1
|
Moreira IDMB, de Sousa NSO, de Almeida JDR, Rosas RLL, Cruz KS, Matsuura ABJ, Melhem MDSC, de Souza ÉS, Frickmann H, Lacerda MVG, de Souza JVB. Fluconazole Resistance and Heteroresistance in Cryptococcus spp.: Mechanisms and Implications. Rev Soc Bras Med Trop 2025; 58:e002002025. [PMID: 40136153 PMCID: PMC11941007 DOI: 10.1590/0037-8682-0328-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/24/2025] [Indexed: 03/27/2025] Open
Abstract
The reference methodology for evaluating antifungal susceptibility is based on determining the minimum inhibitory concentration (MIC), which is the lowest drug concentration capable of inhibiting fungal growth. However, such MIC data are insufficient to measure antifungal susceptibility if a strain is heteroresistant to the tested drug. In such cases, a minority subpopulation of fungal cells, originating from an initially susceptible lineage, can grow at antifungal drug concentrations above the MIC. In studies on fluconazole heteroresistance in Cryptococcus spp., chromosomal disomy has been shown to result in the overexpression of two genes located on chromosome 1 (Chr1) linked to antifungal resistance: ERG11 and AFR1. This review addresses the underlying mechanisms of antifungal resistance, the evolution of methods for determining antifungal susceptibility, and the clinical implications of Cryptococcus heteroresistance to fluconazole. The analysis of the findings indicated a correlation between heteroresistance and adverse clinical outcomes, although this observation still lacks definite confirmation in the literature. This highlights the need to implement more efficient therapeutic strategies and improve antifungal susceptibility and heteroresistance testing.
Collapse
Affiliation(s)
| | | | | | | | - Katia Santana Cruz
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
| | | | - Márcia de Souza Carvalho Melhem
- Faculdade de Medicina, PPG Doenças Infecciosas e Parasitárias, UFMS, Campo Grande, MS, Brasil
- Faculdade de Medicina, PPG Doenças Tropicais, Unesp, Botucatu, SP, Brasil
- Instituto de Medicina Tropical de São Paulo, LIM 53, São Paulo, SP, Brasil
| | - Érica Simplício de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Manaus, AM, Brasil
| | - Hagen Frickmann
- Bundeswehr Hospital Hamburg, Department of Microbiology and Hospital Hygiene, Germany
- University Medicine Rostock, Institute for Medical Microbiology, Virology and Hygiene, Germany
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brasil
- University of Texas Medical Branch, Galveston, USA
| | - João Vicente Braga de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| |
Collapse
|
2
|
Montoya MC, Wilhoit K, Murray D, Perfect JR, Magwene PM. Genome restructuring and lineage diversification of Cryptococcus neoformans during chronic infection of human hosts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.17.25320472. [PMID: 40034768 PMCID: PMC11875314 DOI: 10.1101/2025.02.17.25320472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Classified as a critical public health threat by the World Health Organization, Cryptococcus neo-formans infections with significant morbidity and mortality. Reports of cryptococcosis persistence, relapse, and reinfection date back to the 1950s, yet the factors driving chronic infections remain poorly understood. A major challenge is the scarcity of serial patient specimens and detailed medical records to study the simultaneous evolution of the pathogen and host health status. This study provides the first genomic and phenotypic analysis of in-host evolution of C. neoformans during chronic infections lasting over a year in six immunocompromised patients. We find fungal genome evolution during persistent infection is characterized by large-scale genome restructuring and increasing genomic heterogeneity. Phenotypic changes show diversification in virulence traits and antifungal susceptibility. Genotypically and phenotypically distinct sub-lineages arise and co-persist within the same tissues, consistent with a model of diversifying selection and niche partitioning in the complex environment of human hosts.
Collapse
Affiliation(s)
- Marhiah C. Montoya
- Division of Infectious Diseases, Department of Medicine, Duke University, NC, USA
| | - Kayla Wilhoit
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Debra Murray
- Department of Biology, Duke University, Durham, NC, USA
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University, NC, USA
| | | |
Collapse
|
3
|
Su Y, Li Y, Yi Q, Xu Y, Sun T, Li Y. Insight into the Mechanisms and Clinical Relevance of Antifungal Heteroresistance. J Fungi (Basel) 2025; 11:143. [PMID: 39997437 PMCID: PMC11856953 DOI: 10.3390/jof11020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Antifungal resistance poses a critical global health threat, particularly in immuno-compromised patients. Beyond the traditional resistance mechanisms rooted in heritable and stable mutations, a distinct phenomenon known as heteroresistance has been identified, wherein a minority of resistant fungal cells coexist within a predominantly susceptible population. Heteroresistance may be induced by pharmacological factors or non-pharmacological agents. The reversible nature of it presents significant clinical challenges, as it can lead to undetected resistance during standard susceptibility testing. As heteroresistance allows fungal pathogens to survive antifungal treatment, this adaptive strategy often leads to treatment failure and recurring infection. Though extensively studied in bacteria, limited research has explored its occurrence in fungi. This review summarizes the current findings on antifungal heteroresistance mechanisms, highlighting the clinical implications of fungal heteroresistance and the pressing need for deeper mechanism insights. We aim to bring together the latest research advances in the field of antifungal heteroresistance, summarizing in detail its known characteristics, inducing factors, molecular mechanisms, and clinical significance, and describing the similarities and differences between heteroresistance, tolerance and persistence. Further research is needed to understand this phenomenon and develop more effective antifungal therapies to combat fungal infections.
Collapse
Affiliation(s)
- Yanyu Su
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Graduate School, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yi Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Qiaolian Yi
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (Y.S.); (Y.L.); (Q.Y.); (Y.X.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Clinical Biobank, Center for Biomedical Technology, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yingxing Li
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Melhem MSC, Leite Júnior DP, Takahashi JPF, Macioni MB, de Oliveira L, de Araújo LS, Fava WS, Bonfietti LX, Paniago AMM, Venturini J, Espinel-Ingroff A. Antifungal Resistance in Cryptococcal Infections. Pathogens 2024; 13:128. [PMID: 38392866 PMCID: PMC10891860 DOI: 10.3390/pathogens13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of Cryptococcus neoformans and C. gattii species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and C. neoformans VNI) is available.
Collapse
Affiliation(s)
- Marcia S. C. Melhem
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Graduate Program in Tropical Diseases, State University of São Paulo, Botucatu 18618-687, SP, Brazil
| | - Diniz Pereira Leite Júnior
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | - Juliana P. F. Takahashi
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Pathology Division, Adolfo Lutz Institute, São Paulo 01246-002, SP, Brazil
| | - Milena Bronze Macioni
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil; (D.P.L.J.); (M.B.M.)
| | | | - Lisandra Siufi de Araújo
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Wellington S. Fava
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Lucas X. Bonfietti
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil;
| | - Anamaria M. M. Paniago
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - James Venturini
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (J.P.F.T.); (W.S.F.); (A.M.M.P.)
| | - Ana Espinel-Ingroff
- Central Public Health Laboratory-LACEN, Campo Grande 79074-460, MS, Brazil;
- VCU Medical Center, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Franconi I, Rizzato C, Poma N, Tavanti A, Lupetti A. Candida parapsilosis sensu stricto Antifungal Resistance Mechanisms and Associated Epidemiology. J Fungi (Basel) 2023; 9:798. [PMID: 37623569 PMCID: PMC10456088 DOI: 10.3390/jof9080798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Fungal diseases cause millions of deaths per year worldwide. Antifungal resistance has become a matter of great concern in public health. In recent years rates of non-albicans species have risen dramatically. Candida parapsilosis is now reported to be the second most frequent species causing candidemia in several countries in Europe, Latin America, South Africa and Asia. Rates of acquired azole resistance are reaching a worrisome threshold from multiple reports as in vitro susceptibility testing is now starting also to explore tolerance and heteroresistance to antifungal compounds. With this review, the authors seek to evaluate known antifungal resistance mechanisms and their worldwide distribution in Candida species infections with a specific focus on C. parapsilosis.
Collapse
Affiliation(s)
- Iacopo Franconi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (I.F.); (C.R.)
| | - Cosmeri Rizzato
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (I.F.); (C.R.)
| | - Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (N.P.); (A.T.)
