1
|
Whitehouse CA, Chase K, Embers ME, Kulesh DA, Ladner JT, Palacios GF, Minogue TD. Development of real-time PCR assays for the detection of Moraxella macacae associated with bloody nose syndrome in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. J Med Primatol 2015; 44:364-72. [PMID: 26365904 DOI: 10.1111/jmp.12196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Moraxella macacae is a recently described bacterial pathogen that causes epistaxis or so-called bloody nose syndrome in captive macaques. The aim of this study was to develop specific molecular diagnostic assays for M. macacae and to determine their performance characteristics. METHODS We developed six real-time PCR assays on the Roche LightCycler. The accuracy, precision, selectivity, and limit of detection (LOD) were determined for each assay, in addition to further validation by testing nasal swabs from macaques presenting with epistaxis at the Tulane National Primate Research Center. RESULTS All assays exhibited 100% specificity and were highly sensitive with an LOD of 10 fg for chromosomal assays and 1 fg for the plasmid assay. Testing of nasal swabs from 10 symptomatic macaques confirmed the presence of M. macacae in these animals. CONCLUSIONS We developed several accurate, sensitive, and species-specific real-time PCR assays for the detection of M. macacae in captive macaques.
Collapse
Affiliation(s)
- Chris A Whitehouse
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Kitty Chase
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Monica E Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, USA
| | - David A Kulesh
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jason T Ladner
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Timothy D Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| |
Collapse
|
2
|
Liu G, Tang CM, Exley RM. Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. MICROBIOLOGY-SGM 2015; 161:1297-1312. [PMID: 25814039 DOI: 10.1099/mic.0.000086] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Neisseria contains the important pathogens Neisseria meningitidis and Neisseria gonorrhoeae. These Gram-negative coccoid bacteria are generally thought to be restricted to humans and inhabit mucosal surfaces in the upper respiratory and genito-urinary tracts. While the meningococcus and gonococcus have been widely studied, far less attention has been paid to other Neisseria species. Here we review current knowledge of the distribution of commensal Neisseria in humans and other hosts. Analysis of the microbiome has revealed that Neisseria is an abundant member of the oropharyngeal flora, and we review its potential impact on health and disease. Neisseria also exhibit remarkable diversity, exhibiting both coccoid and rod-shaped morphologies, as well as environmental strains which are capable of degrading complex organic molecules.
Collapse
Affiliation(s)
- Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
3
|
Whitehouse CA, Ladner JT, Palacios GF. Molecular characterization of plasmid pMoma1of Moraxella macacae, a newly described bacterial pathogen of macaques. Folia Microbiol (Praha) 2014; 60:235-9. [PMID: 25398380 DOI: 10.1007/s12223-014-0364-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
We report the complete nucleotide sequence and characterization of a small cryptic plasmid of Moraxella macacae 0408225, a newly described bacterial species within the family Moraxellaceae and a causative agent of epistaxis in macaques. The complete nucleotide sequence of the plasmid pMoma1 was determined and found to be 5,375 bp in size with a GC content of 37.4 %. Computer analysis of the sequence data revealed five open reading frames encoding putative proteins of 54.4 kDa (ORF1), 17.6 kDa (ORF2), 13.3 kDa (ORF3), 51.6 kDa (ORF4), and 25.0 kDa (ORF5). ORF1, ORF2, and ORF3 encode putative proteins with high identity (72, 42, and 55 %, respectively) to mobilization proteins of plasmids found in other Moraxella species. ORF3 encodes a putative protein with similarity (about 40 %) to several plasmid replicase (RepA) proteins. The fifth open reading frames (ORF) was most similar to hypothetical proteins with unknown functions, although domain analysis of this sequence suggests it belongs to the Abi-like protein family. Upstream of the repA gene, a 470-bp intergenic region, was identified that contained an AT-rich section and two sets of tandem direct and indirect repeats, consistent with a putative origin of replication site. In contrast to other plasmids of Moraxella, the occurrence of pMoma1 in M. macacae isolates appears to be common as PCR testing of 14 clinical isolates from two different research institutions all contained the plasmid.
