplete datasets. These findings were validated using 427 Mtb isolates from three sites, where GAM inputs are also found to be more suitable in ML prediction models than WHO inputs. GAM + ML could thus address the limitations of current drug resistance prediction methods to improve treatment decisions for drug-resistant microbial infections.
Collapse
Affiliation(s)
- Julian G Saliba
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Qingbo Shu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Liqiang Li
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Chi Wu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Chest Hospital of Capital Medical University, Beijing, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Ye Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
2
|
Mogashoa T, Loubser J, Choga OT, Ngom JT, Choga WT, Mbulawa MB, Molefi T, Stephen O, Makhondo T, Seru K, Motshosi P, Zuze B, Makhema J, Musonda RM, Otukile D, Modongo C, Kgwaadira BT, Fane K, Gaseitsiwe S, Warren RM, Moyo S, Dippenaar A, Streicher EM. Whole genomic analysis uncovers high genetic diversity of rifampicin-resistant Mycobacterium tuberculosis strains in Botswana. Front Microbiol 2025; 16:1535160. [PMID: 40008038 PMCID: PMC11855114 DOI: 10.3389/fmicb.2025.1535160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background The emergence of drug-resistant Mycobacterium tuberculosis (M. tb) strains remains a threat to tuberculosis (TB) prevention and care. Understanding the drug resistance profiles of circulating strains is crucial for effective TB control. This study aimed to describe the genetic diversity of rifampicin-resistant M. tb strains circulating in Botswana using whole genome sequencing (WGS). Methods This study included 202 stored M. tb isolates from people diagnosed with rifampicin-resistant TB (RR-TB) between January 2016 and June 2023. Genomic DNA was extracted using the cetyltrimethylammonium bromide (CTAB) method. Library preparation was performed using the Illumina DNA prep kit following the manufacturer's instructions. Sequencing was done on Illumina NextSeq2000. TBProfiler software was used to identify known M. tb lineages and drug resistance profiles. Statistical analyses were performed on STATA version 18. Results WGS analysis revealed multidrug resistance (57.9%: 95% CI; 50.7-64.8), Pre-XDR (16.8%, 95% CI: 11.9-22.7), RR-TB (20.2%: 95% CI: 14.98-26.5), and HR-TB (0.5%, 95% CI; 0.01-2.7). We identified a high genetic diversity with three predominant lineages: lineage 4 (60.9%, 95% CI; 53.8-67.7), lineage 1 (22.8%: 95% CI; 17.2-29.2), and lineage 2 (13.9%, 95% CI: 9.4-19.4). The most frequently observed drug resistance mutations for rifampicin, isoniazid, ethambutol, streptomycin, pyrazinamide, and fluoroquinolones were rpoB S450L (28.6%), katG S315T (60.5%), embA_c.-29_-28delCT, embB Q497R (31.7%), rrs_n.517C>T (47.1%), pncA_c.375_389delCGATGAGGTCGATGT (36.0%) and gyrA A90V (79.4%), respectively. No bedaquiline and delamanid resistance-associated mutations were detected. Conclusions This study highlights the high genetic diversity of M. tb strains, with a predominance of lineage 4 among people with RR-TB in Botswana. It provides valuable insights into the genetic diversity of rifampicin-resistant M. tb strains circulating in Botswana.
Collapse
Affiliation(s)
- Tuelo Mogashoa
- Botswana Harvard Health Partnership, Gaborone, Botswana
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Johannes Loubser
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ontlametse T. Choga
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Medical Sciences, University of Botswana, Gaborone, Botswana
| | - Justice Tresor Ngom
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wonderful T. Choga
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Medical Sciences, University of Botswana, Gaborone, Botswana
| | - Mpaphi B. Mbulawa
- Botswana National Tuberculosis Reference Laboratory, Gaborone, Botswana
| | - Tuduetso Molefi
- Botswana National Tuberculosis Program, Ministry of Health, Gaborone, Botswana
| | - One Stephen
- Botswana National Tuberculosis Reference Laboratory, Gaborone, Botswana
| | - Topo Makhondo
- Botswana National Tuberculosis Program, Ministry of Health, Gaborone, Botswana
| | | | | | | | | | | | | | | | - Botshelo T. Kgwaadira
- TB/HIV Program, Botswana-University of Maryland School of Medicine, Health Initiative (BUMMHI), Gaborone, Botswana
| | - Keabetswe Fane
- TB/HIV Program, Botswana-University of Maryland School of Medicine, Health Initiative (BUMMHI), Gaborone, Botswana
| | | | - Rob M. Warren
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sikhulile Moyo
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Department of Pathology, Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Anzaan Dippenaar
- Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
| | - Elizabeth M. Streicher
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
Xu JT, Yu JF, Cheng T, Feng A, Yang P, Gu J, Yu HJ, Deng JY. The T120P or M172V mutation on rv2172c confers high level para-aminosalicylic acid resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2024; 13:2374030. [PMID: 39023395 PMCID: PMC11271092 DOI: 10.1080/22221751.2024.2374030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
Although para-aminosalicylic acid (PAS) has been used to treat tuberculosis for decades, mechanisms of resistance to this drug in Mycobacterium tuberculosis (M. tuberculosis) clinical isolates have not been thoroughly investigated. Previously, we found that decreased methylenetetrahydrofolate reductase (MTHFR) activity of Rv2172c led to increased sensitivity to antifolates in M. tuberculosis. In this study, we collected the genome-sequencing data of 173 PAS-resistant and 803 PAS-sensitive clinical isolates and analyzed rv2172c mutations in those 976 isolates. The results showed that two mutations (T120P and M172V) on rv2172c could be identified in a certain proportion (6.36%) of PAS-resistant isolates. The results of AlphaFold2 prediction indicated that the T120P or M172V mutation might affect the enzymatic activity of Rv2172c by influencing nicotinamide adenine dinucleotide (NADH) binding, and this was verified by subsequent biochemical analysis, demonstrating the role of residues Thr120 and Met172 on NADH binding and enzymatic activity of Rv2172c. In addition, the effect of rv2172c T120P or M172V mutation on methionine production and PAS resistance was determined in M. tuberculosis. The results showed that both T120P and M172V mutations caused increased intracellular methionine concentrations and high level PAS resistance. In summary, we discovered new molecular markers and also a novel mechanism of PAS resistance in M. tuberculosis clinical isolates and broadened the understanding of the NADH-dependent MTHFR catalytic mechanism of Rv2172c in M. tuberculosis, which will facilitate the molecular diagnosis of PAS resistance and also the development of new drugs targeting Rv2172c.
Collapse
Affiliation(s)
- Jin-Tian Xu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ji-Fang Yu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Tao Cheng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ao Feng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ping Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing Gu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Hong-Jun Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiao-Yu Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
4
|
Tarekegn BG, Tientcheu LD, Decker J, Bell AJ, Mukamolova GV, Kampmann B, Messele G, Abeje T, Aseffa A, Dockrell HM, Haldar P, Barer MR, Garton NJ. Host and pathogen factors that influence variability of Mycobacterium tuberculosis lipid body content in sputum from patients with tuberculosis: an observational study. THE LANCET. MICROBE 2024; 5:100885. [PMID: 38906163 DOI: 10.1016/s2666-5247(24)00108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND High proportions of Mycobacterium tuberculosis cells in sputum containing triacylglycerol-rich lipid bodies have been shown to be associated with treatment failure or relapse following antituberculous chemotherapy. Although lipid body determination is a potential biomarker for supporting clinical trial and treatment decisions, factors influencing variability in sputum frequencies of lipid body-positive (%LB+) M tuberculosis in patients are unknown. We aimed to test our hypothesis that exposure to host-generated NO and M tuberculosis strains are factors associated with differences in sputum %LB+. METHODS In this observational study, we determined %LB+ frequencies before treatment by microscopy in patients with smear-positive tuberculosis from two separate prospective observational study settings (Gondar, Ethiopia, recruited between May 1, 2010, and April 30, 2011, and Fajara, The Gambia, who provided sputum samples before treatment between May 5, 2010, and Dec 22, 2011). In Ethiopia, fractional exhaled nitric oxide (FeNO) was measured as a biomarker of host NO, and M tuberculosis strain differences were determined by spoligotyping. Treatment response was assessed by percentage weight change after 7 months. In The Gambia, treatment responses were assessed as change in BMI and radiographic burden of disease after 6 months. Sputum M tuberculosis isolates were studied in vitro for their %LB+ and triacylglycerol synthase 1 (tgs1) mRNA responses to NO exposure. Propidium iodide staining was used as a measure of NO strain toxicity. Correlation between in vitro %LB+ frequencies following NO exposure and those of the same strain in sputum was examined with linear regression and Dunnett's multiple comparison test. FINDINGS In Ethiopia, 73 patients who were smear positive for pulmonary tuberculosis were recruited (43 [59%] were male and 30 [41%] were female). Of these, the %LB+ in the sputum of 59 patients showed linear correlation with log10 FeNO (r2=0·28; p<0·0001) and an association with strain spoligotype was suggested. Seven M tuberculosis strains from The Gambia showed different dose-responses to NO in vitro, demonstrated by changing lipid body content, tgs1 transcription, and bacterial toxicity. In sputum %LB+ frequencies correlated with in vitro %LB+ responses to NO of the corresponding isolate. In a subset of 34 patients across both cohorts, higher sputum %LB+ frequencies before treatment were associated with weaker responses to treatment than lower sputum %LB+ frequencies. INTERPRETATION M tuberculosis strain and exposure to host-generated NO are associated with sputum %LB+. Our results support the use of M tuberculosis strain-dependent sputum %LB+ as a predictive biomarker of treatment response. FUNDING The Medical Research Council, the University of Leicester, and the University of Gondar.
Collapse
Affiliation(s)
- Baye G Tarekegn
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Leopold D Tientcheu
- Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Vaccines and Immunity Theme, Fajara, The Gambia; Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jonathan Decker
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Andrew J Bell
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Galina V Mukamolova
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK
| | - Beate Kampmann
- Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Vaccines and Immunity Theme, Fajara, The Gambia; Institut für Internationale Gesundheit and Centre for Global Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gashaw Messele
- Department of Surgery, University of Gondar, Gondar, Ethiopia
| | - Tadeye Abeje
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Pranabashis Haldar
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK
| | - Michael R Barer
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK; Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Natalie J Garton
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group, University of Leicester, Leicester, UK; National Institute for Health and Care Research Leicester Biomedical Research Centre, Leicester, UK.
| |
Collapse
|
5
|
Taynton T, Allsup D, Barlow G. How can we optimize antifungal use and stewardship in the treatment of acute leukemia? Expert Rev Hematol 2024; 17:581-593. [PMID: 39037307 DOI: 10.1080/17474086.2024.2383401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION The global need for antifungal stewardship is driven by spreading antimicrobial and antifungal resistance. Triazoles are the only oral and relatively well-tolerated class of antifungal medications, and usage is associated with acquired resistance and species replacement with intrinsically resistant organisms. On a per-patient basis, hematology patients are the largest inpatient consumers of antifungal drugs, but are also the most vulnerable to invasive fungal disease. AREAS COVERED In this review we discuss available and forthcoming antifungal drugs, antifungal prophylaxis and empiric antifungal therapy, and how a screening based and diagnostic-driven approach may be used to reduce antifungal consumption. Finally, we discuss components of an antifungal stewardship program, interventions that can be employed, and how impact can be measured. The search methodology consisted of searching PubMed for journal articles using the term antifungal stewardship plus program, intervention, performance measure or outcome before 1 January 2024. EXPERT OPINION Initial focus should be on implementing effective antifungal stewardship programs by developing and implementing local guidelines and using interventions, such as post-prescription review and feedback, which are known to be effective. Technologies such as microbiome analysis and machine learning may allow the development of truly individualized risk-factor-based approaches to antifungal stewardship in the future.