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (N.P.); (A.T.)
| | - Antonella Lupetti
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (I.F.); (C.R.)
| |
Collapse
|
6
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
7
|
Ruma YN, Keniya MV, Monk BC. Exploring Cryptococcus neoformans CYP51 and Its Cognate Reductase as a Drug Target. J Fungi (Basel) 2022; 8:jof8121256. [PMID: 36547589 PMCID: PMC9785471 DOI: 10.3390/jof8121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus remains a leading cause of invasive fungal infections in immunocompromised people. Resistance to azole drugs has imposed a further challenge to the effective treatment of such infections. In this study, the functional expression of full-length hexahistidine-tagged Cryptococcus neoformans CYP51 (CnCYP51-6×His), with or without its cognate hexahistidine-tagged NADPH-cytochrome P450 reductase (CnCPR-6×His), in a Saccharomyces cerevisiae host system has been used to characterise these enzymes. The heterologous expression of CnCYP51-6×His complemented deletion of the host CYP51 and conferred increased susceptibility to both short-tailed and long-tailed azole drugs. In addition, co-expression of CnCPR-6×His decreased susceptibility 2- to 4-fold for short-tailed but not long-tailed azoles. Type 2 binding of azoles to CnCYP51-6×His and assay of NADPH cytochrome P450 reductase activity confirmed that the heterologously expressed CnCYP51 and CnCPR are functional. The constructs have potential as screening tools and use in structure-directed antifungal discovery.
Collapse
Affiliation(s)
- Yasmeen N. Ruma
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Mikhail V. Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Brian C. Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| |
Collapse
|
8
|
de Oliveira L, Melhem MDSC, Buccheri R, Chagas OJ, Vidal JE, Diaz-Quijano FA. Early clinical and microbiological predictors of outcome in hospitalized patients with cryptococcal meningitis. BMC Infect Dis 2022; 22:138. [PMID: 35139801 PMCID: PMC8830130 DOI: 10.1186/s12879-022-07118-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cryptococcal meningitis causes high mortality in immunocompromised and immunocompetent patients. The objective of this study was to identify early predictors of clinical outcome, available at the first days of hospitalization, in patients with cryptococcal meningitis in a tertiary center in Brazil. Methods Ninety-six cases of cryptococcal meningitis with clinical, epidemiological and laboratory data, and identification and antifungal susceptibility of the strains were analyzed. Quantitative CSF yeast counts were performed by direct microscopic exam with a Fuchs-Rosenthal cell counting chamber using an institutional protocol. Univariable and multiple analyses using logistic regression were performed to identify predictors, available at the beginning of hospitalization, of in-hospital mortality. Moreover, we performed a secondary analysis for a composite outcome defined by hospital mortality and intensive care unit transfer. Results The species and the antifungal susceptibility were not associated with the outcomes evaluated. The variables significantly associated with the mortality were age (OR = 1.08, 95% CI 1.02–1.15), the cerebrospinal fluid (CSF) yeasts count (OR = 1.65, 95% CI 1.20–2.27), systemic arterial hypertension (OR = 22.63, 95% CI 1.64–312.91) and neurological impairment identified by computed tomography (OR = 41.73, 95% CI 3.10–561.65). At the secondary analysis, CSF yeast count was also associated with the composite outcome, in addition to the culture of Cryptococcus spp. from bloodstream and cerebral toxoplasmosis. The associations were consistent with survival models evaluated. Conclusions Age and CSF yeast count were independently associated with in-hospital mortality of patients with cryptococcal meningitis but Cryptococcus species identification and antifungal susceptibility were not associated with the outcomes. Quantitative CSF yeast counts used in this study can be evaluated and implemented in other low and middle-income settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07118-7.
Collapse
Affiliation(s)
- Lidiane de Oliveira
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP, CEP 01246-904, Brazil.
| | - Marcia de Souza Carvalho Melhem
- Mycology Unit of Adolfo Lutz Institute, Public Health Reference Laboratory, Secretary of Health, Av. Dr.Arnaldo, 351, São Paulo, SP, CEP 05411-000, Brazil.,School of Medicine, Federal University of Mato Grosso do Sul, Bairro Universitário, Av. Costa e Silva, s/no, Campo Grande, MS, CEP 79070-900, Brazil
| | - Renata Buccheri
- Department of Neurology, Emílio Ribas Institute of Infectious Diseases, Av. Dr. Arnaldo 165, São Paulo, SP, CEP 05411-000, Brazil
| | - Oscar José Chagas
- Department of Neurology, Emílio Ribas Institute of Infectious Diseases, Av. Dr. Arnaldo 165, São Paulo, SP, CEP 05411-000, Brazil
| | - José Ernesto Vidal
- Department of Neurology, Emílio Ribas Institute of Infectious Diseases, Av. Dr. Arnaldo 165, São Paulo, SP, CEP 05411-000, Brazil.,Department of Infectious Diseases, Hospital das Clinicas, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, São Paulo, SP, CEP 01246-904, Brazil
| | - Fredi Alexander Diaz-Quijano
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP, CEP 01246-904, Brazil
| |
Collapse
|
9
|
OUP accepted manuscript. Med Mycol 2022; 60:6515954. [DOI: 10.1093/mmy/myac005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
|
10
|
Rogers TR, Verweij PE, Castanheira M, Dannaoui E, White PL, Arendrup MC. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2053-2073. [PMID: 35703391 PMCID: PMC9333407 DOI: 10.1093/jac/dkac161] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increasing incidence and changing epidemiology of invasive fungal infections continue to present many challenges to their effective management. The repertoire of antifungal drugs available for treatment is still limited although there are new antifungals on the horizon. Successful treatment of invasive mycoses is dependent on a mix of pathogen-, host- and antifungal drug-related factors. Laboratories need to be adept at detection of fungal pathogens in clinical samples in order to effectively guide treatment by identifying isolates with acquired drug resistance. While there are international guidelines on how to conduct in vitro antifungal susceptibility testing, these are not performed as widely as for bacterial pathogens. Furthermore, fungi generally are recovered in cultures more slowly than bacteria, and often cannot be cultured in the laboratory. Therefore, non-culture-based methods, including molecular tests, to detect fungi in clinical specimens are increasingly important in patient management and are becoming more reliable as technology improves. Molecular methods can also be used for detection of target gene mutations or other mechanisms that predict antifungal drug resistance. This review addresses acquired antifungal drug resistance in the principal human fungal pathogens and describes known resistance mechanisms and what in-house and commercial tools are available for their detection. It is emphasized that this approach should be complementary to culture-based susceptibility testing, given the range of mutations, resistance mechanisms and target genes that may be present in clinical isolates, but may not be included in current molecular assays.
Collapse
Affiliation(s)
| | | | | | | | | | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
Introduction: Invasive fungal infection carries a high morbidity, mortality and economic cost. In recent times, a rising incidence of fungal infection and antifungal resistance is occurring which has prompted the development of novel antifungal agents.Areas covered:In this perspective, the authors describe the current status of registered antifungals and their limitations in the treatment of invasive fungal infection. They also go on to describe the new antifungal agents that are in the clinical stage of development and how they might be best utilized in patient care in the future.Expert opinion: The antifungal drug development pipeline has responded to a growing need for new agents to effectively treat fungal disease without concomitant toxicity or issues with drug tolerance. Olorofim (F901318), ibrexafungerp (SCY-078), fosmanogepix (APX001), rezafungin (CD101), oteseconazole (VT-1161), encochleated amphotericin B (MAT2203), nikkomycin Z (NikZ) and ATI-2307 are all in the clinical stage of development and offer great promise in offering clinicians better agents to treat these difficult infections.
Collapse
Affiliation(s)
- Adam G Stewart
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| | - David L Paterson
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| |
Collapse
|
12
|
Abstract
Invasive fungal diseases continue to cause substantial mortality in the enlarging immunocompromised population. It is fortunate that the field has moved past amphotericin B deoxycholate as the only available antifungal drug but despite new classes of antifungal agents both primary and secondary drug resistance in molds and yeasts abound. From the rise of multiple-drug-resistant Candida auris to the agrochemical selection of environmental azole-resistant Aspergillus fumigatus, it is and will be critical to understand antifungal drug resistance and both prevent and treat it with new strategies and agents.