Collapse
Affiliation(s)
- Chris A Whitehouse
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA,
| | | | | |
Collapse
|
4
|
Johnson AL, Ducore RM, Colgin LM, Lewis AD. Hepatic abscesses in five outdoor-housed rhesus macaques (Macaca mulatta). J Med Primatol 2014; 43:503-6. [PMID: 25041124 DOI: 10.1111/jmp.12135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 11/26/2022]
Abstract
Hepatic abscesses are uncommon in non-human primates and usually occur as multifocal microabscesses originating from bacteremia. Necropsy, histopathology, and bacterial cultures were performed on five subadult to adult female rhesus macaques (Macaca mulatta) that died spontaneously. Necropsy findings included cavitating abscesses in the right central liver lobe of all five animals, with intralesional plant material in four animals. This is the first report of cavitating hepatic abscesses with intralesional plant material in non-human primates.
Collapse
Affiliation(s)
- A L Johnson
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | |
Collapse
|
5
|
Wren MA, Caskey JR, Liu DX, Embers ME. Septic arthritis due to moraxella osloensis in a rhesus macaque (Macaca mulatta). Comp Med 2013; 63:521-527. [PMID: 24326229 PMCID: PMC3866983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/25/2013] [Accepted: 05/02/2013] [Indexed: 06/03/2023]
Abstract
A 5.5-y-old Chinese-origin female rhesus macaque (Macaca mulatta) presented for bilateral hindlimb lameness. The primate had been group-reared in an SPF breeding colony and was seronegative for Macacine herpesvirus 1, SIV, simian retrovirus type D, and simian T-lymphotropic virus. The macaque's previous medical history included multiple occasions of swelling in the left tarsus, and trauma to the right arm and bilateral hands. In addition, the macaque had experienced osteomyelitis of the left distal tibia and rupture of the right cranial cruciate ligament that had been surgically repaired. Abnormal physical examination findings on presentation included a thin body condition, mild dehydration, and bilaterally swollen stifles that were warm to the touch, with the right stifle more severely affected. Mild instability in the left stifle was noted, and decreased range of motion and muscle atrophy were present bilaterally. Hematologic findings included marked neutrophilia and lymphopenia and moderate anemia. Arthrocentesis and culture of joint fluid revealed Moraxella-like organisms. Treatment with enrofloxacin was initiated empirically and subsequently switched to cephalexin, which over time alleviated the joint swelling and inflammation. Definitive diagnosis of Moraxella osloensis septic arthritis was made through isolation of the organism and sequencing of the 16S rDNA region. To our knowledge, this report is the first description of Moraxella osloensis septic arthritis in a rhesus macaque.
Collapse
Affiliation(s)
- Melissa A Wren
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA.
| | | | | | | |
Collapse
|
6
|
Lowenstine LJ, Osborn KG. Respiratory System Diseases of Nonhuman Primates. NONHUMAN PRIMATES IN BIOMEDICAL RESEARCH 2012. [PMCID: PMC7158299 DOI: 10.1016/b978-0-12-381366-4.00009-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Philipp MT, Doyle LA, Martin DS, Plauché GB, Phillippi-Falkenstein KM, Bohm RP. A rhesus macaque model of Streptococcus pneumoniae carriage. J Med Primatol 2011; 41:60-6. [PMID: 21967372 DOI: 10.1111/j.1600-0684.2011.00512.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Nasopharyngeal colonization by Streptococcus pneumoniae precedes pneumococcal disease. Elucidation of procedures to prevent or eradicate nasopharyngeal carriage in a model akin to the human would help to diminish the incidence of both pneumonia and invasive pneumococcal disease. METHODS We conducted a survey of the nasopharynx of infant rhesus macaques from our breeding colony, in search of natural carriers of S. pneumoniae. We also attempted experimental induction of colonization, by nasopharyngeal instillation of a human S. pneumoniae strain (19F). RESULTS None of 158 colony animals surveyed carried S. pneumoniae in the nasopharynx. Colonization was induced in eight of eight infant rhesus by nasopharyngeal instillation and lasted 2weeks in 100% of the animals and 7weeks in more than 60%. CONCLUSION Rhesus macaques are probably not natural carriers of S. pneumoniae. The high rate and duration of colonization obtained in our experiments indicates that the rhesus macaque will serve as a human-like carriage model.