Collapse
Affiliation(s)
- Thomas Taynton
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, UK
- Centre for Biomedical Research, Hull York Medical School, Hull, UK
| | - David Allsup
- Biomedical Institute for Multimorbidity, Hull York Medical School, Hull, UK
- Queen's Centre for Oncology and Haematology, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Gavin Barlow
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, UK
- York Biomedical Research Institute and Hull York Medical School, University of York, York, UK
| |
Collapse
|
6
|
Katale BZ, Rofael S, Elton L, Mbugi EV, Mpagama SG, Mtunga D, Mafie MG, Mbelele PM, Williams C, Mvungi HC, Williams R, Saku GA, Ruta JA, McHugh TD, Matee MI. Clinical application of whole-genome sequencing in the management of extensively drug-resistant tuberculosis: a case report. Ann Clin Microbiol Antimicrob 2024; 23:76. [PMID: 39175078 PMCID: PMC11342570 DOI: 10.1186/s12941-024-00737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS)-based prediction of drug resistance in Mycobacterium tuberculosis has the potential to guide clinical decisions in the design of optimal treatment regimens. METHODS We utilized WGS to investigate drug resistance mutations in a 32-year-old Tanzanian male admitted to Kibong'oto Infectious Diseases Hospital with a history of interrupted multidrug-resistant tuberculosis treatment for more than three years. Before admission, he received various all-oral bedaquiline-based multidrug-resistant tuberculosis treatment regimens with unfavourable outcomes. RESULTS Drug susceptibility testing of serial M. tuberculosis isolates using Mycobacterium Growth Incubator Tubes culture and WGS revealed resistance to first-line anti-TB drugs, bedaquiline, and fluoroquinolones but susceptibility to linezolid, clofazimine, and delamanid. WGS of serial cultured isolates revealed that the Beijing (Lineage 2.2.2) strain was resistant to bedaquiline, with mutations in the mmpR5 gene (Rv0678. This study also revealed the emergence of two distinct subpopulations of bedaquiline-resistant tuberculosis strains with Asp47f and Glu49fs frameshift mutations in the mmpR5 gene, which might be the underlying cause of prolonged resistance. An individualized regimen comprising bedaquiline, delamanid, pyrazinamide, ethionamide, and para-aminosalicylic acid was designed. The patient was discharged home at month 8 and is currently in the ninth month of treatment. He reported no cough, chest pain, fever, or chest tightness but still experienced numbness in his lower limbs. CONCLUSION We propose the incorporation of WGS in the diagnostic framework for the optimal management of patients with drug-resistant and extensively drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Bugwesa Z Katale
- Tanzania Commission for Science and Technology (COSTECH), P.O. BOX 4302, Dar es Salaam, Tanzania.
| | - Sylvia Rofael
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
- Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Linzy Elton
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
| | - Erasto V Mbugi
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences (MUHAS), P.O. BOX 65001, Dar es Salaam, Tanzania
| | - Stella G Mpagama
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
| | - Daphne Mtunga
- Central Tuberculosis Reference Laboratory, National Tuberculosis and Leprosy Programme, Muhimbili National Hospital, P.O Box 65000, Dar es Salaam, Tanzania
| | - Maryjesca G Mafie
- Central Tuberculosis Reference Laboratory, National Tuberculosis and Leprosy Programme, Muhimbili National Hospital, P.O Box 65000, Dar es Salaam, Tanzania
| | - Peter M Mbelele
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), P.O. BOX 65001, Dar es Salaam, Tanzania
| | - Charlotte Williams
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
| | - Happiness C Mvungi
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
| | - Rachel Williams
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
| | - Gulinja A Saku
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
| | - Joanitha A Ruta
- Kibong'oto Infectious Diseases Hospital (KIDH), P.O. BOX 12, Mae Street, Siha, Kilimanjaro, Tanzania
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2QG, UK
| | - Mecky I Matee
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), P.O. BOX 65001, Dar es Salaam, Tanzania
| |
Collapse
|
7
|
He G, Zheng Q, Shi J, Wu L, Huang B, Yang Y. Evaluation of WHO catalog of mutations and five WGS analysis tools for drug resistance prediction of Mycobacterium tuberculosis isolates from China. Microbiol Spectr 2024; 12:e0334123. [PMID: 38904370 PMCID: PMC11302272 DOI: 10.1128/spectrum.03341-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The continuous advancement of molecular diagnostic techniques, particularly whole-genome sequencing (WGS), has greatly facilitated the early diagnosis of drug-resistant tuberculosis patients. Nonetheless, the interpretation of results from various types of mutations in drug-resistant-associated genes has become the primary challenge in the field of molecular drug-resistance diagnostics. In this study, our primary objective is to evaluate the diagnosis accuracy of the World Health Organization (WHO) catalog of mutations and five WGS analysis tools (PhyResSE, Mykrobe, TB Profiler, Gen-TB, and SAM-TB) in drug resistance to 10 anti-Mycobacterium tuberculosis (MTB) drugs. We utilized the data of WGS collected between 2014 and 2017 in Zhejiang Province, consisting of 110 MTB isolates as detailed in our previous study. Based on phenotypic drug susceptibility testing (DST) results using the proportion method on Löwenstein-Jensen medium with antibiotics, we evaluated the predictive accuracy of genotypic DST obtained by these tools. The results revealed that the WHO catalog of mutations and five WGS analysis tools exhibit robust predictive capabilities concerning resistance to isoniazid, rifampicin, ethambutol, streptomycin, amikacin, kanamycin, and capreomycin. Notably, Mykrobe, SAM-TB, and TB Profiler demonstrate the most accurate predictions for resistance to pyrazinamide, prothionamide, and para-aminosalicylic acid, respectively. These findings are poised to significantly guide and influence future clinical treatment strategies and resistance monitoring protocols.IMPORTANCEWhole-genome sequencing (WGS) has the potential for the early diagnosis of drug-resistant tuberculosis. However, the interpretation of mutations of drug-resistant-associated genes represents a significant challenge as the amount and complexity of WGS data. We evaluated the accuracy of the World Health Organization catalog of mutations and five WGS analysis tools in predicting drug resistance to first-line and second-line anti-TB drugs. Our results offer clinicians guidance on selecting appropriate WGS analysis tools for predicting resistance to specific anti-TB drugs.
Collapse
Affiliation(s)
- Guiqing He
- Department of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
- Laboratory of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Qingyong Zheng
- Laboratory of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Jichan Shi
- Department of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Lianpeng Wu
- Department of Clinical Laboratory Medicine, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Bei Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Osman R, Dema E, David A, Hughes G, Field N, Cole M, Didelot X, Saunders J. Understanding the potential role of whole genome sequencing (WGS) in managing patients with gonorrhoea: A systematic review of WGS use on human pathogens in individual patient care. J Infect 2024; 88:106168. [PMID: 38670270 DOI: 10.1016/j.jinf.2024.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVES The utility of whole genome sequencing (WGS) to inform sexually transmitted infection (STI) patient management is unclear. Timely WGS data might support clinical management of STIs by characterising epidemiological links and antimicrobial resistance profiles. We conducted a systematic review of clinical application of WGS to any human pathogen that may be transposable to gonorrhoea. METHODS We searched six databases for articles published between 01/01/2010-06/02/2023 that reported on real/near real-time human pathogen WGS to inform clinical intervention. All article types from all settings were included. Findings were analysed using narrative synthesis. RESULTS We identified 12,179 articles, of which eight reported applications to inform tuberculosis (n = 7) and gonorrhoea (n = 1) clinical patient management. WGS data were successfully used as an adjunct to clinical and epidemiological data to enhance contact-tracing (n = 2), inform antimicrobial therapy (n = 5) and identify cross-contamination (n = 1). WGS identified gonorrhoea transmission chains that were not established via partner notification. Future applications could include insights into pathogen exposure detected within sexual networks for targeted patient management. CONCLUSIONS While there was some evidence of WGS use to provide individualised tuberculosis and gonorrhoea treatment, the eight identified studies contained few participants. Future research should focus on testing WGS intervention effectiveness and examining ethical considerations of STI WGS use.
Collapse
Affiliation(s)
- Roeann Osman
- Institute for Global Health, University College London (UCL), Mortimer Market Centre, London WC1E 6JB, United Kingdom; National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Blood Borne and Sexually Transmitted Infections at University College London (UCL), London, United Kingdom.
| | - Emily Dema
- Institute for Global Health, University College London (UCL), Mortimer Market Centre, London WC1E 6JB, United Kingdom
| | - Alexandra David
- Institute for Global Health, University College London (UCL), Mortimer Market Centre, London WC1E 6JB, United Kingdom
| | - Gwenda Hughes
- Department of Infectious Disease Epidemiology and Dynamics, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Nigel Field
- Institute for Global Health, University College London (UCL), Mortimer Market Centre, London WC1E 6JB, United Kingdom
| | - Michelle Cole
- UK Health Security Agency (UK HSA), 61 Colindale Avenue, London NW9 5EQ, United Kingdom
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, United Kingdom; National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Genomics and Enabling Data at Warwick University, United Kingdom
| | - John Saunders
- Institute for Global Health, University College London (UCL), Mortimer Market Centre, London WC1E 6JB, United Kingdom; National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Blood Borne and Sexually Transmitted Infections at University College London (UCL), London, United Kingdom; UK Health Security Agency (UK HSA), 61 Colindale Avenue, London NW9 5EQ, United Kingdom
| |
Collapse
|
9
|
Hazra D, Lam C, Chawla K, Sintchenko V, Dhyani VS, Venkatesh BT. Impact of Whole-Genome Sequencing of Mycobacterium tuberculosis on Treatment Outcomes for MDR-TB/XDR-TB: A Systematic Review. Pharmaceutics 2023; 15:2782. [PMID: 38140122 PMCID: PMC10747601 DOI: 10.3390/pharmaceutics15122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence and persistence of drug-resistant tuberculosis is a major threat to global public health. Our objective was to assess the applicability of whole-genome sequencing (WGS) to detect genomic markers of drug resistance and explore their association with treatment outcomes for multidrug-resistant/extensively drug-resistant tuberculosis (MDR/XDR-TB). METHODS Five electronic databases were searched for studies published in English from the year 2000 onward. Two reviewers independently conducted the article screening, relevant data extraction, and quality assessment. The data of the included studies were synthesized with a narrative method and are presented in a tabular format. RESULTS The database search identified 949 published articles and 8 studies were included. An unfavorable treatment outcome was reported for 26.6% (488/1834) of TB cases, which ranged from 9.7 to 51.3%. Death was reported in 10.5% (194/1834) of total cases. High-level fluoroquinolone resistance (due to gyrA 94AAC and 94GGC mutations) was correlated as the cause of unfavorable treatment outcomes and reported in three studies. Other drug resistance mutations, like kanamycin high-level resistance mutations (rrs 1401G), rpoB Ile491Phe, and ethA mutations, conferring prothionamide resistance were also reported. The secondary findings from this systematic review involved laboratory aspects of WGS, including correlations with phenotypic DST, cost, and turnaround time, or the impact of WGS results on public health actions, such as determining transmission events within outbreaks. CONCLUSIONS WGS has a significant capacity to provide accurate and comprehensive drug resistance data for MDR/XDR-TB, which can inform personalized drug therapy to optimize treatment outcomes.
Collapse
Affiliation(s)
- Druti Hazra
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Connie Lam
- Sydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Vitali Sintchenko
- Sydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Vijay Shree Dhyani
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Bhumika T. Venkatesh
- Public Health Evidence South Asia, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
10
|
Rao M, Wollenberg K, Harris M, Kulavalli S, Thomas L, Chawla K, Shenoy VP, Varma M, Saravu K, Hande HM, Shanthigrama Vasudeva CS, Jeffrey B, Gabrielian A, Rosenthal A. Lineage classification and antitubercular drug resistance surveillance of Mycobacterium tuberculosis by whole-genome sequencing in Southern India. Microbiol Spectr 2023; 11:e0453122. [PMID: 37671895 PMCID: PMC10580826 DOI: 10.1128/spectrum.04531-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/03/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Studies mapping genetic heterogeneity of clinical isolates of M. tuberculosis for determining their strain lineage and drug resistance by whole-genome sequencing are limited in high tuberculosis burden settings. We carried out whole-genome sequencing of 242 M. tuberculosis isolates from drug-sensitive and drug-resistant tuberculosis patients, identified and collected as part of the TB Portals Program, to have a comprehensive insight into the genetic diversity of M. tuberculosis in Southern India. We report several genetic variations in M. tuberculosis that may confer resistance to antitubercular drugs. Further wide-scale efforts are required to fully characterize M. tuberculosis genetic diversity at a population level in high tuberculosis burden settings for providing precise tuberculosis treatment.