Collapse
|
13
|
Chen X, Xu J, Zhu Q, Ren Y, Zhao L. Polymyxin B resistance rates in carbapenem-resistant Pseudomonas aeruginosa isolates and a comparison between Etest ® and broth microdilution methods of antimicrobial susceptibility testing. Exp Ther Med 2020; 20:762-769. [PMID: 32742322 DOI: 10.3892/etm.2020.8777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Polymyxin B has been considered to be the last line of defense for life-threatening infections caused by multiple drug resistant gram-negative pathogens, including carbapenem-resistant Pseudomonas aeruginosa (CRPA). The present study analyzed CRPA resistance to polymyxin B in the Suzhou district of China. Additionally, polymyxin B resistance rates were compared in different parts of the world to determine global trends. The present study also assessed the reliability and effectiveness of the Etest® in a clinical setting, as laboratories lack a reliable and efficient susceptibility test for polymyxin B. The susceptibility rate of polymyxin B reached 96.0%, which is in accordance with results obtained from the United States of America, Europe, Africa and the majority of Asian countries. However, the rate of polymyxin B non-susceptibility (resistant or intermediate) in Singapore is 0.53 (95% confidence interval, 0.12-0.93). In addition, the susceptibility rate of polymyxin B determined via Etest® was not significantly increased compared with that determined via broth microdilution (98.0 vs. 96.0%; P=0.558). Essential and categorical agreement rates reached 98.0%. In conclusion, the polymyxin B resistance rate of CRPA isolates is relatively low in the majority of countries, with the exception of Singapore. Furthermore, Etest® may be a reliable clinical method for the measurement of polymyxin B resistance in CRPA isolates.
Collapse
Affiliation(s)
- Xu Chen
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jie Xu
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Qiongfang Zhu
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yalu Ren
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Lina Zhao
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
14
|
Stone NR, Rhodes J, Fisher MC, Mfinanga S, Kivuyo S, Rugemalila J, Segal ES, Needleman L, Molloy SF, Kwon-Chung J, Harrison TS, Hope W, Berman J, Bicanic T. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. J Clin Invest 2019; 129:999-1014. [PMID: 30688656 PMCID: PMC6391087 DOI: 10.1172/jci124516] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cryptococcal meningitis (CM) causes an estimated 180,000 deaths annually, predominantly in sub-Saharan Africa, where most patients receive fluconazole (FLC) monotherapy. While relapse after FLC monotherapy with resistant strains is frequently observed, the mechanisms and impact of emergence of FLC resistance in human CM are poorly understood. Heteroresistance (HetR) - a resistant subpopulation within a susceptible strain - is a recently described phenomenon in Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg), the significance of which has not previously been studied in humans. METHODS A cohort of 20 patients with HIV-associated CM in Tanzania was prospectively observed during therapy with either FLC monotherapy or in combination with flucytosine (5FC). Total and resistant subpopulations of Cryptococcus spp. were quantified directly from patient cerebrospinal fluid (CSF). Stored isolates underwent whole genome sequencing and phenotypic characterization. RESULTS Heteroresistance was detectable in Cryptococcus spp. in the CSF of all patients at baseline (i.e., prior to initiation of therapy). During FLC monotherapy, the proportion of resistant colonies in the CSF increased during the first 2 weeks of treatment. In contrast, no resistant subpopulation was detectable in CSF by day 14 in those receiving a combination of FLC and 5FC. Genomic analysis revealed high rates of aneuploidy in heteroresistant colonies as well as in relapse isolates, with chromosome 1 (Chr1) disomy predominating. This is apparently due to the presence on Chr1 of ERG11, which is the FLC drug target, and AFR1, which encodes a drug efflux pump. In vitro efflux levels positively correlated with the level of heteroresistance. CONCLUSION Our findings demonstrate for what we believe is the first time the presence and emergence of aneuploidy-driven FLC heteroresistance in human CM, association of efflux levels with heteroresistance, and the successful suppression of heteroresistance with 5FC/FLC combination therapy. FUNDING This work was supported by the Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377/Z/11/Z and the Daniel Turnberg Travel Fellowship.
Collapse
Affiliation(s)
- Neil R.H. Stone
- Centre for Global Health, Institute for Infection and Immunity, St. George’s, University of London, United Kingdom
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Sayoki Mfinanga
- National Institute of Medical Research, Dar es Salaam, Tanzania
- Liverpool School of Tropical Medicine, United Kingdom
| | - Sokoine Kivuyo
- National Institute of Medical Research, Dar es Salaam, Tanzania
| | | | - Ella Shtifman Segal
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Israel
| | - Leor Needleman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Israel
| | - Síle F. Molloy
- Centre for Global Health, Institute for Infection and Immunity, St. George’s, University of London, United Kingdom
| | | | - Thomas S. Harrison
- Centre for Global Health, Institute for Infection and Immunity, St. George’s, University of London, United Kingdom
| | - William Hope
- Institute of Translational Medicine, University of Liverpool, United Kingdom
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Israel
| | - Tihana Bicanic
- Centre for Global Health, Institute for Infection and Immunity, St. George’s, University of London, United Kingdom
| |
Collapse
|
15
|
Ashfaq MK, Abdel-Bakky MS, Tahir Maqbool M, Samoylenko V, Abdur Rahman A, Muhammad I. Efficacy of Prosopilosidine from Prosopis glandulosa var. glandulosa against Cryptococcus neoformans Infection in a Murine Model. Molecules 2018; 23:molecules23071674. [PMID: 29996473 PMCID: PMC6100544 DOI: 10.3390/molecules23071674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, 2,3-dihydro-1H-indolizinium alkaloid-prosopilosidine (PPD), that was isolated from Prosopis glandulosa, was evaluated against C. neoformans in a murine model of cryptococcosis. In vitro and in vivo toxicity of indolizidines were also evaluated. Mice were infected via the tail vein with live C. neoformans. Twenty-four hours post-infection, the mice were treated with PPD once a day (i.p.) or twice a day (bid) orally, or with amphotericin B (Amp B) intraperitoneally (IP), or with fluconazole (Flu) orally for 5 days. The brains of all of the animals were aseptically removed and the numbers of live C. neoformans were recovered. In vitro toxicity of indolizidine alkaloids was determined in HepG2 cells. PPD showed to be potent in vivo activity against C. neoformans at a dose of 0.0625 mg/kg by eliminating ~76% of the organisms compared to ~83% with Amp B (1.5 mg/kg). In addition, PPD was found to be equally efficacious, but less toxic, at either 0.125 or 0.0625 mg/kg compared to Amp B (1.5 mg/kg) when it was administered bid (twice a day) by an i.p. route. When tested by an oral route, PPD (10 mg/kg) showed potent activity in this murine model of cryptococcosis with ~82% of organisms eliminated from the brain tissue, whereas Flu (15 mg/kg) reduced ~90% of the infection. In vitro results suggest that quaternary indolizidines were less toxic as compared to those of tertiary bases. PPD (20 mg/kg) did not cause any alteration in the plasma chemistry profiles. These results indicated that PPD was active in eliminating cryptococcal infection by oral and i.p. routes at lower doses compared to Amp B. or Flu.
Collapse
Affiliation(s)
- Mohammad K Ashfaq
- National Center for Natural Product Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mohamed Sadek Abdel-Bakky
- National Center for Natural Product Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
- Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Mir Tahir Maqbool
- National Center for Natural Product Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Volodymyr Samoylenko
- National Center for Natural Product Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
- Department of Arts and Sciences, Keiser University, 2085 Vista Pkwy, West Palm Beach, FL 33411, USA.
| | - Aziz Abdur Rahman
- National Center for Natural Product Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Ilias Muhammad
- National Center for Natural Product Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
16
|
Chang M, Sionov E, Khanal Lamichhane A, Kwon-Chung KJ, Chang YC. Roles of Three Cryptococcus neoformans and Cryptococcus gattii Efflux Pump-Coding Genes in Response to Drug Treatment. Antimicrob Agents Chemother 2018; 62:e01751-17. [PMID: 29378705 PMCID: PMC5913978 DOI: 10.1128/aac.01751-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii species complexes are the etiologic agents of cryptococcosis. We have deciphered the roles of three ABC transporters, Afr1, Afr2, and Mdr1, in the representative strains of the two species, C. neoformans H99 and C. gattii R265. Deletion of AFR1 in H99 and R265 drastically reduced the levels of resistance to three xenobiotics and three triazoles, suggesting that Afr1 is the major drug efflux pump in both strains. Fluconazole susceptibility was not affected when AFR2 or MDR1 was deleted in both strains. However, when these genes were deleted in combination with AFR1, a minor additive effect in susceptibility toward several drugs was observed. Deletion of all three genes in both strains caused further increases in susceptibility toward fluconazole and itraconazole, suggesting that Afr2 and Mdr1 augment Afr1 function in pumping these triazoles. Intracellular accumulation of Nile Red significantly increased in afr1Δ mutants of both strains, but rhodamine 6G accumulation increased only in the mdr1Δ mutant of H99. Thus, the three efflux pumps play different roles in the two strains when exposed to different azoles and xenobiotics. AFR1 and AFR2 expression was upregulated in H99 and R265 when treated with fluconazole. However, MDR1 expression was upregulated only in R265 under the same conditions. We screened a library of transcription factor mutants and identified several mutants that manifested either altered fluconazole sensitivity or an increase in the frequency of fluconazole heteroresistance. Gene expression analysis suggests that the three efflux pumps are regulated independently by different transcription factors in response to fluconazole exposure.