Collapse
Affiliation(s)
- M T Philipp
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Diagnosis | Nasal foreign body. Lab Anim (NY) 2010. [DOI: 10.1038/laban1010-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Sasseville VG, Mansfield KG. Overview of known non-human primate pathogens with potential to affect colonies used for toxicity testing. J Immunotoxicol 2010; 7:79-92. [PMID: 19909217 DOI: 10.3109/15476910903213521] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The increased demand for non-human primates (NHPs) in biomedical research has resulted in alternative sources of animals being used, which has allowed for importation of animals with varying background incidences of bacterial, viral, parasitic, and fungal pathogens. This can be of minimal consequence when animals from different sources are kept isolated. However, when NHPs from different sources with varying incidences of primary and opportunistic pathogens are mixed, there can be a rapid spread of these pathogens and an increase in the seroconversion of susceptible animals. If this process occurs during the conduct of a study, interpretation of that study can be confounded. Furthermore, NHPs imported from areas enzootic for pathogens such as Plasmodium or with high incidences of human diseases such as measles and tuberculosis can introduce diseases that can be a threat to colony health, have zoonotic risk, and can severely impact study outcome. Thus, knowledge of the common primary and opportunistic NHP infections, as well as reemerging pathogens, enables the toxicologist to use information on disease status for pre-study animal selection and intelligent study design. This is particularly important when immunomodulatory compounds are being investigated. Moreover, the toxicologic pathologist well versed in the common spontaneous infections, opportunistic pathogens, and background lesions in NHPs is able to assess possible drug-related effects in drug safety studies. This review identifies the common primary and opportunistic pathogens, as well as newly emerging infections of NHPs, that can directly or indirectly affect colony health and the interpretation of drug safety studies.
Collapse
Affiliation(s)
- Vito G Sasseville
- Bristol-Myers Squibb Research and Development, Discovery Toxicology, Princeton, NJ 08543, USA.
| | | |
Collapse
|
10
|
Embers ME, Doyle LA, Whitehouse CA, Selby EB, Chappell M, Philipp MT. Characterization of a Moraxella species that causes epistaxis in macaques. Vet Microbiol 2010; 147:367-75. [PMID: 20667430 DOI: 10.1016/j.vetmic.2010.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
Bacteria of the genus Moraxella have been isolated from a variety of mammalian hosts. In a prior survey of bacteria that colonize the rhesus macaque nasopharynx, performed at the Tulane National Primate Research Center, organisms of the Moraxella genus were isolated from animals with epistaxis, or "bloody nose syndrome." They were biochemically identified as Moraxella catarrhalis, and cryopreserved. Another isolate was obtained from an epistatic cynomolgus macaque at the U.S. Army Medical Research Institute of Infectious Diseases. Based on differences in colony and cell morphologies between rhesus and human M. catarrhalis isolates, we hypothesized that the nonhuman primate Moraxella might instead be a different species. Despite morphological differences, the rhesus isolates, by several biochemical tests, were indistinguishable from M. catarrhalis. Analysis of the cynomolgus isolate by Vitek 2 Compact indicated that it belonged to a Moraxella group, but could not differentiate among species. However, sequencing of the 16S ribosomal RNA gene from four representative rhesus isolates and the cynomolgus isolate showed closest homology to Moraxella lincolnii, a human respiratory tract inhabitant, with 90.16% identity. To examine rhesus macaques as potential hosts for M. catarrhalis, eight animals were inoculated with human M. catarrhalis isolates. Only one of the animals was colonized and showed disease, whereas four of four macaques became epistatic after inoculation with the rhesus Moraxella isolate. The nasopharyngeal isolates in this study appear uniquely adapted to a macaque host and, though they share many of the phenotypic characteristics of M. catarrhalis, appear to form a genotypically distinct species.
Collapse
Affiliation(s)
- Monica E Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, 18703 Three Rivers Road, Covington, LA, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Chien JT, Lin CH, Chen YC, Lay CJ, Wang CL, Tsai CC. Epidural abscess caused by Haemophilus aphrophilus misidentified as Pasteurella species. Intern Med 2009; 48:853-8. [PMID: 19443984 DOI: 10.2169/internalmedicine.48.1930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haemophilus aphrophilus is one of the normal oropharyngeal flora and rarely implicated as a pathogen of spinal infection. A case of H. aphrophilus bacteremia complicated with epidural abscess, psoas muscle abscess, and spondylodiscitis is described in this report. The pathogen was mis-identified as Pasteurella spp. at the very start, and was confirmed by the molecular method. He was successfully treated with adequate antibiotics and surgery. The clinical features of sixteen previously reported cases of spinal infection caused by H. aphrophilus are reviewed.