Collapse
Affiliation(s)
- Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kurt Wollenberg
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Harris
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shrivathsa Kulavalli
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vishnu Prasad Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - H. Manjunatha Hande
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | | | - Brendan Jeffrey
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrei Gabrielian
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alex Rosenthal
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Shitol SA, Saha A, Barua M, Towhid KMS, Islam A, Sarker M. A qualitative exploration of challenges in childhood TB patients identification and diagnosis in Bangladesh. Heliyon 2023; 9:e20569. [PMID: 37818012 PMCID: PMC10560773 DOI: 10.1016/j.heliyon.2023.e20569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Background As childhood tuberculosis is difficult to identify and diagnose, the experiences of the caregivers and healthcare providers of childhood tuberculosis patients remain a potential area of study. This study aims to illustrate the challenges caregivers and healthcare providers encounter in identifying and diagnosing childhood tuberculosis in two sub-districts of Bangladesh. Methods We conducted semi-structured in-depth interviews with eight caregivers of childhood tuberculosis patients and key informant interviews with 36 healthcare providers from September 2020 to December 2020 from different levels of the tuberculosis control program in Keraniganj (with high childhood tuberculosis cases notification), Faridpur Sadar (with low childhood tuberculosis cases notification), and Dhaka city. Results There is a dearth of understanding among caregivers about childhood tuberculosis. Passive case finding process and focus on cough during community mobilisation contribute to the delay in childhood tuberculosis identification. The stigmatisation that caregivers anticipate and experience has an impact on their mental health and implies that there are misunderstandings about tuberculosis in the community. Furthermore, diagnostic dilemma among healthcare providers accounts for diagnosis delays. Some, but not all, institutions in different geographical locations provide free diagnostic tests and have GeneXpert devices. Conclusions Various factors, including caregivers' knowledge and experience, the process of case finding and community mobilization, healthcare providers' way of service provision and diagnosis, and the unavailability of required logistics at facilities challenge the identification and diagnosis of childhood tuberculosis that need to be minimized for childhood tuberculosis's early identification, diagnosis, treatment initiation, and successful completion of treatment. Awareness should also be raised in the community of childhood tuberculosis.
Collapse
Affiliation(s)
- Sharmin Akter Shitol
- James P. Grant School of Public Health, BRAC University, Medona Tower, 28 Mohakhali Commercial Area, Bir Uttom A K Khandakar Road, Dhaka-1213, Bangladesh
| | - Avijit Saha
- James P. Grant School of Public Health, BRAC University, Medona Tower, 28 Mohakhali Commercial Area, Bir Uttom A K Khandakar Road, Dhaka-1213, Bangladesh
| | - Mrittika Barua
- James P. Grant School of Public Health, BRAC University, Medona Tower, 28 Mohakhali Commercial Area, Bir Uttom A K Khandakar Road, Dhaka-1213, Bangladesh
| | | | - Akramul Islam
- Communicable Diseases, Water, Sanitation, and Hygiene (WASH), Integrated Development, And Humanitarian Crisis Management, BRAC, 75 Mohakhali, Dhaka 1212, Bangladesh
| | - Malabika Sarker
- James P. Grant School of Public Health, BRAC University, Medona Tower, 28 Mohakhali Commercial Area, Bir Uttom A K Khandakar Road, Dhaka-1213, Bangladesh
- Institute of Public Health, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Lee SH, Ferran E, Witney AA, Ryu S, Kang H, Storey N, McHugh TD, Satta G. A comparison of phenotypic and WGS drug susceptibility testing in Mycobacterium tuberculosis isolates from the Republic of Korea. JAC Antimicrob Resist 2023; 5:dlad056. [PMID: 37193005 PMCID: PMC10182733 DOI: 10.1093/jacamr/dlad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/07/2023] [Indexed: 05/18/2023] Open
Abstract
Background WGS has significant potential to help tackle the major public health problem of TB. The Republic of Korea has the third highest rates of TB of all Organisation for Economic Cooperation and Development countries but there has been very limited use of WGS in TB to date. Objectives A retrospective comparison of Mycobacterium tuberculosis (MTB) clinical isolates from 2015 to 2017 from two centres in the Republic of Korea using WGS to compare phenotypic drug susceptibility testing (pDST) and WGS drug susceptibility predictions (WGS-DSP). Methods Fifty-seven MTB isolates had DNA extracted and were sequenced using the Illumina HiSeq platform. The WGS analysis was performed using bwa mem, bcftools and IQ-Tree; resistance markers were identified using TB profiler. Phenotypic susceptibilities were carried out at the Supranational TB reference laboratory (Korean Institute of Tuberculosis). Results For first-line antituberculous drugs concordance for rifampicin, isoniazid, pyrazinamide and ethambutol was 98.25%, 92.98%, 87.72% and 85.96%, respectively. The sensitivity of WGS-DSP compared with pDST for rifampicin, isoniazid, pyrazinamide and ethambutol was 97.30%, 92.11%, 78.95% and 95.65%, respectively. The specificity for these first-line antituberculous drugs was 100%, 94.74%, 92.11% and 79.41%, respectively. The sensitivity and specificity for second-line drugs ranged from 66.67% to 100%, and from 82.98% to 100%, respectively. Conclusions This study confirms the potential role for WGS in drug susceptibility prediction, which would reduce turnaround times. However, further larger studies are needed to ensure current databases of drug resistance mutations are reflective of the TB present in the Republic of Korea.
Collapse
Affiliation(s)
- Seung Heon Lee
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | | | - Adam A Witney
- Institute for Infection and Immunity, St George’s University of London, London, UK
| | - Sungweon Ryu
- Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon, South Korea
| | - Hyungseok Kang
- Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon, South Korea
| | - Nathaniel Storey
- Great Ormond Street Hospital for Children NHS Foundation Trust, Microbiology, Virology and Infection Prevention and Control, London, UK
| | - Timothy D McHugh
- Centre for Clinical Microbiology, Department of Infection, University College London, London, UK
| | - Giovanni Satta
- Centre for Clinical Microbiology, Department of Infection, University College London, London, UK
| |
Collapse
|
13
|
Grandjean Lapierre S, Nouvet E, Boutin CA, Rabodoarivelo MS, Mahboob O, Smith MJ, Rakotosamimanana N. Complexities and benefits of adopting next-generation sequencing-based tuberculosis diagnostics: a qualitative study among stakeholders in low and high-income countries. BMJ Open 2023; 13:e066651. [PMID: 37037623 PMCID: PMC10111191 DOI: 10.1136/bmjopen-2022-066651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
OBJECTIVES To clarify perceived benefits, barriers and facilitators of Mycobacterium tuberculosis next-generation sequencing implementation in Madagascar and Canada, towards informing implementation of this diagnostic technology in public health agencies and clinical settings in and beyond these settings. DESIGN This qualitative study involved conducting semistructured interviews with key stakeholders engaged with next-generation sequencing implementation in Madagascar and Canada. Team-based descriptive analysis supported by Nvivo V.12.0 was used to identify key themes. SETTING The study was conducted with participants involved at the clinical, diagnostic and surveillance levels of tuberculosis (TB) management from Madagascar and Canada. PARTICIPANTS Eighteen participants were interviewed (nine Madagascar and nine Canada) and included individuals purposively sampled based on involvement with TB surveillance, laboratory diagnosis and clinical management. RESULTS The following five themes emerged in the analysis of Malagasy and Canadian interviews: (1) heterogeneity in experience with established TB diagnostics, (2) variable understanding of new sequencing-based diagnostics potential; (3) further evidence as being key to expand adoption; (4) ethical arguments and concerns; (5) operational and system-level considerations. CONCLUSION There persists important lack of familiarity with TB next-generation sequencing (TB NGS) applications among stakeholders in Canada and Madagascar. This translates into skepticism on the evidence underlying its use and its true potential value added within global public health systems. If deployed, TB NGS testing should be integrated with clinical and surveillance programmes. Although this is perceived as a priority, leadership and funding responsibilities for this integration to happen remains unclear to clinical, laboratory and public health stakeholders.
Collapse
Affiliation(s)
- Simon Grandjean Lapierre
- Mycobacteria Unit, Institut Pasteur Madagascar, Antananarivo, Madagascar
- Microbiology, Infectious Diseases and Immunology Department, Université de Montréal, Montreal, Québec, Canada
| | - Elysée Nouvet
- School of Health Studies, Western University, London, Ontario, Canada
| | - Catherine-Audrey Boutin
- Microbiology, Infectious Diseases and Immunology Department, Université de Montréal, Montreal, Québec, Canada
| | - Marie-Sylvianne Rabodoarivelo
- Mycobacteria Unit, Institut Pasteur Madagascar, Antananarivo, Madagascar
- Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Omar Mahboob
- Florida State University College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Maxwell J Smith
- School of Health Studies, Western University, London, Ontario, Canada
| | | |
Collapse
|
14
|
Nilgiriwala K, Rabodoarivelo MS, Hall MB, Patel G, Mandal A, Mishra S, Andrianomanana FR, Dingle K, Rodger G, George S, Crook DW, Hoosdally S, Mistry N, Rakotosamimanana N, Iqbal Z, Grandjean Lapierre S, Walker TM. Genomic Sequencing from Sputum for Tuberculosis Disease Diagnosis, Lineage Determination, and Drug Susceptibility Prediction. J Clin Microbiol 2023; 61:e0157822. [PMID: 36815861 PMCID: PMC10035339 DOI: 10.1128/jcm.01578-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
Universal access to drug susceptibility testing for newly diagnosed tuberculosis patients is recommended. Access to culture-based diagnostics remains limited, and targeted molecular assays are vulnerable to emerging resistance mutations. Improved protocols for direct-from-sputum Mycobacterium tuberculosis sequencing would accelerate access to comprehensive drug susceptibility testing and molecular typing. We assessed a thermo-protection buffer-based direct-from-sample M. tuberculosis whole-genome sequencing protocol. We prospectively analyzed 60 acid-fast bacilli smear-positive clinical sputum samples in India and Madagascar. A diversity of semiquantitative smear positivity-level samples were included. Sequencing was performed using Illumina and MinION (monoplex and multiplex) technologies. We measured the impact of bacterial inoculum and sequencing platforms on genomic read depth, drug susceptibility prediction performance, and typing accuracy. M. tuberculosis was identified by direct sputum sequencing in 45/51 samples using Illumina, 34/38 were identified using MinION-monoplex sequencing, and 20/24 were identified using MinION-multiplex sequencing. The fraction of M. tuberculosis reads from MinION sequencing was lower than from Illumina, but monoplexing grade 3+ samples on MinION produced higher read depth than Illumina (P < 0.05) and MinION multiplexing (P < 0.01). No significant differences in sensitivity and specificity of drug susceptibility predictions were seen across sequencing modalities or within each technology when stratified by smear grade. Illumina sequencing from sputum accurately identified 1/8 (rifampin) and 6/12 (isoniazid) resistant samples, compared to 2/3 (rifampin) and 3/6 (isoniazid) accurately identified with Nanopore monoplex. Lineage agreement levels between direct and culture-based sequencing were 85% (MinION-monoplex), 88% (Illumina), and 100% (MinION-multiplex). M. tuberculosis direct-from-sample whole-genome sequencing remains challenging. Improved and affordable sample treatment protocols are needed prior to clinical deployment.