Collapse
Affiliation(s)
- Miwha Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward Sionov
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Ami Khanal Lamichhane
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Sykes JE, Hodge G, Singapuri A, Yang ML, Gelli A, Thompson GR. In vivo development of fluconazole resistance in serial Cryptococcus gattii isolates from a cat. Med Mycol 2018; 55:396-401. [PMID: 28339594 DOI: 10.1093/mmy/myw104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/22/2016] [Indexed: 11/14/2022] Open
Abstract
Elevated fluconazole minimum inhibitory concentrations (MICs) are more frequently observed in Cryptococcus gattii compared to C. neoformans isolates; however, the development of in vivo resistance and the molecular mechanisms responsible have not been reported for this species. We report a case of Cryptococcus gattii (molecular type VGIII) that developed reduced susceptibility to fluconazole during therapy and delineate the molecular mechanisms responsible. Multilocus sequence typing and quantitative DNA analysis of the pre- and post-treatment isolates was performed using well-characterized methods. Pre- and post-treatment clinical isolates were confirmed isogenic, and no differences in ERG11 or PDR11 sequences were found. qPCR found an overexpression of ERG11 and the efflux pump PDR11 in the resistant isolate compared to the isolate collected prior to initiation of antifungal therapy. Reversion to wild-type susceptibility was observed when maintained in antifungal-free media confirming the in vivo development of heteroresistance. The in vivo development of heteroresistance to fluconazole in our patient with C. gattii is secondary to overexpression of the efflux pump PDR11 and the drug target ERG11. Additional work in other clinical isolates with elevated fluconazole MICs is warranted to evaluate the frequency of heteroresistance versus point mutations as a cause of resistance.
Collapse
Affiliation(s)
- Jane E Sykes
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis
| | - Greg Hodge
- Department of Medical Microbiology and Immunology, One Shields Avenue, Tupper Hall, University of California, Davis
| | - Anil Singapuri
- Department of Medical Microbiology and Immunology, One Shields Avenue, Tupper Hall, University of California, Davis
| | - Mai Lee Yang
- Department of Medical Microbiology and Immunology, One Shields Avenue, Tupper Hall, University of California, Davis
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Davis, California
| | - George R Thompson
- Department of Medical Microbiology and Immunology, One Shields Avenue, Tupper Hall, University of California, Davis.,Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, 4150 V Street, Suite G500; University of California, Davis
| |
Collapse
|
18
|
Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses 2017; 60:562-568. [PMID: 28660647 DOI: 10.1111/myc.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 05/10/2017] [Indexed: 11/27/2022]
Abstract
The concept of heteroresistance refers to the heterogeneous susceptibility to an antimicrobial drug in a microorganism population, meaning that some clones may be resistant and others are susceptible. This phenomenon has been widely studied in bacteria, but little attention has been given to its expression in fungi. We review the available literature on heteroresistance in fungi and invite the reader to recognise this phenomenon as a fungal mechanism to adapt to environmental stress, which may interfere both in resistance and virulence. Finally, heteroresistance may explain the treatment failures to eradicate mycosis in some patients treated with a seemingly appropriate antifungal.
Collapse
Affiliation(s)
- Gabriella F Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Governador Valadares, Brazil.,Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Governador Valadares, Brazil
| |
Collapse
|
19
|
Discovery of an Octahedral Silicon Complex as a Potent Antifungal Agent. Molecules 2017; 22:molecules22040637. [PMID: 28420136 PMCID: PMC6154614 DOI: 10.3390/molecules22040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 11/21/2022] Open
Abstract
Octahedral transition metal complexes have been shown to have tremendous applications in chemical biology and medicinal chemistry. Meanwhile, structural transition metals can be replaced by inert octahedral silicon in a proof-of-principle study. We here introduce the first example of octahedral silicon complexes, which can very well serve as an efficient antimicrobial agent. The typical silicon arenediolate complex 1 {[(phen)2Si(OO)](PF6)2, with phen = 1,10-phenanthroline, OO = 9,10-phenanthrenediolate} exhibited significant inhibition towards the growth of Cryptococcus neoformans with MIC and MFC values of 4.5 and 11.3 μM, respectively. Moreover, it was fungicidal against both proliferative and quiescent Cryptococcus cells. This work may set the stage for the development of novel antifungal drugs based upon hexacoodinate silicon scaffolds.
Collapse
|
20
|
Reichert-Lima F, Busso-Lopes AF, Lyra L, Peron IH, Taguchi H, Mikami Y, Kamei K, Moretti ML, Schreiber AZ. Evaluation of antifungal combination againstCryptococcusspp. Mycoses 2016; 59:585-93. [DOI: 10.1111/myc.12510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Franqueline Reichert-Lima
- Clinical Pathology Department; Faculty of Medical Sciences; State University of Campinas; Campinas Sao Paulo Brazil
| | - Ariane F. Busso-Lopes
- Internal Medicine Department; Faculty of Medical Sciences; State University of Campinas; Campinas Sao Paulo Brazil
| | - Luzia Lyra
- Clinical Pathology Department; Faculty of Medical Sciences; State University of Campinas; Campinas Sao Paulo Brazil
| | - Isabela Haddad Peron
- Clinical Pathology Department; Faculty of Medical Sciences; State University of Campinas; Campinas Sao Paulo Brazil
| | - Hideaki Taguchi
- Medical Mycology Research Center; Chiba University; Chiba Japan
| | - Yuzuru Mikami
- Medical Mycology Research Center; Chiba University; Chiba Japan
| | - Katsuiko Kamei
- Medical Mycology Research Center; Chiba University; Chiba Japan
| | - Maria Luiza Moretti
- Internal Medicine Department; Faculty of Medical Sciences; State University of Campinas; Campinas Sao Paulo Brazil
| | - Angelica Z. Schreiber
- Clinical Pathology Department; Faculty of Medical Sciences; State University of Campinas; Campinas Sao Paulo Brazil
| |
Collapse
|
21
|
Nasri H, Kabbani S, Bou Alwan M, Wang YF, Rebolledo PA, Kraft CS, Nguyen ML, Anderson AM, Rouphael N. Retrospective Study of Cryptococcal Meningitis With Elevated Minimum Inhibitory Concentration to Fluconazole in Immunocompromised Patients. Open Forum Infect Dis 2016; 3:ofw076. [PMID: 27419153 PMCID: PMC4943554 DOI: 10.1093/ofid/ofw076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/24/2016] [Indexed: 11/23/2022] Open
Abstract
This study is a retrospective chart review looking at the clinical characteristics of cryptococcal meningitis with elevated MIC to fluconazole in immunocompromised patients. These patients were more likely to have central nervous system complications without any effect on mortality. Background. Mortality for cryptococcal meningitis remains significant, in spite of available treatment. Resistance to first-line maintenance therapy, particularly fluconazole, has been reported. Methods. A retrospective chart review was performed on immunocompromised patients with cryptococcal meningitis, who had susceptibility testing performed between January 2001 and December 2011, at 3 hospitals in Atlanta, Georgia. Results. A total of 35 immunocompromised patients with cryptococcal meningitis were identified, 13 (37.1%) of whom had an elevated minimum inhibitory concentration (MIC) to fluconazole (MIC ≥16 µg/mL). Eighty percent of patients were males with African American predominance, the median age was 37 years, and 80% of the patients were human immunodeficiency virus (HIV) positive. Subsequent recurrence of cryptococcal meningitis was more likely in HIV patients compared with solid organ transplant patients (P = .0366). Overall, there was a statistically significant increase in an elevated MIC to fluconazole in patients who had a history of prior azole use (odds ratio, 10.12; 95% confidence interval, 2.04–50.16). Patients with an elevated MIC to fluconazole and those with a high cerebrospinal fluid cryptococcal antigen load (≥1:512) were more likely to have central nervous system complications (P = .0358 and P = .023, respectively). Although no association was observed between an elevated MIC to fluconazole and mortality, those who received voriconazole or high-dose fluconazole (≥800 mg) for maintenance therapy were more likely to survive (P = .0288). Conclusions. Additional studies are required to further investigate the morbidity and mortality associated with an elevated MIC to fluconazole in cryptococcal meningitis, to determine when it is appropriate to perform susceptibility testing, and to evaluate its cost effectiveness.