Collapse
Affiliation(s)
- Jui-Teng Chien
- Department of Orthopedics, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
12
|
Easton DM, Maier E, Benz R, Foxwell AR, Cripps AW, Kyd JM. Moraxella catarrhalis M35 is a general porin that is important for growth under nutrient-limiting conditions and in the nasopharynges of mice. J Bacteriol 2008; 190:7994-8002. [PMID: 18931134 PMCID: PMC2593229 DOI: 10.1128/jb.01039-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/11/2008] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a gram-negative respiratory pathogen that is an important causative agent for otitis media and exacerbations of chronic obstructive pulmonary disease. We have previously predicted the outer membrane protein M35 to be a general porin, and in the current study, we have investigated the function of M35 and its importance for survival of M. catarrhalis in vivo. Lipid bilayer experiments reveal that refolded M35 functions as a channel that is typical of gram-negative bacterial porins. M35 forms wide and water-filled channels with a single-channel conductance of about 1.25 nS in 1 M KCl solution and has only a small selectivity for cations over anions. When the in vitro growth characteristics of two M35 deletion mutant strains of M. catarrhalis were compared to the wild-type parent isolates, the growth of the mutant strains was inhibited only under nutrient-poor conditions. This growth defect could be eliminated by additional glutamic acid, but not additional aspartic acid, glycine, sucrose, or glucose. The mutant strains compensated for the lack of M35 by enhancing their uptake of glutamic acid, and this enhanced rate of glutamic acid uptake was attributed to the compensatory upregulation of a protein of approximately 40 kDa. M35 was also found to be essential for nasal colonization of mice, demonstrating that its presence is essential for survival of M. catarrhalis in vivo. These results suggest that M35 is a general porin that is necessary for the uptake of important energy sources by M. catarrhalis and that it is likely that M35 is an essential functional protein for in vivo colonization.
Collapse
Affiliation(s)
- Donna M Easton
- Faculty of Science, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Sasseville VG, Diters RW. Impact of infections and normal flora in nonhuman primates on drug development. ILAR J 2008; 49:179-90. [PMID: 18323580 DOI: 10.1093/ilar.49.2.179] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preclinical safety studies that are required for the marketing approval of a pharmaceutical include single and repeat dose studies in rodent and nonrodent species. The use of nonhuman primates (NHPs), primarily macaques, as the nonrodent species has increased in recent years, in part due to the increase in development of biopharmaceuticals and immunomodulatory agents. Depending on the source of the macaques, they may vary in genetic background, normal flora, and/or the incidence of preexisting pathogens and inflammatory conditions. As the use of alternative sources of macaques rises to meet the increased demand for these animals in biomedical research, the toxicologic pathologist should be well versed in NHP pathology to adequately assess potential drug-related effects in the context of these variations. Such knowledge is particularly important in studies involving immunomodulatory drugs as the toxicologic pathologist should anticipate which type(s) of infections are most likely to arise depending on which arm of the immune system is modulated. The purpose of this review is to discuss the immunosuppressive (e.g., simian type D retrovirus, simian immunodeficiency virus) and opportunistic viruses (e.g., cytomegalovirus, adenovirus, simian virus 40, rhesus rhadinovirus, and lymphocryptovirus), primary and opportunistic bacteria (e.g., Campylobacter spp., Shigella flexneri, Yersinia enterocolitica, Moraxella catarrhalis, Mycobacterium avium complex, enteropathogenic Escherichia coli), and parasites (e.g., Plasmodium spp., Schistosoma spp., Strongyloides fulleborni) that have had the most profound impact on the interpretation of drug safety studies and/or that may reemerge as alternative sources of NHPs are used for drug safety studies.