Collapse
Affiliation(s)
| | | | - Michael B. Hall
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Grishma Patel
- Foundation for Medical Research, Mumbai, Maharashtra, India
| | - Ayan Mandal
- Foundation for Medical Research, Mumbai, Maharashtra, India
| | - Shefali Mishra
- Foundation for Medical Research, Mumbai, Maharashtra, India
| | | | - Kate Dingle
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Gillian Rodger
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Sophie George
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Derrick W. Crook
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Sarah Hoosdally
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Nerges Mistry
- Foundation for Medical Research, Mumbai, Maharashtra, India
| | | | - Zamin Iqbal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Simon Grandjean Lapierre
- Mycobacteriology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Immunopathology Axis, Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Québec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montréal, Québec, Canada
| | - Timothy M. Walker
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
- Oxford University, Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Chowdhury K, Ahmad R, Sinha S, Dutta S, Haque M. Multidrug-Resistant TB (MDR-TB) and Extensively Drug-Resistant TB (XDR-TB) Among Children: Where We Stand Now. Cureus 2023; 15:e35154. [PMID: 36819973 PMCID: PMC9938784 DOI: 10.7759/cureus.35154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2023] [Indexed: 02/20/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) has continued to be a global health cataclysm. It is an arduous condition to tackle but is curable with the proper choice of drug and adherence to the drug therapy. WHO has introduced newer drugs with all-oral shorter regimens, but the COVID-19 pandemic has disrupted the achievements and raised the severity. The COVID-19 controlling mechanism is based on social distancing, using face masks, personal protective equipment, medical glove, head shoe cover, face shield, goggles, hand hygiene, and many more. Around the globe, national and international health authorities impose lockdown and movement control orders to ensure social distancing and prevent transmission of COVID-19 infection. Therefore, WHO proposed a TB control program impaired during a pandemic. Children, the most vulnerable group, suffer more from the drug-resistant form and act as the storehouse of future fatal cases. It has dire effects on physical health and hampers their mental health and academic career. Treatment of drug-resistant cases has more success stories in children than adults, but enrollment for treatment has been persistently low in this age group. Despite that, drug-resistant childhood tuberculosis has been neglected, and proper surveillance has not yet been achieved. Insufficient reporting, lack of appropriate screening tools for children, less accessibility to the treatment facility, inadequate awareness, and reduced funding for TB have worsened the situation. All these have resulted in jeopardizing our dream to terminate this deadly condition. So, it is high time to focus on this issue to achieve our Sustainable Development Goals (SDGs), the goal of ending TB by 2030, as planned by WHO. This review explores childhood TB's current position and areas to improve. This review utilized electronic-based data searched through PubMed, Google Scholar, Google Search Engine, Science Direct, and Embase.
Collapse
Affiliation(s)
- Kona Chowdhury
- Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Rahnuma Ahmad
- Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Susmita Sinha
- Physiology, Khulna City Medical College, Khulna, BGD
| | - Siddhartha Dutta
- Pharmacology, All India Institute of Medical Sciences, Rajkot, IND
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
16
|
Johnson SM, Piñera C, Whittaker E, Kirkhope N, Kon OM, Satta G, Balcells ME, Foster C. Rare Mycobacteria and HIV in Children: Two Case Reports. Clin Drug Investig 2022; 42:541-547. [PMID: 35578004 DOI: 10.1007/s40261-022-01153-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Sarah M Johnson
- Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, W2 1NY, UK. .,Imperial College London, London, UK.
| | - Cecilia Piñera
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Elizabeth Whittaker
- Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, W2 1NY, UK.,Imperial College London, London, UK
| | - Natalie Kirkhope
- Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, W2 1NY, UK
| | - Onn M Kon
- Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, W2 1NY, UK.,Imperial College London, London, UK
| | - Giovanni Satta
- Centre for Clinical Microbiology, University College London, London, UK
| | | | - Caroline Foster
- Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, London, W2 1NY, UK.,Imperial College London, London, UK
| |
Collapse
|
17
|
Evaluating the clinical impact of routine whole genome sequencing in tuberculosis treatment decisions and the issue of isoniazid mono-resistance. BMC Infect Dis 2022; 22:349. [PMID: 35392842 PMCID: PMC8991524 DOI: 10.1186/s12879-022-07329-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background The UK has implemented routine use of whole genome sequencing (WGS) in TB diagnostics. The WHO recommends addition of a fluoroquinolone for isoniazid mono-resistance, so early detection may be of use. The aim of this study was to describe the clinical utility and impact of WGS on treatment decisions for TB in a low incidence high resource clinical setting. The clinical turnaround time (TAT) for WGS was analysed in comparison to TB PCR using Xpert MTB/RIF (Cepheid, Sunnyvale, CA) results where available and subsequent phenotypic drug susceptibility testing (DST) when required. Methods This was a retrospective analysis of TB cases from January 2018 to March 2019 in London. Susceptibility and TAT by WGS, phenotypic DST, TB PCR using Xpert MTB/RIF were correlated to drug changes in order to describe the utility of WGS on treatment decisions on isoniazid mono-resistance in a low incidence high resource setting. Results 189 TB cases were identified; median age 44 years (IQR 28–60), m:f ratio 112:77, 7 with HIV and 6 with previous TB. 80/189 cases had a positive culture and WGS result. 50/80 were fully sensitive to 1st line treatment on WGS, and the rest required additional DST. 20/80 cases required drug changes; 12 were defined by WGS: 8 cases had isoniazid mono-resistance, 2 had MDR-TB, 1 had isoniazid and pyrazinamide resistance and 1 had ethambutol resistance. The median TAT for positive culture was 16 days (IQR 12.5–20.5); for WGS was 35 days (IQR 29.5–38.75) and for subsequent DST was 86 days (IQR 69.5–96.75), resulting in non-WHO regimens for a median of 50.5 days (IQR 28.0–65.0). 9/12 has TB PCRs (Xpert MTB/RIF), with a median TAT of 1 day. Conclusion WGS clearly has a substantial role in our routine UK clinical settings with faster turnaround times in comparison to phenotypic DST. However, the majority of treatment changes defined by WGS were related to isoniazid resistance and given the 1 month TAT for WGS, it would be preferable to identify isoniazid resistance more quickly. Therefore if resources allow, diagnostic pathways should be optimised by parallel use of WGS and new molecular tests to rapidly identify isoniazid resistance in addition to rifampicin resistance and to minimise delays in starting WHO isoniazid resistance treatment.
Collapse
|
18
|
Decreased methylenetetrahydrofolate reductase activity leads to increased sensitivity to para-aminosalicylic acid in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 66:e0146521. [PMID: 34780266 PMCID: PMC8765232 DOI: 10.1128/aac.01465-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the most fatal diseases in the world. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the production of 5-methyltetrahydrofolate (5-CH3-THF), which is required for the de novo biosynthesis of methionine in bacteria. Here, we identified Rv2172c as an MTHFR in M. tuberculosis through in vitro and in vivo analyses and determined that the protein is essential for the in vitro growth of the bacterium. Subsequently, we constructed rv2172c R159N and L214A mutants in M. tuberculosis and found that these mutants were more sensitive to the antifolates para-aminosalicylic acid (PAS) and sulfamethoxazole (SMX). Combining biochemical and genetic methods, we found that rv2172c R159N or L214A mutation impaired methionine production, leading to increased susceptibility of M. tuberculosis to PAS, which was largely restored by adding exogenous methionine. Moreover, overexpression of rv2172c in M. tuberculosis could increase methionine production and lead to PAS resistance. This research is the first to identify an MTHFR in M. tuberculosis and reveals that the activity of this enzyme is associated with susceptibility to antifolates. These findings have particular value for antitubercular drug design for the treatment of drug-resistant TB.
Collapse
|
19
|
Nonghanphithak D, Kaewprasert O, Chaiyachat P, Reechaipichitkul W, Chaiprasert A, Faksri K. Whole-genome sequence analysis and comparisons between drug-resistance mutations and minimum inhibitory concentrations of Mycobacterium tuberculosis isolates causing M/XDR-TB. PLoS One 2020; 15:e0244829. [PMID: 33382836 PMCID: PMC7775048 DOI: 10.1371/journal.pone.0244829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Drug resistance (DR) remains a major challenge for tuberculosis (TB) control. Whole-genome sequencing (WGS) provides the highest genetic resolution for genotypic drug-susceptibility tests (DST). We compared DST profiles of 60 Mycobacterium tuberculosis isolates which were drug resistant according to agar proportion tests (one poly DR-TB, 34 multidrug-resistant TB and 25 extensively drug-resistant TB). We additionally performed minimum inhibitory concentration (MIC) tests using Sensititre MYCOTBI plates (MYCOTB) and a WGS-based DST. Agreement between WGS-based DST and MYCOTB was high for all drugs except ethambutol (65%) and ethionamide (62%). Isolates harboring the -15 c/t inhA promoter mutation had a significantly lower MIC for isoniazid than did isolates with the katG Ser315Thr mutation (p < 0.001). Similar patterns were seen for ethambutol (embB Gly406Asp vs. embB Met306Ile), streptomycin (gid Gly73Ala vs. rpsL Lys43Arg), moxifloxacin (gyrA Ala90Val vs. gyrA Asp94Gly) and rifabutin (rpoB Asp435Phe/Tyr/Val vs. rpoB Ser450Leu). For genotypic heteroresistance, isolates with lower proportion of mapped read tended to has lower MIC of anti-TB drugs than those with higher proportion. These results emphasize the high applicability of WGS for determination of DR-TB and the association of particular mutations with MIC levels.
Collapse
Affiliation(s)
- Ditthawat Nonghanphithak
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Orawee Kaewprasert
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Pratchakan Chaiyachat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Wipa Reechaipichitkul
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Angkana Chaiprasert
- Drug Resistant Tuberculosis Research Fund Laboratory, Research and Development Affairs, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
20
|
He Y, Gong Z, Zhao X, Zhang D, Zhang Z. Comprehensive Determination of Mycobacterium tuberculosis and Nontuberculous Mycobacteria From Targeted Capture Sequencing. Front Cell Infect Microbiol 2020; 10:449. [PMID: 32984073 PMCID: PMC7491257 DOI: 10.3389/fcimb.2020.00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
Infection of Mycobacterium tuberculosis (MTB) and nontuberculous mycobacteria (NTM) challenges effective pulmonary infectious disease control. Current phenotypic and molecular assays could not comprehensively and accurately diagnose MTB, NTM, and drug resistance. Next-generation sequencing allows an “all-in-one” approach providing results on expected drug susceptibility testing (DST) and the genotype of NTM strains. In this study, targeted capture sequencing was used to analyze the genetic backgrounds of 4 MTB strains and 32 NTM pathogenic strains in 30 clinical samples, including 14 sputum specimens and 16 bronchoalveolar lavage fluid samples. Through comparing with other TB diagnostic tests, we proved that targeted capture sequencing could be used as a highly sensitive (91.3%) and accurate (83.3%) method to diagnose TB, as well as MGIT 960. Also, we identified 7 NTM strains in 11 patients; among them, seven patients were MTB/NTM co-affected, which indicated that it was a meaningful tool for the diagnosis and treatment of NTM infection diseases in clinic. However, based on a drug-resistant mutation library (1,325 drug resistance loci), only 9 drug resistance strains and 22 drug resistance loci were discovered, having considerable discordance with the drug-resistant results of MGIT 960. Our finding indicated that targeted capture sequencing approach was applicable for the comprehensive and accurate diagnosis of MTB and NTM. However, from data presented here, the DST results identified by next-generation sequencing (NGS) showed a relatively low consistency with MGIT 960, especially in sputum samples. Further work should be done to explore the reasons for low drug-resistance detection rate of NGS.
Collapse
Affiliation(s)
- Ya He
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziying Gong
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
| | - Xiaokai Zhao
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
| | - Daoyun Zhang
- Shanghai Yunying Medical Technology Co., Ltd., Shanghai, China.,Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
| | - Zhongshun Zhang
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Use of whole-genome sequencing to predict Mycobacterium tuberculosis drug resistance in Shanghai, China. Int J Infect Dis 2020; 96:48-53. [DOI: 10.1016/j.ijid.2020.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022] Open
|
22
|
Dohál M, Porvazník I, Pršo K, Rasmussen EM, Solovič I, Mokrý J. Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis (Edinb) 2020; 123:101946. [PMID: 32741530 DOI: 10.1016/j.tube.2020.101946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
The numbers of patients with tuberculosis (TB) caused by resistant strains are still alarming. Therefore, it is necessary to determine resistance more quickly and precisely, than it is with the currently used phenotypic and genotypic methods. In recent years, technological advances have been made and the whole-genome sequencing (WGS) method has been introduced as a part of routine diagnostics in clinical laboratories. Comparing a wide range of mycobacterial genomic variations with a reference genome leads to a consistent evaluation of molecular-epidemiology and resistance of Mycobacterium tuberculosis (M. tuberculosis) to a wide range of anti-TB drugs. The quality of the obtained sequencing data is closely related to the type of sample and the method used for DNA extraction and sequencing library preparation. Moreover, the correct interpretation of results is also influenced by a bioinformatic data processing. A large number of bioinformatics pipelines are currently available, the sensitivity of which varies due to the different sizes of databases containing relevant mutations. This review focuses on the individual steps included in the sequencing workflow and factors that may affect the interpretation of final results.