Collapse
Affiliation(s)
| | | | | | - Yun F Wang
- Emory University School of Medicine; Grady Memorial Hospital Clinical Laboratory
| | - Paulina A Rebolledo
- Emory University School of Medicine; Grady Memorial Hospital Clinical Laboratory; Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | | | | | | |
Collapse
|
22
|
Movahed E, Tan GMY, Munusamy K, Yeow TC, Tay ST, Wong WF, Looi CY. Triclosan Demonstrates Synergic Effect with Amphotericin B and Fluconazole and Induces Apoptosis-Like Cell Death in Cryptococcus neoformans. Front Microbiol 2016; 7:360. [PMID: 27047474 PMCID: PMC4800180 DOI: 10.3389/fmicb.2016.00360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
Objectives:Cryptococcus neoformans is an opportunistic fungus that causes fatal meningoencephalitis especially in AIDS patients. There is an increasing need for discovery of new anti-cryptococcal drugs due to emergence of resistance cases in recent years. In this study, we aim to elucidate the antifungal effect of triclosan against C. neoformans. Methods: Minimal inhibitory concentration (MIC) of triclosan in different C. neoformans strains was first examined. The in vitro interactions between triclosan and two standard anti-fungal drugs (amphotericin B and fluconazole) were further evaluated by microdilution checkerboard assay. Mechanism of triclosan fungicidal activity was then investigated by viewing the cell morphology under transmission electron microscope. Results: We reported that triclosan potently inhibited the growth of C. neoformans. A combination of triclosan with amphotericin B or with fluconazole enhanced their fungicidal effects. Triclosan-treated C. neoformans displayed characteristics such as nuclear chromatin condensation, extensive intracellular vacuolation and mitochondrial swelling, indicating that triclosan triggered apoptosis-like cell death. Conclusion: In summary, our report suggests triclosan as an independent drug or synergent for C. neoformans treatment.
Collapse
Affiliation(s)
- Elaheh Movahed
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Komathy Munusamy
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Tee Cian Yeow
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Ferreira SZ, Carneiro HC, Lara HA, Alves RB, Resende JM, Oliveira HM, Silva LM, Santos DA, Freitas RP. Synthesis of a New Peptide-Coumarin Conjugate: A Potential Agent against Cryptococcosis. ACS Med Chem Lett 2015; 6:271-5. [PMID: 25815145 DOI: 10.1021/ml500393q] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/07/2015] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are currently being investigated as potential sources of novel therapeutics against an increasing number of microorganisms resistant to conventional antibiotics. The conjugation of an AMP to other bioactive compounds is an interesting approach for the development of new derivatives with increased antimicrobial efficiency and broader spectra of action. In this work, the synthesis of a new peptide-coumarin conjugate via copper(I)-catalyzed azide-alkyne cycloaddition is described. The conjugate was assayed for in vitro cytotoxicity and displayed antifungal activity against Cryptococcus gattii and Cryptococcus neoformans. Additionally, the conjugate exhibited increased antifungal efficacy when compared with the individual peptide, coumarin, or triazole moieties. Treatment of C. gattii with the peptide-coumarin conjugate enhanced the production of reactive oxygen species, suggesting that the oxidative burst plays an important role in the mechanism of action of the conjugate.
Collapse
Affiliation(s)
| | | | | | | | | | - Heloísa M. Oliveira
- Serviço
de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento da Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Luciana M. Silva
- Serviço
de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento da Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | |
Collapse
|
24
|
Morales BP, Junior IN, Trilles L, Bertho AL, Oliveira RDVCD, Nishikawa MM, Elias MDS, Wanke B, Lazéra MDS. Determination of the minimum inhibitory concentration of Cryptococcus neoformans and Cryptococcus gattii against fluconazole by flow cytometry. Med Mycol 2014; 52:90-8. [PMID: 23808405 DOI: 10.3109/13693786.2013.806827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies have used flow cytometry (FCM) as an important alternative method to determine the antifungal susceptibility of yeasts compared to the broth microdilution Clinical and Laboratory Standards Institute (CLSI) reference procedure. We present a comparative study of the broth microdilution method and flow cytometry to assess the in vitro antifungal susceptibility of Cryptococcus neoformans (n = 16) and C. gattii (n = 24) to fluconazole. The minimum inhibitory concentration (MIC) assays by flow cytometry were defined as the lowest drug concentration that showed ∼50% of the count of acridine orange negative cells compared to that of the growth control. Categorical classification showed all C. neoformans isolates were susceptible to fluconazole. Three isolates of C. gattii were susceptible dose-dependent and the remaining 21 isolates were classified as susceptible. MICs comparison of both methodologies demonstrated 100% categorical agreement of the results obtained for C. neoformans and C. gattii. The MICs obtained with the CLSI-approved method and flow cytometry were compared by the Spearman correlation test and a significant Pv = 0.001. The flow cytometric method has the advantage of analyzing a large and constant number of cells in less time, i.e., 9 h incubation for fluconazole using acridine orange versus 72 h for broth microdilution method. In conclusion, the two methods were comparable and flow cytometry method can expedite and improve the results of in vitro susceptibility tests of C. neoformans and C. gattii against fluconazole and also allows comparative studies in vitro/in vivo more rapidly, which along with clinical data, could assist in selecting the most appropriate treatment choice.
Collapse
|
25
|
A low-affinity penicillin-binding protein 2x variant is required for heteroresistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2014; 58:3934-41. [PMID: 24777105 DOI: 10.1128/aac.02547-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heteroresistance to penicillin in Streptococcus pneumoniae is the ability of subpopulations to grow at a higher antibiotic concentration than expected from the MIC. This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary β-lactam resistance determinants, penicillin-binding protein 2b (PBP2b) and PBP2x, and the secondary resistance determinant PBP1a in heteroresistance to penicillin. Transformants containing PBP genes from the heteroresistant strain Spain(23F) 2349 in the nonheteroresistant strain R6 background were tested for heteroresistance by population analysis profiling (PAP). We found that pbp2x, but not pbp2b or pbp1a alone, conferred heteroresistance to R6. However, a change of pbp2x expression was not observed, and therefore, expression does not correlate with an increased proportion of resistant subpopulations. In addition, the influence of the CiaRH system, mediating PBP-independent β-lactam resistance, was assessed by PAP on ciaR disruption mutants but revealed no heteroresistant phenotype. We also showed that the highly resistant subpopulations (HOM*) of transformants containing low-affinity pbp2x undergo an increase in resistance upon selection on penicillin plates that partially reverts after passaging on selection-free medium. Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter subunit proteins encoded by pstS, phoU, pstB, and pstC in these highly resistant subpopulations. In conclusion, the presence of low-affinity pbp2x enables certain pneumococcal colonies to survive in the presence of β-lactams. Upregulation of phosphate ABC transporter genes may represent a reversible adaptation to antibiotic stress.