Collapse
Affiliation(s)
- Vito G Sasseville
- Bristol-Myers Squibb Research and Development, Princeton, NJ 08543, USA.
| | | |
Collapse
|
14
|
Cattoir V, Lemenand O, Avril JL, Gaillot O. The sodA gene as a target for phylogenetic dissection of the genus Haemophilus and accurate identification of human clinical isolates. Int J Med Microbiol 2007; 296:531-40. [PMID: 17049306 DOI: 10.1016/j.ijmm.2006.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/29/2006] [Accepted: 06/06/2006] [Indexed: 10/23/2022] Open
Abstract
The genus Haemophilus constitutes a heterogeneous group of Pasteurellaceae species, and conventional identification of isolates other than Haemophilus influenzae and Haemophilus parainfluenzae is often challenging. Here, simple colony-PCR and sequencing assays with the same pair of degenerate primers were used to characterize a 449- to 458-bp fragment (sodA(int)) internal to the sodA gene encoding the manganese-dependent superoxide dismutase in type strains of all 15 Haemophilus species and Actinobacillus actinomycetemcomitans. The topology of a sodA(int)-based phylogenetic tree was in general agreement with that inferred from the analysis of 16S rRNA and other housekeeping gene sequences, but allowed more confident delineation of the main clusters of species. The sodA(int) sequences showed a markedly higher divergence than those of the corresponding 16S rRNA genes, and 38 independent human clinical isolates were identified by comparing their sodA(int) sequence to those of the type species. Except for one Haemophilus aphrophilus strain, all isolates were unambiguously characterized in spite of a high intraspecific sodA(int) sequence diversity. This study provides a comprehensive sequence-based phylogenetic analysis of the entire genus Haemophilus, and confirms that sodA is a potent target for the identification of clinical isolates of Pasteurellaceae. This approach might contribute to the taxonomic reappraisal of this family, and to the development of diagnostic tools.
Collapse
Affiliation(s)
- Vincent Cattoir
- Laboratoire de Bactériologie-Virologie, Faculté de Médecine, Université de Rennes 1, F-35034 Rennes, France
| | | | | | | |
Collapse
|
15
|
Heiniger N, Troller R, Meier PS, Aebi C. Cold shock response of the UspA1 outer membrane adhesin of Moraxella catarrhalis. Infect Immun 2006; 73:8247-55. [PMID: 16299321 PMCID: PMC1307079 DOI: 10.1128/iai.73.12.8247-8255.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization of the human nasopharynx exposes Moraxella catarrhalis, a common cause of otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, to sudden downshifts in temperature, occurring when the host breathes cold air. We investigated whether in vitro cold shock influences the expressions of the outer membrane adhesins UspA1 and hemagglutinin, which are considered virulence factors, and of an M. catarrhalis homolog of recA, a housekeeping gene, which in Escherichia coli is induced by cold shock. Quantitative real-time reverse transcriptase PCR was used for measuring mRNA copy number. A screening experiment revealed that a cold shock at 26 degrees C maximally induced the copy number of uspA1. In comparison with 37 degrees C conditions, a 1-hour cold shock at 26 degrees C increased copy numbers of uspA1 and recA by 2.5-fold (11.2 +/- 1.8 versus 4.5 +/- 0.8 copies/CFU) and 2.7-fold (0.30 +/- 0.10 versus 0.11 +/- 0.06), respectively, but did not induce transcription of hag. Exposure to 26 degrees C increased surface expression of UspA1, as assessed by fluorescence-activated cell sorter analysis, and resulted in a significant increase in adherence of strain O35E to Chang human conjunctival cells (97.1% +/- 2.0% versus 48.3% +/- 9.2% at 37 degrees C; P = 0.01). Cold shock induction of uspA1 and recA was detected in strains belonging to either phylogenetic subpopulation of M. catarrhalis (16S rRNA types 1 and 2/3) and was most pronounced in type 2/3 strains (4- to 25-fold for uspA1), which do not express detectable amounts of UspA1 protein at 37 degrees C. These data indicate that cold shock at a physiologically relevant temperature of 26 degrees C induces the expression of at least one virulence factor (UspA1). To our knowledge, no similar data are available for other nasopharyngeal pathogens.
Collapse
Affiliation(s)
- Nadja Heiniger
- Institute for Infectious Diseases, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|