Collapse
Affiliation(s)
- Matúš Dohál
- Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | - Igor Porvazník
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia; Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Kristián Pršo
- Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Erik Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Ivan Solovič
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia
| | - Juraj Mokrý
- Department of Pharmacology and Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| |
Collapse
|
23
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
24
|
Tafess K, Ng TTL, Lao HY, Leung KSS, Tam KKG, Rajwani R, Tam STY, Ho LPK, Chu CMK, Gonzalez D, Sayada C, Ma OCK, Nega BH, Ameni G, Yam WC, Siu GKH. Targeted-Sequencing Workflows for Comprehensive Drug Resistance Profiling of Mycobacterium tuberculosis Cultures Using Two Commercial Sequencing Platforms: Comparison of Analytical and Diagnostic Performance, Turnaround Time, and Cost. Clin Chem 2020; 66:809-820. [DOI: 10.1093/clinchem/hvaa092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Abstract
Background
The emergence of Mycobacterium tuberculosis with complex drug resistance profiles necessitates a rapid and comprehensive drug susceptibility test for guidance of patient treatment. We developed two targeted-sequencing workflows based on Illumina MiSeq and Nanopore MinION for the prediction of drug resistance in M. tuberculosis toward 12 antibiotics.
Methods
A total of 163 M. tuberculosis isolates collected from Hong Kong and Ethiopia were subjected to a multiplex PCR for simultaneous amplification of 19 drug resistance-associated genetic regions. The amplicons were then barcoded and sequenced in parallel on MiSeq and MinION in respective batch sizes of 24 and 12 samples. A web-based bioinformatics pipeline, BacterioChek-TB, was developed to translate the raw datasets into clinician-friendly reports.
Results
Both platforms successfully sequenced all samples with mean read depths of 1,127× and 1,649×, respectively. The variant calling by MiSeq and MinION could achieve 100% agreement if variants with an allele frequency of <40% reported by MinION were excluded. Both workflows achieved a mean clinical sensitivity of 94.8% and clinical specificity of 98.0% when compared with phenotypic drug susceptibility test (pDST). Turnaround times for the MiSeq and MinION workflows were 38 and 15 h, facilitating the delivery of treatment guidance at least 17–18 days earlier than pDST, respectively. The higher cost per sample on the MinION platform ($71.56) versus the MiSeq platform ($67.83) was attributed to differences in batching capabilities.
Conclusion
Our study demonstrates the interchangeability of MiSeq and MinION platforms for generation of accurate and actionable results for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Ketema Tafess
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Department of Medical Laboratory, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Timothy Ting Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Hiu Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kenneth Siu Sing Leung
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kingsley King Gee Tam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rahim Rajwani
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Sarah Tsz Yan Tam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lily Pui Ki Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Corey Mang Kiu Chu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | | | - Chalom Sayada
- Advanced Biological Laboratories (ABL), Metz, France
| | - Oliver Chiu Kit Ma
- KingMed Diagnostics, Science Park, Hong Kong Special Administrative Region, China
| | - Belete Haile Nega
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wing Cheong Yam
- Department of Medical Laboratory, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Gilman Kit Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
25
|
Acharya B, Acharya A, Gautam S, Ghimire SP, Mishra G, Parajuli N, Sapkota B. Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep 2020; 47:4065-4075. [DOI: 10.1007/s11033-020-05413-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/28/2020] [Indexed: 01/02/2023]
|
26
|
Katale BZ, Mbelele PM, Lema NA, Campino S, Mshana SE, Rweyemamu MM, Phelan JE, Keyyu JD, Majigo M, Mbugi EV, Dockrell HM, Clark TG, Matee MI, Mpagama S. Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics 2020; 21:174. [PMID: 32085703 PMCID: PMC7035673 DOI: 10.1186/s12864-020-6577-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tuberculosis (TB), particularly multi- and or extensive drug resistant TB, is still a global medical emergency. Whole genome sequencing (WGS) is a current alternative to the WHO-approved probe-based methods for TB diagnosis and detection of drug resistance, genetic diversity and transmission dynamics of Mycobacterium tuberculosis complex (MTBC). This study compared WGS and clinical data in participants with TB. RESULTS This cohort study performed WGS on 87 from MTBC DNA isolates, 57 (66%) and 30 (34%) patients with drug resistant and susceptible TB, respectively. Drug resistance was determined by Xpert® MTB/RIF assay and phenotypic culture-based drug-susceptibility-testing (DST). WGS and bioinformatics data that predict phenotypic resistance to anti-TB drugs were compared with participant's clinical outcomes. They were 47 female participants (54%) and the median age was 35 years (IQR): 29-44). Twenty (23%) and 26 (30%) of participants had TB/HIV co-infection BMI < 18 kg/m2 respectively. MDR-TB participants had MTBC with multiple mutant genes, compared to those with mono or polyresistant TB, and the majority belonged to lineage 3 Central Asian Strain (CAS). Also, MDR-TB was associated with delayed culture-conversion (median: IQR (83: 60-180 vs. 51:30-66) days). WGS had high concordance with both culture-based DST and Xpert® MTB/RIF assay in detecting drug resistance (kappa = 1.00). CONCLUSION This study offers comparison of mutations detected by Xpert and WGS with phenotypic DST of M. tuberculosis isolates in Tanzania. The high concordance between the different methods and further insights provided by WGS such as PZA-DST, which is not routinely performed in most resource-limited-settings, provides an avenue for inclusion of WGS into diagnostic matrix of TB including drug-resistant TB.
Collapse
Affiliation(s)
- Bugwesa Z Katale
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Peter M Mbelele
- Kibong'oto Infectious Disease Hospital (KIDH), Sanya Juu, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Nsiande A Lema
- Field Epidemiology and Laboratory Training Programme, Dar es Salaam, Tanzania
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Stephen E Mshana
- Department of Medical Microbiology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Mark M Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Morogoro, Tanzania
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Mtebe Majigo
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Erasto V Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Mecky I Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania.
| | - Stellah Mpagama
- Kibong'oto Infectious Disease Hospital (KIDH), Sanya Juu, Tanzania
| |
Collapse
|
27
|
Senghore M, Diarra B, Gehre F, Otu J, Worwui A, Muhammad AK, Kwambana-Adams B, Kay GL, Sanogo M, Baya B, Orsega S, Doumbia S, Diallo S, de Jong BC, Pallen MJ, Antonio M. Evolution of Mycobacterium tuberculosis complex lineages and their role in an emerging threat of multidrug resistant tuberculosis in Bamako, Mali. Sci Rep 2020; 10:327. [PMID: 31941887 PMCID: PMC6962199 DOI: 10.1038/s41598-019-56001-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/30/2019] [Indexed: 11/10/2022] Open
Abstract
In recent years Bamako has been faced with an emerging threat from multidrug resistant TB (MDR-TB). Whole genome sequence analysis was performed on a subset of 76 isolates from a total of 208 isolates recovered from tuberculosis patients in Bamako, Mali between 2006 and 2012. Among the 76 patients, 61(80.3%) new cases and 15(19.7%) retreatment cases, 12 (16%) were infected by MDR-TB. The dominant lineage was the Euro-American lineage, Lineage 4. Within Lineage 4, the Cameroon genotype was the most prevalent genotype (n = 20, 26%), followed by the Ghana genotype (n = 16, 21%). A sub-clade of the Cameroon genotype, which emerged ~22 years ago was likely to be involved in community transmission. A sub-clade of the Ghana genotype that arose approximately 30 years ago was an important cause of MDR-TB in Bamako. The Ghana genotype isolates appeared more likely to be MDR than other genotypes after controlling for treatment history. We identified a clade of four related Beijing isolates that included one MDR-TB isolate. It is a major concern to find the Cameroon and Ghana genotypes involved in community transmission and MDR-TB respectively. The presence of the Beijing genotype in Bamako remains worrying, given its high transmissibility and virulence.
Collapse
Affiliation(s)
- Madikay Senghore
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
- Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Bassirou Diarra
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Florian Gehre
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Jacob Otu
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Archibald Worwui
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Abdul Khalie Muhammad
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Brenda Kwambana-Adams
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Gemma L Kay
- Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Moumine Sanogo
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bocar Baya
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Susan Orsega
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Souleymane Diallo
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Mark J Pallen
- Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Quadram Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UA, UK
| | - Martin Antonio
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia.
- Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
28
|
Gaude G, Vishwanath S. Molecular diagnosis of tuberculosis with emphasis on Xpert Mycobacterium tuberculosis assay – Clinical review. JOURNAL OF CLINICAL SCIENCES 2020. [DOI: 10.4103/jcls.jcls_52_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Zenteno-Cuevas R, Fernandez E, Viveros D, Madrazo-Moya CF, Cancino-Muñoz I, Comas I, Gonzalez-Covarrubias V, Barbosa-Amezcua M, Cuevas-Cordoba B. Characterization of Polymorphisms Associated with Multidrug-Resistant Tuberculosis by Whole Genomic Sequencing: A Preliminary Report from Mexico. Microb Drug Resist 2019; 26:732-740. [PMID: 31874045 DOI: 10.1089/mdr.2019.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Whole genome sequencing (WGS) has been proposed as a tool for the diagnosis of drug resistance in tuberculosis (TB); however, there have been few studies on its effectiveness in countries with significantly high drug resistance rates. This study therefore aimed to evaluate the effectiveness of WGS to identify mutations related to drug resistance in TB isolates from an endemic region of Mexico. The results showed that, of 35 multidrug-resistant isolates analyzed, the values of congruence found between the phenotypic drug susceptibility testing and polymorphisms were 94% for isoniazid, 97% for rifampicin, 90% for ethambutol, and 82% for pyrazinamide. It was also possible to identify eight isolates as potential pre-extensive drug resistant (XDR) and one as XDR. Twenty nine isolates were classified within L4 and two transmission clusters were identified. The results show the potential utility of WGS for predicting resistance against first- and second-line drugs, as well as providing a phylogenetic characterization of TB drug-resistant isolates circulating in Mexico.
Collapse
Affiliation(s)
- Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México.,Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México.,Programa de Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Veracruz, México
| | - Esdras Fernandez
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México.,Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
| | - Diana Viveros
- Programa de Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Veracruz, México
| | | | - Irving Cancino-Muñoz
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Iñaki Comas
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER in Epidemiology and Public Health, Valencia, Spain
| | | | - Martín Barbosa-Amezcua
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Betzaida Cuevas-Cordoba
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| |
Collapse
|
30
|
Jandrasits C, Kröger S, Haas W, Renard BY. Computational pan-genome mapping and pairwise SNP-distance improve detection of Mycobacterium tuberculosis transmission clusters. PLoS Comput Biol 2019; 15:e1007527. [PMID: 31815935 PMCID: PMC6922483 DOI: 10.1371/journal.pcbi.1007527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 12/19/2019] [Accepted: 11/03/2019] [Indexed: 12/30/2022] Open
Abstract
Next-generation sequencing based base-by-base distance measures have become an integral complement to epidemiological investigation of infectious disease outbreaks. This study introduces PANPASCO, a computational pan-genome mapping based, pairwise distance method that is highly sensitive to differences between cases, even when located in regions of lineage specific reference genomes. We show that our approach is superior to previously published methods in several datasets and across different Mycobacterium tuberculosis lineages, as its characteristics allow the comparison of a high number of diverse samples in one analysis—a scenario that becomes more and more likely with the increased usage of whole-genome sequencing in transmission surveillance. Tuberculosis still is a threat to global health. It is essential to detect and interrupt transmissions to stop the spread of this infectious disease. With the rising use of next-generation sequencing methods, its application in the surveillance of Mycobacterium tuberculosis has become increasingly important in the last years. The main goal of molecular surveillance is the identification of patient-patient transmission and cluster detection. The mutation rate of M. tuberculosis is very low and stable. Therefore, many existing methods for comparative analysis of isolates provide inadequate results since their resolution is too limited. There is a need for a method that takes every detectable difference into account. We developed PANPASCO, a novel approach for comparing pairs of isolates using all genomic information available for each pair. We combine improved SNP-distance calculation with the use of a pan-genome incorporating more than 100 M. tuberculosis reference genomes representing lineages 1-4 for read mapping prior to variant detection. We thereby enable the collective analysis and comparison of similar and diverse isolates associated with different M. tuberculosis strains.