Collapse
|
26
|
Hermes DM, Pormann Pitt C, Lutz L, Teixeira AB, Ribeiro VB, Netto B, Martins AF, Zavascki AP, Barth AL. Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and -resistant Pseudomonas aeruginosa. J Med Microbiol 2013; 62:1184-1189. [PMID: 23699064 DOI: 10.1099/jmm.0.059220-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One hundred and twenty-four Pseudomonas aeruginosa isolates were selected for antimicrobial susceptibility testing with anti-pseudomonal agents, MIC determination for polymyxin B and metallo-beta-lactamase detection (genes blaSPM, blaVIM-1, blaNDM-1 and blaIMP). According to the imipenem and/or meropenem susceptibility profile, a set of randomly selected isolates (12 isolates carbapenem-susceptible and 12 isolates carbapenem-resistant) were evaluated for heteroresistance to polymyxin B. Heteroresistance testing was performed by plating the isolates onto increasing concentrations of polymyxin B (from 0 to 8.0 mg l(-1)). The population analysis profile (PAP) was defined as the ratio of the number of colony-forming units on the plate with the highest concentration of polymyxin B at which bacterial growth occurred against the number of colony-forming units on the plate without antibiotic. Isolates presenting subpopulations that exhibited growth at polymyxin B concentrations ≥2 mg l(-1) were considered heteroresistant. Isolates containing subpopulations that grew at polymyxin B concentrations at least twice as high as the original MIC but <2 mg l(-1) were considered heterogeneous. Antimicrobial susceptibility testing results indicated a variable degree of susceptibility: high levels of resistance to gentamicin (30.6 %) and imipenem (29.0 %); low levels of resistance to aztreonam (1.6 %) and ciprofloxacin (4.8 %). All isolates were susceptible to polymyxin B: MIC50 and MIC90 were 1 mg l(-1) and 2 mg l(-1), respectively. Thirty-seven isolates (30 %) were carbapenem-resistant. Four isolates resistant to carbapenems were positive for blaIMP. There were no heteroresistant subpopulations in the carbapenem-susceptible group, but three isolates presented heterogeneous subpopulations. The PAP frequency ranged from 2.1×10(-4) to 6.9×10(-8). In the carbapenem-resistant group, one isolate was heteroresistant. Six isolates in this group presented heterogeneous subpopulations. In the resistant population, the PAP frequency ranged from 2.1×10(-7) to 2.6×10(-4). In this study, polymyxin B heteroresistance in P. aeruginosa was uncommon and occurred in only one carbapenem-resistant isolate, despite the fact that several isolates presented heterogeneous subpopulations with increased polymyxin B MICs.
Collapse
Affiliation(s)
- Djuli M Hermes
- Programa de Pós Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | - Larissa Lutz
- Unidade de Microbiologia, Hospital de Clínicas de Porto Alegre (HCPA), Brazil
| | - Aline B Teixeira
- Programa de Pós Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | - Bárbara Netto
- Programa de Pós Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | - Alexandre P Zavascki
- Infectious Disease Service, HCPA, Brazil
- Programa de Pós Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Afonso L Barth
- Serviço de Patologia Clínica, HCPA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Brazil
- Programa de Pós Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| |
Collapse
|
27
|
Hryncewicz-Gwóźdź A, Kalinowska K, Plomer-Niezgoda E, Bielecki J, Jagielski T. Increase in resistance to fluconazole and itraconazole in Trichophyton rubrum clinical isolates by sequential passages in vitro under drug pressure. Mycopathologia 2013; 176:49-55. [PMID: 23595653 DOI: 10.1007/s11046-013-9655-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/10/2013] [Indexed: 11/24/2022]
Abstract
Trichophyton rubrum, an anthropophilic dermatophyte fungus, is the predominant causative agent of superficial skin infections in human population. There are only scanty reports on drug susceptibility profiling of T. rubrum. Neither mechanisms for drug resistance development nor correlation between in vitro drug susceptibility and in vivo response to treatment is known for that species. In this study, changes in the in vitro susceptibilities to fluconazole (FLZ) and itraconazole (ITZ) among thirty T. rubrum clinical strains subjected to sequential passages in the presence or absence of the azoles were investigated. Each strain was passaged 12 times at 4-week intervals as three parallel cultures, maintained on a drug-free medium (1), and a medium containing FLZ (2) or ITZ (3) at subinhibitory concentrations. Susceptibility to FLZ and ITZ of the original strain and its 3 subcultures was determined by microdilution method. The MIC values of the two azoles remained unaltered for all T. rubrum strains tested, after 12 passages on a drug-free medium. Among the strains grown with FLZ, an increase in the MICs of FLZ and ITZ was noted in 17 (56.7 %) and 19 (63.3 %) strains, respectively. Increased MICs of ITZ and FLZ were demonstrated for 24 (80 %) and 20 (66.7 %) strains that were propagated with ITZ. The results indicate the capacity of T. rubrum to develop resistance toward the azoles after prolonged exposure to these drugs. Resistance of T. rubrum to azoles plays an important role in therapy failures and consequently contributes to persistence and chronicity of the infections.
Collapse
Affiliation(s)
- Anita Hryncewicz-Gwóźdź
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland
| | | | | | | | | |
Collapse
|
28
|
Morrow CA, Fraser JA. Ploidy variation as an adaptive mechanism in human pathogenic fungi. Semin Cell Dev Biol 2013; 24:339-46. [PMID: 23380396 DOI: 10.1016/j.semcdb.2013.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/24/2022]
Abstract
Changes in ploidy have a profound and usually negative influence on cellular viability and proliferation, yet the vast majority of cancers and tumours exhibit an aneuploid karyotype. Whether this genomic plasticity is a cause or consequence of malignant transformation remains uncertain. Systemic fungal pathogens regularly develop aneuploidies in a similar manner during human infection, often far in excess of the natural rate of chromosome nondisjunction. As both processes fundamentally represent cells evolving under selective pressures, this suggests that changes in chromosome number may be a concerted mechanism to adapt to the hostile host environment. Here, we examine the mechanisms by which aneuploidy and polyploidy are generated in the fungal pathogens Candida albicans and Cryptococcus neoformans and investigate whether these represent an adaptive strategy under severe stress through the rapid generation of large-scale mutations. Insights into fungal ploidy changes, strategies for tolerating aneuploidies and proliferation during infection may yield novel targets for both antifungal and anticancer therapies.
Collapse
Affiliation(s)
- Carl A Morrow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
29
|
Pathophysiology of Escherichia coli ventilator-associated pneumonia: implication of highly virulent extraintestinal pathogenic strains. Intensive Care Med 2012; 38:2007-16. [DOI: 10.1007/s00134-012-2699-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023]
|
30
|
Semighini CP, Averette AF, Perfect JR, Heitman J. Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner. PLoS Pathog 2011; 7:e1002364. [PMID: 22114551 PMCID: PMC3219705 DOI: 10.1371/journal.ppat.1002364] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/22/2011] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is a form of programmed cell death critical for development and homeostasis in multicellular organisms. Apoptosis-like cell death (ALCD) has been described in several fungi, including the opportunistic human pathogen Cryptococcus neoformans. In addition, capsular polysaccharides of C. neoformans are known to induce apoptosis in host immune cells, thereby contributing to its virulence. Our goals were to characterize the apoptotic signaling cascade in C. neoformans as well as its unique features compared to the host machinery to exploit the endogenous fungal apoptotic pathways as a novel antifungal strategy in the future. The dissection of apoptotic pathways revealed that apoptosis-inducing factor (Aif1) and metacaspases (Mca1 and Mca2) are independently required for ALCD in C. neoformans. We show that the apoptotic pathways are required for cell fusion and sporulation during mating, indicating that apoptosis may occur during sexual development. Previous studies showed that antifungal drugs induce ALCD in fungi and that C. neoformans adapts to high concentrations of the antifungal fluconazole (FLC) by acquisition of aneuploidy, especially duplication of chromosome 1 (Chr1). Disruption of aif1, but not the metacaspases, stimulates the emergence of aneuploid subpopulations with Chr1 disomy that are resistant to fluconazole (FLC(R)) in vitro and in vivo. FLC(R) isolates in the aif1 background are stable in the absence of the drug, while those in the wild-type background readily revert to FLC sensitivity. We propose that apoptosis orchestrated by Aif1 might eliminate aneuploid cells from the population and defects in this pathway contribute to the selection of aneuploid FLC(R) subpopulations during treatment. Aneuploid clinical isolates with disomies for chromosomes other than Chr1 exhibit reduced AIF1 expression, suggesting that inactivation of Aif1 might be a novel aneuploidy-tolerating mechanism in fungi that facilitates the selection of antifungal drug resistance.