Collapse
Affiliation(s)
| | - Stefan Kröger
- Respiratory Infections Unit, Robert Koch Institute, Berlin, Germany
| | - Walter Haas
- Respiratory Infections Unit, Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
31
|
Dlamini MT, Lessells R, Iketleng T, de Oliveira T. Whole genome sequencing for drug-resistant tuberculosis management in South Africa: What gaps would this address and what are the challenges to implementation? J Clin Tuberc Other Mycobact Dis 2019; 16:100115. [PMID: 31720436 PMCID: PMC6830177 DOI: 10.1016/j.jctube.2019.100115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Global control of tuberculosis (TB) has been seriously impacted by the emergence and transmission of its drug-resistant forms. Delayed detection and incomplete characterisation of drug-resistant tuberculosis (DR-TB) contributes to morbidity and mortality, and to ongoing transmission of drug-resistant strains. Current culture-based and molecular diagnostic tools for TB present numerous disadvantages that could potentially lead to misdiagnosis, inappropriate treatment initiation and the amplification of drug resistance. The detection of drug-resistant tuberculosis (DR-TB) in South Africa relies on molecular diagnostic assays such as the Xpert MTB/RIF and line probe assays (MTBDRplus and MTBDRsl). However, these molecular assays are limited to detecting resistance to only a few first-line and second-line drugs. It is for this reason that next-generation sequencing (NGS) and bioinformatics pipelines have been developed for rapid detection of M. tuberculosis drug resistance, with the added advantage that sequence data could also have public health applications through understanding transmission patterns. This review highlights some of the challenges that are currently hampering the diagnosis and control of DR-TB in a high burden setting of the KwaZulu-Natal (KZN) province in South Africa. Shortfalls of current diagnostic techniques for DR-TB are discussed in detail and we also propose how these might be overcome with an accurate and rapid NGS system.
Collapse
Affiliation(s)
- Mlungisi Thabiso Dlamini
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag 7, Congella 4013, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag 7, Congella 4013, Durban, South Africa
- Corresponding author at: KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), 1st Floor, K-RITH Tower Building, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag 7, Congella 4013, Durban, South Africa.
| | - Richard Lessells
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag 7, Congella 4013, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag 7, Congella 4013, Durban, South Africa
| | - Thato Iketleng
- Botswana Harvard AIDS Institute Partnership (BHP), Private Bag BO 320, Gaborone, Botswana, South Africa
| | - Tulio de Oliveira
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag 7, Congella 4013, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag 7, Congella 4013, Durban, South Africa
| |
Collapse
|
32
|
Jabbar A, Phelan JE, de Sessions PF, Khan TA, Rahman H, Khan SN, Cantillon DM, Wildner LM, Ali S, Campino S, Waddell SJ, Clark TG. Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Sci Rep 2019; 9:14996. [PMID: 31628383 PMCID: PMC6802378 DOI: 10.1038/s41598-019-51562-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis bacteria, is a leading infectious cause of mortality worldwide, including in Pakistan. Drug resistant M. tuberculosis is an emerging threat for TB control, making it important to detect the underlying genetic mutations, and thereby inform treatment decision making and prevent transmission. Whole genome sequencing has emerged as the new diagnostic to reliably predict drug resistance within a clinically relevant time frame, and its deployment will have the greatest impact on TB control in highly endemic regions. To evaluate the mutations leading to drug resistance and to assess for evidence of the transmission of resistant strains, 81 M. tuberculosis samples from Khyber Pakhtunkhwa province (North West Pakistan) were subjected to whole genome sequencing and standard drug susceptibility testing for eleven anti-TB drugs. We found the majority of M. tuberculosis isolates were the CAS/Delhi strain-type (lineage 3; n = 57; 70.4%) and multi-drug resistant (MDR; n = 62; 76.5%). The most frequent resistance mutations were observed in the katG and rpoB genes, conferring resistance to isoniazid and rifampicin respectively. Mutations were also observed in genes conferring resistance to other first and second-line drugs, including in pncA (pyrazinamide), embB (ethambutol), gyrA (fluoroquinolones), rrs (aminoglycosides), rpsL, rrs and giB (streptomycin) loci. Whilst the majority of mutations have been reported in global datasets, we describe unreported putative resistance markers in katG, ethA (ethionamide), gyrA and gyrB (fluoroquinolones), and pncA. Analysis of the mutations revealed that acquisition of rifampicin resistance often preceded isoniazid in our isolates. We also observed a high proportion (17.6%) of pre-MDR isolates with fluoroquinolone resistance markers, potentially due to unregulated anti-TB drug use. Our isolates were compared to previously sequenced strains from Pakistan in a combined phylogenetic tree analysis. The presence of lineage 2 was only observed in our isolates. Using a cut-off of less than ten genome-wide mutation differences between isolates, a transmission analysis revealed 18 M. tuberculosis isolates clustering within eight networks, thereby providing evidence of drug-resistant TB transmission in the Khyber Pakhtunkhwa province. Overall, we have demonstrated that drug-resistant TB isolates are circulating and transmitted in North West Pakistan. Further, we have shown the usefulness of whole genome sequencing as a diagnostic tool for characterizing M. tuberculosis isolates, which will assist future epidemiological studies and disease control activities in Pakistan.
Collapse
Affiliation(s)
- Abdul Jabbar
- Department of Medical Lab Technology, University of Haripur, Haripur, Pakistan.
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Taj Ali Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, University of Haripur, Haripur, Pakistan
| | - Daire M Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Leticia Muraro Wildner
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Sajid Ali
- Provincial Tuberculosis Reference Laboratory, Hayatabad Medical Complex Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
33
|
Madrazo-Moya CF, Cancino-Muñoz I, Cuevas-Córdoba B, González-Covarrubias V, Barbosa-Amezcua M, Soberón X, Muñiz-Salazar R, Martínez-Guarneros A, Bäcker C, Zarrabal-Meza J, Sampieri-Ramirez C, Enciso-Moreno A, Lauzardo M, Comas I, Zenteno-Cuevas R. Whole genomic sequencing as a tool for diagnosis of drug and multidrug-resistance tuberculosis in an endemic region in Mexico. PLoS One 2019; 14:e0213046. [PMID: 31166945 PMCID: PMC6550372 DOI: 10.1371/journal.pone.0213046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Whole genome sequencing (WGS) has been proposed as a tool for diagnosing drug resistance in tuberculosis. However, reports of its effectiveness in endemic countries with important numbers of drug resistance are scarce. The goal of this study was to evaluate the effectiveness of this procedure in isolates from a tuberculosis endemic region in Mexico. Methods WGS analysis was performed in 81 tuberculosis positive clinical isolates with a known phenotypic profile of resistance against first-line drugs (isoniazid, rifampin, ethambutol, pyrazinamide and streptomycin). Mutations related to drug resistance were identified for each isolate; drug resistant genotypes were predicted and compared with the phenotypic profile. Genotypes and transmission clusters based on genetic distances were also characterized. Findings Prediction by WGS analysis of resistance against isoniazid, rifampicin, ethambutol, pyrazinamide and streptomycin showed sensitivity values of 84%, 96%, 71%, 75% and 29%, while specificity values were 100%, 94%, 90%, 90% and 98%, respectively. Prediction of multidrug resistance showed a sensitivity of 89% and specificity of 97%. Moreover, WGS analysis revealed polymorphisms related to second-line drug resistance, enabling classification of eight and two clinical isolates as pre- and extreme drug-resistant cases, respectively. Lastly, four lineages were identified in the population (L1, L2, L3 and L4). The most frequent of these was L4, which included 90% (77) of the isolates. Six transmission clusters were identified; the most frequent was TC6, which included 13 isolates with a L4.1.1 and a predominantly multidrug-resistant condition. Conclusions The results illustrate the utility of WGS for establishing the potential for prediction of resistance against first and second line drugs in isolates of tuberculosis from the region. They also demonstrate the feasibility of this procedure for use as a tool to support the epidemiological surveillance of drug- and multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Carlos Francisco Madrazo-Moya
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México
- Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
| | | | - Betzaida Cuevas-Córdoba
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | - Martín Barbosa-Amezcua
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Xavier Soberón
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Raquel Muñiz-Salazar
- Laboratorio de Epidemiología y Ecología y Molecular, Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Armando Martínez-Guarneros
- Laboratorio de Micobacterias, Instituto Nacional de Diagnóstico y Referencia Epidemiológica, Ciudad de México, México
| | - Claudia Bäcker
- Laboratorio de Micobacterias, Instituto Nacional de Diagnóstico y Referencia Epidemiológica, Ciudad de México, México
| | - José Zarrabal-Meza
- Laboratorio Estatal de Salud Pública, Secretaria de Salud, Veracruz, México
| | | | | | - Michael Lauzardo
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Iñaki Comas
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Veracruz, México
- Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, México
- * E-mail:
| |
Collapse
|
34
|
Kim S, Kim Y, Chang Y, Hirgo WK, Chang CL, Shim TS, Uh Y, Lee H. Comparison of Quantamatrix Multiplexed Assay Platform and GenoType MTBDR Assay Using Smear-Positive Sputum Specimens From Patients With Multidrug- Resistant/Extensively Drug-Resistant Tuberculosis in South Korea. Front Microbiol 2019; 10:1075. [PMID: 31139175 PMCID: PMC6527879 DOI: 10.3389/fmicb.2019.01075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/29/2019] [Indexed: 11/17/2022] Open
Abstract
Rapid detection of drug-resistant tuberculosis (DR-TB) is crucial for timely treatment and management. The GenoType MTBDRplus and MTBDRsl (MTBDR) assays have been endorsed by the World Health Organization (WHO) for the detection of DR-TB. However, MTBDR assays cannot simultaneously detect multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). Furthermore, interpretation of the MTBDR assay requires trained people, and the assay has low sample throughput, processing only up to 12 samples in parallel. We have developed the Quantamatrix Multiplexed Assay Platform (QMAP) to detect MDR-/XDR-TB simultaneously. The interpretation of QMAP results is automated, and the platform can process up to 96 samples in parallel. To compare the performance of QMAP with MTBDR assays, we performed QMAP and the MTBDR assay on 76 smear-positive, Mycobacterium tuberculosis culture-positive sputum specimens. Compared with phenotypic drug susceptibility testing (DST) results, the sensitivity and specificity of QMAP were 100 and 98% for rifampin resistance, 80 and 100% for isoniazid resistance, 44.4 and 100% for ethambutol resistance, 100 and 100% for fluoroquinolone resistance, and 100 and 100% for second-line injectable drug resistance, respectively. The sensitivity and specificity of MTBDR assays were 100 and 98% for rifampin resistance, 80 and 100% for isoniazid resistance, 44.4 and 98.1% for ethambutol resistance, 100 and 100% for fluoroquinolone resistance, and 100 and 100% for second-line injectable drug resistance, respectively. The sensitivity and specificity of QMAP were 85.0 and 100%, respectively, for the detection of MDR-TB and 100 and 100%, respectively, for XDR-TB. The sensitivity and specificity of MTBDR assays was consistent with those of QMAP. Our study showed that the QMAP assay has sensitivity and specificity equivalent to that of MTBDR assays in smear-positive sputum specimens. In combination with phenotypic DST, QMAP might be useful as a supplementary DST assay for rapid detection of MDR-/XDR-TB.