Collapse
Affiliation(s)
- Camile P. Semighini
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anna F. Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John R. Perfect
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
31
|
Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011; 75:213-67. [PMID: 21646428 PMCID: PMC3122626 DOI: 10.1128/mmbr.00045-10] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
Collapse
Affiliation(s)
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
32
|
Olszewski MA, Zhang Y, Huffnagle GB. Mechanisms of cryptococcal virulence and persistence. Future Microbiol 2010; 5:1269-88. [PMID: 20722603 DOI: 10.2217/fmb.10.93] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus neoformans is an environmental yeast that is a leading cause of fatal mycosis in AIDS patients and a major cause of meningoencephalitis and CNS-related mortality around the globe. Although C. neoformans infection is mostly a manifestation of immune deficiency, up to 25% of cases reported in the USA occur in patients without recognizable immune defects, indicating that C. neoformans can develop mechanisms that allow it to evade immune defenses and persist in noncompromised hosts. This article discusses mechanisms and routes of infection and the most important elements of host response as well as the mechanisms that promote cryptococcal survival within the host. Metabolic adaptation to physiological host conditions and the mechanisms limiting immune recognition, interfering with phagocytosis and extending intracellular survival of C. neoformans are highlighted. We describe the mechanisms by which C. neoformans can alter adaptive host responses, especially cell-mediated immunity, which is required for clearance of this microbe. We also review cryptococcal strategies of survival in the CNS and briefly discuss adaptations developing in response to medical treatment.
Collapse
Affiliation(s)
- Michal A Olszewski
- Ann Arbor Veterans Administration Health System (11R), 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
33
|
Sionov E, Lee H, Chang YC, Kwon-Chung KJ. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog 2010; 6:e1000848. [PMID: 20368972 PMCID: PMC2848560 DOI: 10.1371/journal.ppat.1000848] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 03/05/2010] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is a haploid environmental organism and the major cause of fungal meningoencephalitis in AIDS patients. Fluconazole (FLC), a triazole, is widely used for the maintenance therapy of cryptococcosis. Heteroresistance to FLC, an adaptive mode of azole resistance, was associated with FLC therapy failure cases but the mechanism underlying the resistance was unknown. We used comparative genome hybridization and quantitative real-time PCR in order to show that C. neoformans adapts to high concentrations of FLC by duplication of multiple chromosomes. Formation of disomic chromosomes in response to FLC stress was observed in both serotype A and D strains. Strains that adapted to FLC concentrations higher than their minimal inhibitory concentration (MIC) contained disomies of chromosome 1 and stepwise exposure to even higher drug concentrations induced additional duplications of several other specific chromosomes. The number of disomic chromosomes in each resistant strain directly correlated with the concentration of FLC tolerated by each strain. Upon removal of the drug pressure, strains that had adapted to high concentrations of FLC returned to their original level of susceptibility by initially losing the extra copy of chromosome 1 followed by loss of the extra copies of the remaining disomic chromosomes. The duplication of chromosome 1 was closely associated with two of its resident genes: ERG11, the target of FLC and AFR1, the major transporter of azoles in C. neoformans. This adaptive mechanism in C. neoformans may play an important role in FLC therapy failure of cryptococcosis leading to relapse during azole maintenance therapy. Cryptococcus neoformans is an environmental fungus that causes life threatening brain disease, primarily in AIDS patients. The disease is estimated to claim 700,000 lives annually world-wide but most heavily in Africa. Fluconazole (FLC), a fungistatic antifungal drug, is commonly used to treat patients for long term maintenance therapy. Recurrence of cryptococcosis in AIDS patients undergoing FLC maintenance therapy has been increasingly reported. Heteroresistance, an adaptive azole resistance, was associated with FLC therapy failure cases but the mechanism underlying the resistance was unknown. We previously described that C. neoformans strains are innately heteroresistant to FLC; each strain producing a fraction of subpopulation that can tolerate a high concentration of the drug. These resistant subpopulations revert to original phenotype during maintenance in drug free media. Various methods including cDNA microarrays, comparative genome hybridization and quantitative PCR have been applied to uncover the mechanism involved in the adaptation of C. neoformans to high concentrations of FLC and subsequent loss of resistance upon the removal of drug pressure. We discovered that C. neoformans adapts to high concentration of FLC by formation of disomy in multiple chromosomes. The removal of drug pressure results in a sequential loss of the extra chromosomal copies. It is likely that this novel mechanism of adaptation contributes to the failure of FLC therapy for cryptococcosis.
Collapse
Affiliation(s)
- Edward Sionov
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Hyeseung Lee
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Yun C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
Mahida K, Kwon DH. Co-existence of multidrug-resistant and -susceptible strains of Pseudomonas aeruginosa from a single clinical isolate. Curr Microbiol 2009; 61:19-24. [PMID: 20039170 DOI: 10.1007/s00284-009-9570-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 12/03/2009] [Indexed: 01/23/2023]
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and difficult to treat due to acquired-resistance to multiple antibiotics. A pair of strains, M38100A and M38100B, previously identified from a single clinical isolate of P. aeruginosa was investigated to understand phenotypic and genotypic characteristics. Results revealed that the pair of strains was very similar for serum susceptibility, growth rate in a complex medium (Luria-Bertani), RAPD-genotype profiles, status of genes encoding type III secretion toxins, and no extra-chromosomal DNA. However, antibiotic susceptibility of the strain M38100B showed resistant to all tested-antibiotics while the strain M38100A showed susceptible to the same tested-antibiotics as similar levels of P. aeruginosa PAO1. The strain M38100B exhibited no growth in a minimal medium as a sole carbon and nitrogen source of glutamate while the strain M38100A grew well in the same minimal medium. These results suggest that multidrug resistance of the strain M38100B may be caused by multiple mutations on its genomic DNA and a precursor stage for a homogeneous multidrug resistant population.
Collapse
Affiliation(s)
- Krishna Mahida
- Department of Biology, Long Island University, One University Plaza, Brooklyn, NY 11201, USA
| | | |
Collapse
|
35
|
Arechavala AI, Ochiuzzi ME, Borgnia MD, Santiso GM. Fluconazole and amphotericin B susceptibility testing of Cryptococcus neoformans: Results of minimal inhibitory concentrations against 265 isolates from HIV-positive patients before and after two or more months of antifungal therapy. Rev Iberoam Micol 2009; 26:194-7. [DOI: 10.1016/j.riam.2009.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 02/24/2009] [Indexed: 10/20/2022] Open
|
36
|
Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother 2009; 53:2804-15. [PMID: 19414582 DOI: 10.1128/aac.00295-09] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1999, heteroresistance to triazoles was reported in Cryptococcus neoformans strains isolated from an azole therapy failure case of cryptococcosis in an AIDS patient and in a diagnostic strain from a non-AIDS patient. In this study, we analyzed 130 strains of C. neoformans isolated from clinical and environmental sources before 1979, prior to the advent of triazoles, and 16 fluconazole (FLC)-resistant strains isolated from AIDS patients undergoing FLC maintenance therapy during 1990 to 2000. All strains isolated prior to 1979 manifested heteroresistance (subset of a population that grows in the presence of FLC) at concentrations between 4 and 64 microg/ml, and all 16 FLC-resistant AIDS isolates manifested heteroresistance at concentrations between 16 and 128 microg/ml. Upon exposure to stepwise increases in the concentration of FLC, subpopulations that could grow at higher concentrations emerged. Repeated transfer on drug-free media caused the highly resistant subpopulations to revert to the original level of heteroresistance. The reversion pattern fell into four categories based on the number of transfers required. The strains heteroresistant at > or =32 microg/ml were significantly more resistant to other xenobiotics and were also more virulent in mice than were those heteroresistant at < or =8 microg/ml. During FLC treatment of mice infected by strains with low levels of heteroresistance, subpopulations exhibiting higher levels of heteroresistance emerged after a certain period of time. The ABC transporter AFR1, known to efflux FLC, was unrelated to the heteroresistance mechanism. Our study showed that heteroresistance to azole is universal and suggests that heteroresistance contributes to relapse of cryptococcosis during azole maintenance therapy.
Collapse
|
37
|
Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 2009; 22:291-321, Table of Contents. [PMID: 19366916 PMCID: PMC2668233 DOI: 10.1128/cmr.00051-08] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps.