Collapse
Affiliation(s)
- Seoyong Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, South Korea
| | - Yeun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, South Korea
| | - Yunhee Chang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, South Korea
| | - Workneh Korma Hirgo
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, South Korea
| | - Chulhun L Chang
- Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Tae-Sun Shim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, South Korea
| |
Collapse
|
35
|
Whole-Genome Sequencing in Relation to Resistance of Mycobacterium Tuberculosis. ACTA MEDICA MARTINIANA 2019. [DOI: 10.2478/acm-2019-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Tuberculosis, a disease caused by Mycobacterium tuberculosis, represents one of the deadliest infections worldwide. The incidence of resistant forms is increasing year by year; therefore, it is necessary to involve new methods for rapid diagnostics and treatment. One of the possible solutions is the use of whole-genome sequencing (WGS).
The WGS provides an identification of complete genome of the microorganism, including all genes responsible for resistance, in comparison with other genotypic methods (eg. Xpert MTB / RIF or Hain line-probes) that are capable to detect only basic genes. WGS data are available in 1-9 days and several online software tools (TBProfiler, CASTB, Mykrobe PredictorTB) are used for their interpretation and analysis, compared to 3-8 weeks in the case of classic phenotypic evaluation.
Furthermore, WGS predicts resistance to the first-line antituberculotics with a sensitivity of 85-100% and a specificity of 85-100%.
This review elucidates the importance and summarizes the current knowledge about the possible use of WGS in diagnosis and treatment of resistant forms of tuberculosis elucidates.
WGS of M. tuberculosis brings new possibilities for rapid and accurate diagnostics of resistant forms of tuberculosis. Introducing WGS into routine practice can help to reduce the spread of resistant forms of tuberculosis as well as to increase the success rate of the treatment, especially through an appropriate combination of antituberculotics ATs. Introduction of WGS into routine diagnostics can, in spite of the financial difficulty, significantly improve patient care.
Collapse
|
36
|
Nikolayevskyy V, Niemann S, Anthony R, van Soolingen D, Tagliani E, Ködmön C, van der Werf MJ, Cirillo DM. Role and value of whole genome sequencing in studying tuberculosis transmission. Clin Microbiol Infect 2019; 25:1377-1382. [PMID: 30980928 DOI: 10.1016/j.cmi.2019.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains a serious public health threat worldwide. Theoretically ultimate resolution of whole genome sequencing (WGS) for Mycobacterium tuberculosis complex (MTBC) strain classification makes this technology very attractive for epidemiological investigations. OBJECTIVES To summarize the evidence available in peer-reviewed publications on the role and place of WGS in detection of TB transmission. SOURCES A total of 69 peer-reviewed publications identified in Pubmed database. CONTENT Evidence from >30 publications suggests that a cut-off value of fewer than six single nucleotide polymorphisms between strains efficiently excludes cases that are not the result of recent transmission and could be used for the identification of drug-sensitive isolates involved in direct human-to-human TB transmission. Sensitivity of WGS to identify epidemiologically linked isolates is high, reaching 100% in eight studies with specificity (17%-95%) highly dependent on the settings. Drug resistance and specific phylogenetic lineages may be associated with accelerated mutation rates affecting genetic distances. WGS can be potentially used to distinguish between true relapses and re-infections but in high-incidence low-diversity settings this would require consideration of epidemiological links and minority alleles. Data from four studies looking into within-host diversity highlight a need for developing criteria for acceptance or rejection of WGS relatedness results depending on the proportion of minority alleles. IMPLICATIONS WGS will potentially allow for more targeted public health actions preventing unnecessary investigations of false clusters. Consensus on standardization of raw data quality control processing criteria, analytical pipelines and reporting language is yet to be reached.
Collapse
Affiliation(s)
- V Nikolayevskyy
- Public Health England, London, UK; Imperial College, London, UK.
| | - S Niemann
- Molecular and Experimental Mycobacteriology, National Reference Centre for Mycobacteria, Research Centre, Borstel, Germany; German Centre for Infection Research, Borstel site, Germany
| | - R Anthony
- Tuberculosis Reference Laboratory, Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - D van Soolingen
- Tuberculosis Reference Laboratory, Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - E Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - C Ködmön
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - M J van der Werf
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
37
|
Deciphering Within-Host Microevolution of Mycobacterium tuberculosis through Whole-Genome Sequencing: the Phenotypic Impact and Way Forward. Microbiol Mol Biol Rev 2019; 83:83/2/e00062-18. [PMID: 30918049 DOI: 10.1128/mmbr.00062-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Mycobacterium tuberculosis genome is more heterogenous and less genetically stable within the host than previously thought. Currently, only limited data exist on the within-host microevolution, diversity, and genetic stability of M. tuberculosis As a direct consequence, our ability to infer M. tuberculosis transmission chains and to understand the full complexity of drug resistance profiles in individual patients is limited. Furthermore, apart from the acquisition of certain drug resistance-conferring mutations, our knowledge on the function of genetic variants that emerge within a host and their phenotypic impact remains scarce. We performed a systematic literature review of whole-genome sequencing studies of serial and parallel isolates to summarize the knowledge on genetic diversity and within-host microevolution of M. tuberculosis We identified genomic loci of within-host emerged variants found across multiple studies and determined their functional relevance. We discuss important remaining knowledge gaps and finally make suggestions on the way forward.
Collapse
|
38
|
Chaidir L, Ruesen C, Dutilh BE, Ganiem AR, Andryani A, Apriani L, Huynen MA, Ruslami R, Hill PC, van Crevel R, Alisjahbana B. Use of whole-genome sequencing to predict Mycobacterium tuberculosis drug resistance in Indonesia. J Glob Antimicrob Resist 2019; 16:170-177. [DOI: 10.1016/j.jgar.2018.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022] Open
|
39
|
Tagliani E, Nikolayevskyy V, Tortoli E, Cirillo DM. Laboratory diagnosis of tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10021318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Miotto P, Zhang Y, Cirillo DM, Yam WC. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 2018; 23:1098-1113. [PMID: 30189463 DOI: 10.1111/resp.13393] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is the deadliest infectious disease and the associated global threat has worsened with the emergence of drug resistance, in particular multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). Although the World Health Organization (WHO) End-TB Strategy advocates for universal access to antimicrobial susceptibility testing, this is not widely available and/or it is still underused. The majority of drug resistance in clinical MTB strains is attributed to chromosomal mutations. Resistance-related mutations could also exert certain fitness cost to the drug-resistant MTB strains and growth fitness could be restored by the presence of compensatory mutations. Understanding these underlying mechanisms could provide an important insight into TB pathogenesis and predict the future trend of MDR-TB global pandemic. This review covers the mechanisms of resistance in MTB and provides a comprehensive overview of current phenotypic and molecular approaches for drug susceptibility testing, with particular attention to the methods endorsed and recommended by the WHO.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Wing Cheong Yam
- Department of Microbiology, Queen Mary Hospital Compound, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Abstract
Resistance to antimycobacterial drugs is a major barrier to effective treatment of Mycobacterium tuberculosis infection. Molecular diagnostic techniques based on the association between specific gene mutations and phenotypic resistance to certain drugs offer the opportunity to rapidly ascertain whether drug resistance is present and to alter treatment before further resistance develops. Current barriers to successful implementation of rapid diagnostics include imperfect knowledge regarding the full spectrum of mutations associated with resistance, limited utilization of molecular diagnostics where they are most needed, and the requirement for specialized laboratory facilities to perform molecular testing. Further understanding of genotypic-phenotypic correlates of resistance and streamlined implementation platforms will be necessary to optimize the public health impact of molecular resistance testing for M. tuberculosis.
Collapse
Affiliation(s)
- Kristen V Dicks
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA; ,
| | - Jason E Stout
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA; ,
| |
Collapse
|
42
|
Direct Whole-Genome Sequencing of Sputum Accurately Identifies Drug-Resistant Mycobacterium tuberculosis Faster than MGIT Culture Sequencing. J Clin Microbiol 2018; 56:JCM.00666-18. [PMID: 29848567 PMCID: PMC6062781 DOI: 10.1128/jcm.00666-18] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/25/2018] [Indexed: 11/20/2022] Open
Abstract
The current methods available to diagnose antimicrobial-resistant Mycobacterium tuberculosis infections require a positive culture or only test a limited number of resistance-associated mutations. A rapid accurate identification of antimicrobial resistance enables the prompt initiation of effective treatment. Here, we determine the utility of whole-genome sequencing (WGS) of M. tuberculosis directly from routinely obtained diagnostic sputum samples to provide a comprehensive resistance profile compared to that from mycobacterial growth indicator tube (MGIT) WGS. We sequenced M. tuberculosis from 43 sputum samples by targeted DNA enrichment using the Agilent SureSelectXT kit, and 43 MGIT positive samples from each participant. Thirty two (74%) sputum samples and 43 (100%) MGIT samples generated whole genomes. The times to antimicrobial resistance profiles and concordance were compared with Xpert MTB/RIF and phenotypic resistance testing from cultures of the same samples. Antibiotic susceptibility could be predicted from WGS of sputum within 5 days of sample receipt and up to 24 days earlier than WGS from MGIT culture and up to 31 days earlier than phenotypic testing. Direct sputum results could be reduced to 3 days with faster hybridization and if only regions encoding drug resistance are sequenced. We show that direct sputum sequencing has the potential to provide comprehensive resistance detection significantly faster than MGIT whole-genome sequencing or phenotypic testing of resistance from cultures in a clinical setting. This improved turnaround time enables prompt appropriate treatment with associated patient and health service benefits. Improvements in sample preparation are necessary to ensure comparable sensitivities and complete resistance profile predictions in all cases.
Collapse
|
43
|
Kigozi E, Kasule GW, Musisi K, Lukoye D, Kyobe S, Katabazi FA, Wampande EM, Joloba ML, Kateete DP. Prevalence and patterns of rifampicin and isoniazid resistance conferring mutations in Mycobacterium tuberculosis isolates from Uganda. PLoS One 2018; 13:e0198091. [PMID: 29847567 PMCID: PMC5976185 DOI: 10.1371/journal.pone.0198091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/14/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Accurate diagnosis of tuberculosis, especially by using rapid molecular assays, can reduce transmission of drug resistant tuberculosis in communities. However, the frequency of resistance conferring mutations varies with geographic location of Mycobacterium tuberculosis, and this affects the efficiency of rapid molecular assays in detecting resistance. This has created need for characterizing drug resistant isolates from different settings to investigate frequencies of resistance conferring mutations. Here, we describe the prevalence and patterns of rifampicin- and isoniazid- resistance conferring mutations in isolates from Uganda, which could be useful in the management of MDR-TB patients in Uganda and other countries in sub-Saharan Africa. RESULTS Ninety seven M. tuberculosis isolates were characterized, of which 38 were MDR, seven rifampicin-resistant, 12 isoniazid-mono-resistant, and 40 susceptible to rifampicin and isoniazid. Sequence analysis of the rpoB rifampicin-resistance determining region (rpoB/RRDR) revealed mutations in six codons: 588, 531, 526, 516, 513, and 511, of which Ser531Leu was the most frequent (40%, 18/45). Overall, the three mutations (Ser531Leu, His526Tyr, Asp516Tyr) frequently associated with rifampicin-resistance occurred in 76% of the rifampicin resistant isolates while 18% (8/45) of the rifampicin-resistant isolates lacked mutations in rpoB/RRDR. Furthermore, sequence analysis of katG and inhA gene promoter revealed mainly the Ser315Thr (76%, 38/50) and C(-15)T (8%, 4/50) mutations, respectively. These two mutations combined, which are frequently associated with isoniazid-resistance, occurred in 88% of the isoniazid resistant isolates. However, 20% (10/50) of the isoniazid-resistant isolates lacked mutations both in katG and inhA gene promoter. The sensitivity of sequence analysis of rpoB/RRDR for rifampicin-resistance via detection of high confidence mutations (Ser531Leu, His526Tyr, Asp516Tyr) was 81%, while it was 77% for analysis of katG and inhA gene promoter to detect isoniazid-resistance via detection of high confidence mutations (Ser315Thr, C(-15)T, T(-8)C). Furthermore, considering the circulating TB genotypes in Uganda, the isoniazid-resistance conferring mutations were more frequent in M. tuberculosis lineage 4/sub-lineage Uganda, perhaps explaining why this genotype is weakly associated with MDR-TB. CONCLUSION Sequence analysis of rpoB/RRDR, katG and inhA gene promoter is useful in detecting rifampicin/isoniazid resistant M. tuberculosis isolates in Uganda however, about ≤20% of the resistant isolates lack known resistance-conferring mutations hence rapid molecular assays may not detect them as resistant.