Collapse
Affiliation(s)
- Richard D Cannon
- Department of Oral Sciences, School of Dentistry, University of Otago, P.O. Box 647, Dunedin 9054, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Martínez-Martínez L. Muerte bacteriana y heterorresistencia a los antimicrobianos. Enferm Infecc Microbiol Clin 2008; 26:481-4. [DOI: 10.1016/s0213-005x(08)72774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. EUKARYOTIC CELL 2008; 7:747-64. [PMID: 18375617 DOI: 10.1128/ec.00041-08] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Falagas ME, Makris GC, Dimopoulos G, Matthaiou DK. Heteroresistance: a concern of increasing clinical significance? Clin Microbiol Infect 2007; 14:101-4. [PMID: 18093235 DOI: 10.1111/j.1469-0691.2007.01912.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies have focused on issues related to heteroresistance, including its definition, methods of detection and frequency. Most such studies have reported data concerning infections caused by Staphylococcus aureus, but the clinical significance of heteroresistance is unclear. Six studies have described infections caused by S. aureus strains that were heteroresistant to vancomycin, with two suggesting an association between the emergence of heteroresistance and treatment failure or mortality, and four suggesting no such association. Further studies are required to evaluate the clinical implications of heteroresistance in an era in which rates of antimicrobial resistance are increasing alarmingly worldwide.
Collapse
|
41
|
Morand B, Mühlemann K. Heteroresistance to penicillin in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2007; 104:14098-103. [PMID: 17704255 PMCID: PMC1950099 DOI: 10.1073/pnas.0702377104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heteroresistance to beta-lactam antibiotics has been mainly described for staphylococci, for which it complicates diagnostic procedures and therapeutic success. This study investigated whether heteroresistance to penicillin exists in Streptococcus pneumoniae. Population analysis profile (PAP) showed the presence of subpopulations with higher penicillin resistance in four of nine clinical pneumococcal strains obtained from a local surveillance program (representing the multiresistant clones ST179, ST276, and ST344) and in seven of 16 reference strains (representing the international clones Spain(23F)-1, Spain(9V)-3, Spain(14)-5, Hungary(19A)-6, South Africa(19A)-13, Taiwan(23F)-15, and Finland(6B)-12). Heteroresistant strains had penicillin minimal inhibitory concentrations (MICs) (for the majority of cells) in the intermediate- to high-level range (0.19-2.0 mug/ml). PAP curves suggested the presence of subpopulations also for the highly penicillin-resistant strains Taiwan(19F)-14, Poland(23F)-16, CSR(19A)-11, and CSR(14)-10. PAP of bacterial subpopulations with higher penicillin resistance showed a shift toward higher penicillin-resistance levels, which reverted upon multiple passages on antibiotic-free media. Convergence to a homotypic resistance phenotype did not occur. Comparison of two strains of clone ST179 showed a correlation between the heteroresistant phenotype and a higher-penicillin MIC and a greater number of altered penicillin-binding proteins (PBP1a, -2b, and -2x), respectively. Therefore, heteroresistance to penicillin occurs in international multiresistant clones of S. pneumoniae. Pneumococci may use heteroresistance to penicillin as a tool during their evolution to high penicillin resistance, because it gives the bacteria an opportunity to explore growth in the presence of antibiotics before acquisition of resistance genes.
Collapse
Affiliation(s)
- Brigitte Morand
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010 Bern, Switzerland
| | - Kathrin Mühlemann
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010 Bern, Switzerland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Pournaras S, Ikonomidis A, Markogiannakis A, Spanakis N, Maniatis AN, Tsakris A. Characterization of clinical isolates of Pseudomonas aeruginosa heterogeneously resistant to carbapenems. J Med Microbiol 2007; 56:66-70. [PMID: 17172519 DOI: 10.1099/jmm.0.46816-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fourteen apparently carbapenem-susceptible Pseudomonas aeruginosa clinical isolates that exhibited colonies within the inhibition zone around carbapenem discs were analysed. MICs of carbapenems were determined and the isolates were genotyped by PFGE. Population analysis, one-step selection of carbapenem-resistant mutants and growth curves of progenitors and carbapenem-resistant subpopulations were performed. Agar dilution MICs of imipenem and meropenem ranged from 0.5 to 4 mg l−1 and from 0.25 to 2 mg l−1, respectively. Population analysis confirmed subpopulations that grew in concentrations of up to 18 mg l−1 and 12 mg l−1 of imipenem and meropenem, respectively, at frequencies ranging from 6.9×10−5 to 1.1×10−7, suggesting that they might not be detected by standard agar dilution MIC testing. The minority subpopulations exhibited MICs for imipenem ranging from 10 to 20 mg l−1 and for meropenem from 4 to 14 mg l−1. The one-step 8 mg l−1 selection of imipenem-resistant mutants test showed growth in all isolates at frequencies ranging from 3.8×10−4 to 5.1×10−7. Growth curves revealed a prolonged lag phase and a short exponential phase for the heterogeneous subpopulations compared with their respective native subpopulations. These findings may be indicative that the use of carbapenems can lead to selection of P. aeruginosa resistant subpopulations that subsequently cause infections and result in treatment failure.
Collapse
Affiliation(s)
- Spyros Pournaras
- Department of Medical Microbiology, University of Thessalia, Mezourlo, Larissa, Greece
| | - Alexandros Ikonomidis
- Department of Medical Microbiology, University of Thessalia, Mezourlo, Larissa, Greece
| | | | - Nicholas Spanakis
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - Antonios N Maniatis
- Department of Medical Microbiology, University of Thessalia, Mezourlo, Larissa, Greece
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
43
|
Cuthbertson BJ, Büllesbach EE, Gross PS. Discovery of Synthetic Penaeidin Activity against Antibiotic-resistant Fungi. Chem Biol Drug Des 2006; 68:120-7. [PMID: 16999777 DOI: 10.1111/j.1747-0285.2006.00417.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Penaeidins are antimicrobial peptides from shrimp that are constituted by divergent classes of peptide isoforms in an individual organism. Penaeidin sequence variation suggests functional diversity in the host and promises differential activities if applied to treat infections in humans. We have synthesized isoform 4 of penaeidin class 3 from the Atlantic shrimp, Litopenaeus setiferus, by native ligation using three peptide segments. Our synthesis approach led to the discovery of an irreversible side reaction that was successfully suppressed, a discovery, which has particular relevance to the synthesis of cysteine-rich peptides. The antimicrobial activity of full-length penaeidin and the N-terminal proline-rich domain of this isoform were compared with the corresponding peptides of penaeidin class 4 isoform 1 using a wide range of bacteria and fungi. New aspects of penaeidin function are reported that include activity against fungi of the phylum Basidiomycota (Cryptococcus strains), activity against fungi that are pathogenic to humans and effectiveness in the context of antibiotic resistance mechanisms (Cryptococcus and Candida spp.). The proline-rich domain of penaeidin class 4 shows the highest relative antimicrobial activity, while exhibiting no cytotoxicity to human monocytes, and therefore stands out as a potential peptide therapeutic.
Collapse
Affiliation(s)
- Brandon J Cuthbertson
- National Institutes of Health/National Institute of Environmental Health Sciences, PO Box 12233 MD F3-04, Research Triangle Park, NC 27709-2233, USA.
| | | | | |
Collapse
|
44
|
Revankar SG, Fu J, Rinaldi MG, Kelly SL, Kelly DE, Lamb DC, Keller SM, Wickes BL. Cloning and characterization of the lanosterol 14alpha-demethylase (ERG11) gene in Cryptococcus neoformans. Biochem Biophys Res Commun 2004; 324:719-28. [PMID: 15474487 DOI: 10.1016/j.bbrc.2004.09.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Indexed: 10/26/2022]
Abstract
The ergosterol pathway in fungal pathogens is an attractive antimicrobial target because it is unique from the major sterol (cholesterol) producing pathway in humans. Lanosterol 14alpha-demethylase is the target for a major class of antifungals, the azoles. In this study we have isolated the gene for this enzyme from Cryptococcus neoformans. The gene, ERG11, was recovered using degenerate PCR with primers designed with a novel algorithm called CODEHOP. Sequence analysis of Erg11p identified a highly conserved region typical of the cytochrome P450 class of mono-oxygenases. The gene was present in single copy in the genome and mapped to one end of the largest chromosome. Comparison of the protein sequence to a number of major human fungal pathogen Erg11p homologs revealed that the C. neoformans protein was highly conserved, and most closely related to the Erg11p homologs from other basidiomycetes. Functional studies demonstrated that the gene could complement a Saccharomyces cerevisiae erg11 mutant, which confirmed the identity of the C. neoformans gene.
Collapse
Affiliation(s)
- S G Revankar
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 75216, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Current awareness on yeast. Yeast 2003; 20:653-60. [PMID: 12769126 DOI: 10.1002/yea.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|