Collapse
Affiliation(s)
- Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Kenneth Musisi
- National Tuberculosis Reference Laboratory, Kampala, Uganda
| | - Deus Lukoye
- National Tuberculosis/Leprosy Program Ministry of Health, Kampala, Uganda
| | - Samuel Kyobe
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Fred Ashaba Katabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Eddie M. Wampande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
44
|
Gupta S, Kakkar V. Recent technological advancements in tuberculosis diagnostics - A review. Biosens Bioelectron 2018; 115:14-29. [PMID: 29783081 DOI: 10.1016/j.bios.2018.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 01/14/2023]
Abstract
Early diagnosis and on-time effective treatment are indispensable for Tuberculosis (TB) control - a life threatening infectious communicable disease. The conventional techniques for diagnosing TB normally take two to three weeks. This delay in diagnosis and further increase in detection complexity due to the emerging risks of XDR-TB (Extensively drug Resistant-TB) and MDR-TB (Multidrug Resistant-TB) are evoking interest of researchers in the field of developing rapid TB detection techniques such as biosensing and other point-of-care (POC) techniques. Biosensing technologies along with the collaboration with nanotechnology have enormous potential to boost the MTB detection and for overall management in clinical diagnosis. A diverse range of portable, sensitive and rapid biosensors based on different signal transducer principles and with different biomarkers detection capabilities have been developed for TB detection in the early stages. Further, a lot of progress has been achieved over the years in developing various point-of-care diagnostic tools including non-molecular methods and molecular techniques. The objective of this study is to present a succinct review of the available TB detection techniques that are either in use or under development. The focus of this review is on the current developments occurred in nano-biosensing technologies. A synopsis of ameliorations in different non-molecular diagnostic tools and progress in the field of molecular techniques along with the role of emerging Lab-on-Chip technology for diagnosing and mitigating the TB consequences have also been presented.
Collapse
Affiliation(s)
- Shagun Gupta
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra 182320, India.
| | - Vipan Kakkar
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra 182320, India.
| |
Collapse
|
45
|
Accuracy of whole genome sequencing versus phenotypic (MGIT) and commercial molecular tests for detection of drug-resistant Mycobacterium tuberculosis isolated from patients in Brazil and Mozambique. Tuberculosis (Edinb) 2018; 110:59-67. [DOI: 10.1016/j.tube.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023]
|
46
|
Molecular drug resistance profiles of Mycobacterium tuberculosis from sputum specimens using ion semiconductor sequencing. J Microbiol Methods 2018; 145:1-6. [DOI: 10.1016/j.mimet.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022]
|
47
|
Nurwidya F, Handayani D, Burhan E, Yunus F. Molecular Diagnosis of Tuberculosis. Chonnam Med J 2018; 54:1-9. [PMID: 29399559 PMCID: PMC5794472 DOI: 10.4068/cmj.2018.54.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of adult death in the Asia-Pacific Region, including Indonesia. As an infectious disease caused by Mycobacterium tuberculosis (MTB), TB remains a major public health issue especially in developing nations due to the lack of adequate diagnostic testing facilities. Diagnosis of TB has entered an era of molecular detection that provides faster and more cost-effective methods to diagnose and confirm drug resistance in TB cases, meanwhile, diagnosis by conventional culture systems requires several weeks. New advances in the molecular detection of TB, including the faster and simpler nucleic acid amplification test (NAAT) and whole-genome sequencing (WGS), have resulted in a shorter time for diagnosis and, therefore, faster TB treatments. In this review, we explored the current findings on molecular diagnosis of TB and drug-resistant TB to see how this advancement could be integrated into public health systems in order to control TB.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Diah Handayani
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Erlina Burhan
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Faisal Yunus
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| |
Collapse
|
48
|
Jeanes C, O'Grady J. Diagnosing tuberculosis in the 21st century - Dawn of a genomics revolution? Int J Mycobacteriol 2018; 5:384-391. [PMID: 27931678 DOI: 10.1016/j.ijmyco.2016.11.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Tuberculosis (TB) ranks alongside HIV as the leading cause of death worldwide, killing 1.5million people in 2014. Traditional laboratory techniques do not provide sufficiently rapid results to inform clinicians on appropriate treatment, especially in the face of increasingly prevalent drug-resistant TB. Rapid molecular methods such as PCR and LAMP are vital tools in the fight against TB, however, rapid advances in next generation sequencing (NGS) technology are allowing increasingly rapid and accurate sequencing of entire bacterial genomes at ever decreasing cost, providing unprecedented depth of information. These advances mean NGS stands to revolutionise the diagnosis and epidemiological study of Mycobacterium tuberculosis infection. This review focuses on current applications of NGS for TB diagnosis including sequencing cultured isolates to predict drug resistance and, more desirably, direct diagnostic metagenomic sequencing of clinical samples. Also discussed is the potential impact of NGS on the epidemiological study of TB and some of the key challenges that need to be overcome to enable this promising technology to be translated into routine use.
Collapse
Affiliation(s)
- Christopher Jeanes
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norfolk NR4 7TJ, United Kingdom.
| | - Justin O'Grady
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norfolk NR4 7TJ, United Kingdom.
| |
Collapse
|
49
|
Metcalfe JZ, Streicher E, Theron G, Colman RE, Allender C, Lemmer D, Warren R, Engelthaler DM. Cryptic Microheteroresistance Explains Mycobacterium tuberculosis Phenotypic Resistance. Am J Respir Crit Care Med 2017; 196:1191-1201. [PMID: 28614668 DOI: 10.1164/rccm.201703-0556oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Minority drug-resistant Mycobacterium tuberculosis subpopulations can be associated with phenotypic resistance but are poorly detected by Sanger sequencing or commercial molecular diagnostic assays. OBJECTIVES To determine the role of targeted next-generation sequencing in resolving these minor variant subpopulations. METHODS We used single molecule overlapping reads (SMOR), a targeted next-generation sequencing approach that dramatically reduces sequencing error, to analyze primary cultured isolates phenotypically resistant to rifampin, fluoroquinolones, or aminoglycosides, but for which Sanger sequencing found no resistance-associated variants (RAVs) within respective resistance-determining regions (study group). Isolates also underwent single-colony selection on antibiotic-containing agar, blinded to sequencing results. As a positive control, isolates with multiple colocalizing chromatogram peaks were also analyzed (control group). MEASUREMENTS AND MAIN RESULTS Among 61 primary culture isolates (25 study group and 36 control group), SMOR described 66 (49%) and 45 (33%) of 135 total heteroresistant RAVs at frequencies less than 5% and less than 1% of the total mycobacterial population, respectively. In the study group, SMOR detected minor resistant variant subpopulations in 80% (n = 20/25) of isolates with no Sanger-identified RAVs (median subpopulation size, 1.0%; interquartile range, 0.2-3.9%). Single-colony selection on drug-containing media corroborated SMOR results for 90% (n = 18/20) of RAV-containing specimens, and the absence of RAVs in 60% (n = 3/5) of isolates. Overall, Sanger sequencing was concordant with SMOR for 77% (n = 53/69) of macroheteroresistant (5-95% total population), but only 5% of microheteroresistant (<5%) subpopulations (n = 3/66) across both groups. CONCLUSIONS Cryptic minor variant mycobacterial subpopulations exist below the resolving capability of current drug susceptibility testing methodologies, and may explain an important proportion of false-negative resistance determinations.
Collapse
Affiliation(s)
- John Z Metcalfe
- 1 Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Elizabeth Streicher
- 2 DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Grant Theron
- 2 DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Rebecca E Colman
- 3 Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, San Diego, California; and
| | | | - Darrin Lemmer
- 4 Translational Genomics Research Institute, Flagstaff, Arizona
| | - Rob Warren
- 2 DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | |
Collapse
|
50
|
Senghore M, Otu J, Witney A, Gehre F, Doughty EL, Kay GL, Butcher P, Salako K, Kehinde A, Onyejepu N, Idigbe E, Corrah T, de Jong B, Pallen MJ, Antonio M. Whole-genome sequencing illuminates the evolution and spread of multidrug-resistant tuberculosis in Southwest Nigeria. PLoS One 2017; 12:e0184510. [PMID: 28926571 PMCID: PMC5604961 DOI: 10.1371/journal.pone.0184510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/27/2017] [Indexed: 11/18/2022] Open
Abstract
Nigeria has an emerging problem with multidrug-resistant tuberculosis (MDR-TB). Whole-genome sequencing was used to understand the epidemiology of tuberculosis and genetics of multi-drug resistance among patients from two tertiary referral centers in Southwest Nigeria. In line with previous molecular epidemiology studies, most isolates of Mycobacterium tuberculosis from this dataset belonged to the Cameroon clade within the Euro-American lineage. Phylogenetic analysis showed this clade was undergoing clonal expansion in this region, and suggests that it was involved in community transmission of sensitive and multidrug-resistant tuberculosis. Five patients enrolled for retreatment were infected with pre-extensively drug resistant (pre-XDR) due to fluoroquinolone resistance in isolates from the Cameroon clade. In all five cases resistance was conferred through a mutation in the gyrA gene. In some patients, genomic changes occurred in bacterial isolates during the course of treatment that potentially led to decreased drug susceptibility. We conclude that inter-patient transmission of resistant isolates, principally from the Cameroon clade, contributes to the spread of MDR-TB in this setting, underscoring the urgent need to curb the spread of multi-drug resistance in this region.
Collapse
MESH Headings
- Adolescent
- Adult
- Antitubercular Agents/pharmacology
- Bacterial Proteins/genetics
- Cameroon/epidemiology
- Child
- Child, Preschool
- DNA Gyrase/genetics
- Drug Resistance, Multiple, Bacterial/drug effects
- Drug Resistance, Multiple, Bacterial/genetics
- Female
- Genome, Bacterial
- Humans
- Infant
- Infant, Newborn
- Male
- Mutation
- Mycobacterium tuberculosis/classification
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/isolation & purification
- Nigeria/epidemiology
- Phylogeny
- Sequence Analysis, DNA
- Tuberculosis, Multidrug-Resistant/diagnosis
- Tuberculosis, Multidrug-Resistant/epidemiology
- Tuberculosis, Multidrug-Resistant/microbiology
- Young Adult
Collapse
Affiliation(s)
- Madikay Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, Fajara, The Gambia
- Microbiology and Infection Unit, The University of Warwick, Coventry, United Kingdom
| | - Jacob Otu
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, Fajara, The Gambia
| | - Adam Witney
- Institute of Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Florian Gehre
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, Fajara, The Gambia
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Emma L. Doughty
- Microbiology and Infection Unit, The University of Warwick, Coventry, United Kingdom
| | - Gemma L. Kay
- Microbiology and Infection Unit, The University of Warwick, Coventry, United Kingdom
| | - Phillip Butcher
- Institute of Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Kayode Salako
- Department of Medical Microbiology & Parasitology, University College Hospital, Ibadan, Nigeria
| | - Aderemi Kehinde
- Department of Medical Microbiology & Parasitology, University College Hospital, Ibadan, Nigeria
| | - Nneka Onyejepu
- National Tuberculosis Reference Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Emmanuel Idigbe
- National Tuberculosis Reference Laboratory, Nigeria Institute of Medical Research, Lagos, Nigeria
| | - Tumani Corrah
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, Fajara, The Gambia
| | | | - Mark J. Pallen
- Microbiology and Infection Unit, The University of Warwick, Coventry, United Kingdom
- Quadram Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UA
| | - Martin Antonio
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, Fajara, The Gambia
- Microbiology and Infection Unit, The University of Warwick, Coventry, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|